Glucose Transporter Type 1 Deficiency Syndrome

Dong Wang, Juan M Pascual, Darryl De Vivo, Margaret P Adam, Jerry Feldman, Ghayda M Mirzaa, Roberta A Pagon, Stephanie E Wallace, Lora JH Bean, Karen W Gripp, Anne Amemiya, Dong Wang, Juan M Pascual, Darryl De Vivo, Margaret P Adam, Jerry Feldman, Ghayda M Mirzaa, Roberta A Pagon, Stephanie E Wallace, Lora JH Bean, Karen W Gripp, Anne Amemiya

Excerpt

Clinical characteristics: The phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS) is now known to be a continuum that includes the classic phenotype as well as paroxysmal exercise-induced dyskinesia and epilepsy (previously known as dystonia 18 [DYT18]) and paroxysmal choreoathetosis with spasticity (previously known as dystonia 9 [DYT9]), atypical childhood absence epilepsy, myoclonic astatic epilepsy, and paroxysmal non-epileptic findings including intermittent ataxia, choreoathetosis, dystonia, and alternating hemiplegia. The classic phenotype is characterized by infantile-onset seizures, delayed neurologic development, acquired microcephaly, and complex movement disorders. Seizures in classic early-onset Glut1 DS begin before age six months. Several seizure types occur: generalized tonic or clonic, focal, myoclonic, atypical absence, atonic, and unclassified. In some infants, apneic episodes and abnormal episodic eye-head movements similar to opsoclonus may precede the onset of seizures. The frequency, severity, and type of seizures vary among affected individuals and are not related to disease severity. Cognitive impairment, ranging from learning disabilities to severe intellectual disability, is typical. The complex movement disorder, characterized by ataxia, dystonia, and chorea, may occur in any combination and may be continuous, paroxysmal, or continual with fluctuations in severity influenced by environmental factors such as fasting or with infectious stress. Symptoms often improve substantially when a ketogenic diet is started.

Diagnosis/testing: The diagnosis of Glut1 DS is established in a proband with suggestive clinical findings, normal blood glucose concentration, CSF glucose concentration <60 mg/dL, and the identification of a heterozygous pathogenic variant (or rarely, biallelic pathogenic variants) in SLC2A1 by molecular genetic testing. If no pathogenic variant is identified, 3-O-methyl-D-glucose uptake in erythrocytes can be performed; results between 35% and 74% of controls are diagnostic.

Management: Treatment of manifestations: The ketogenic diet is highly effective in controlling the seizures and improving gait disturbance and is generally well tolerated. Affected individuals treated effectively at a younger age have a better outcome The ketogenic diet is deficient in L-carnitine necessitating dietary supplementation.

Prevention of primary manifestations: Early diagnosis and treatment with a ketogenic diet is associated with improved neurologic outcome.

Prevention of secondary complications: For those on a ketogenic diet: L-carnitine supplementation; proper hydration and avoidance of carbonic anhydrase inhibitors; avoidance of carbohydrate-containing foods, intravenous fluids, and medications that interrupt the state of ketosis; avoidance of valproic acid because it increases the risk of a Reye-like illness.

Surveillance: Periodic measurement of blood ketone concentration with a target beta-hydroxybutyrate concentration of 3-5 mmol/L.

Agents to avoid: Barbiturates (e.g., phenobarbital, the antiepileptic drug most commonly used in treating infants), methylxanthines (e.g., caffeine), valproic acid.

Evaluation of relatives at risk: If the pathogenic variant has been identified in an affected family member, it is appropriate to test at-risk newborns, infants, and other relatives at risk in order to identify as early as possible those who would benefit from initiation of treatment and preventive measures.

Genetic counseling: Glut1 DS is most commonly inherited in an autosomal dominant (AD) manner. About 90% of individuals with AD Glut1 DS have the disorder as the result of a de novo heterozygous pathogenic variant; about 10% have a clinically affected parent. Parents who are heterozygous for the pathogenic variant may have a mild phenotype or be asymptomatic, findings that can suggest mosaicism in the parent. Offspring of an individual with AD Glut1 DS have a 50% chance of inheriting the pathogenic variant and being clinically affected.

Rarely, Glut1 DS is inherited in an autosomal recessive (AR) manner. Heterozygotes (carriers) in families with AR Glut1 DS are asymptomatic.

Once the SLC2A1 pathogenic variant(s) have been identified in an affected family member, prenatal diagnosis for a pregnancy at increased risk and preimplantation genetic testing for Glut1 DS are possible.

Copyright © 1993-2024, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

References

    1. Akman CI, Provenzano F, Wang D, Engelstad K, Hinton V, Yu J, Tikofsky R, Ichese M, De Vivo DC. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency. Epilepsy Res. 2015;110:206–15.
    1. Alter AS, Engelstad K, Hinton VJ, Montes J, Pearson TS, Akman CI, De Vivo DC. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol. 2015;30:160–9.
    1. Brockmann K, Wang D, Korenke CG, von Moers A, Ho YY, Pascual JM, Kuang K, Yang H, Ma L, Kranz-Eble P, Fischbarg J, Hanefeld F, De Vivo DC. Autosomal dominant glut-1 deficiency syndrome and familial epilepsy. Ann Neurol. 2001;50:476–85.
    1. Chinnery PF. Defining neurogenetic phenotypes (or how to compare needles in haystacks). Brain. 2010;133:649–51.
    1. Coman DJ, Sinclair KG, Burke CJ, Appleton DB, Pelekanos JT, O'Neil CM, Wallace GB, Bowling FG, Wang D, De Vivo DC, McGill JJ. Seizures, ataxia, developmental delay and the general paediatrician: glucose transporter 1 deficiency syndrome. J Paediatr Child Health. 2006;2006;42:263–7.
    1. Cunningham P, Naftalin RJ. Implications of aberrant temperature sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models. J Membr Biol. 2013;246:495–511.
    1. De Vivo DC, Bohan TP, Coulter DL, Dreifuss FE, Greenwood RS, Nordli DR, Jr, Shields WD, Stafstrom CE, Tein I. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia. 1998;39:1216–25.
    1. De Vivo DC, Leary L, Wang D (2002a) Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol. 17 Suppl 3:3S15-23
    1. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325:703–9.
    1. De Vivo DC, Wang D. Glut1 Deficiency: CSF Glucose. How low is too low? Revue Neurologique. 2008;164:877–80.
    1. De Vivo DC, Wang D, Pascual JM, Ho YY. Glucose transporter protein syndromes. Int Rev Neurobiol. 2002b;51:259–88.
    1. Flatt JF, Guizouarn H, Burton NM, Borgese F, Tomlinson RJ, Forsyth RJ, Baldwin SA, Levinson BE, Quittet P, Aguilar-Martinez P, Delaunay J, Stewart GW, Bruce LJ. Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood. 2011;118:5267–77.
    1. Fujii T, Ho YY, Wang D, De Vivo DC, Miyajima T, Wong HY, Tsang PT, Shirasaka Y, Kudo T, Ito M. Three Japanese patients with glucose transporter type 1 deficiency syndrome. Brain Dev. 2007;29:92–7.
    1. Fujii T, Morimoto M, Yoshioka H, Ho YY, Law PP, Wang D, De Vivo DC. T295M-associated Glut1 deficiency syndrome with normal erythrocyte 3-OMG uptake. Brain Dev. 2011;33:316–20.
    1. Ho YY, Wang D, Hinton V, Yang H, Vasilescu A, Engelstad K, Jhung S, Hanson KK, Wolf JA, De Vivo DC. Glut-1 deficiency syndrome: autosomal dominant transmission of the R126C missense mutation. Ann Neurol. 2001a;50:S125.
    1. Ho YY, Yang H, Klepper J, Fischbarg J, Wang D, De Vivo DC. Glucose transporter type 1 deficiency syndrome (Glut1DS): methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatr Res. 2001b;50:254–60.
    1. Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, Mao X, Shanske S, Hirano M, DiMauro S, De Vivo DC. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology. 2004;62:1297–302.
    1. Kim SK, Yang H, Pascual JM, De Vivo DC. Valproic acid enhances glucose transport in the cultured brain astrocytes of glucose transporter 1 heterozygous mice. J Child Neurol. 2013;28:70–6.
    1. Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC. GLUT1-deficiency: barbiturates potentiate haploinsufficiency in vitro. Pediatr Res. 1999a;46:677–83.
    1. Klepper J, Garcia-Alvarez M, O'Driscoll KR, Parides MK, Wang D, Ho YY, De Vivo DC. Erythrocyte 3-O-methyl-D-glucose uptake assay for diagnosis of glucose-transporter-protein syndrome. J Clin Lab Anal. 1999b;13:116–21.
    1. Klepper J, Leiendecker B, Bredahl R, Athanassopoulos S, Heinen F, Gertsen E, Florcken A, Metz A, Voit T. Introduction of a ketogenic diet in young infants. J Inherit Metab Dis. 2002;25:449–60.
    1. Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40:207–10.
    1. Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, Hertzberg C, Näke A, Voit T, Willemsen MA. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36:302–8.
    1. Klepper J, Vera JC, De Vivo DC. Deficient transport of dehydroascorbic acid in the glucose transporter protein syndrome. Ann Neurol. 1998;44:286–7.
    1. Kulikova-Schupak R, Ho YY, Kranz-Eble P, Yang H, Wang D, De Vivo DC. Stimulation of GLUT-1 gene transcription by thioctic acid and its potential therapeutic value in Glut-1 deficiency syndrome (GLUT1-DS). J Inherit Metab Dis. 2001;24:S106.
    1. Larsen J, Johannesen KM, Ek J, Tang S, Marini C, Blichfeldt S, Kibaek M, von Spiczak S, Weckhuysen S, Frangu M, Neubauer BA, Uldall P, Striano P, Zara F, Kleiss R, Simpson M, Muhle H, Nikanorova M, Jepsen B, Tommerup N, Stephani U, Guerrini R, Duno M, Hjalgrim H, Pal D, Helbig I, Møller RS, et al. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia. 2015;56:e203–8.
    1. Leary LD, Wang D, Nordli DR, Jr, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia. 2003;44:701–7.
    1. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, Wevers RA, Arthur T, Bahi-Buisson N, Ballhausen D, Bekhof J, van Bogaert P, Carrilho I, Chabrol B, Champion MP, Coldwell J, Clayton P, Donner E, Evangeliou A, Ebinger F, Farrell K, Forsyth RJ, de Goede CG, Gross S, Grunewald S, Holthausen H, Jayawant S, Lachlan K, Laugel V, Leppig K, Lim MJ, Mancini G, Marina AD, Martorell L, McMenamin J, Meuwissen ME, Mundy H, Nilsson NO, Panzer A, Poll-The BT, Rauscher C, Rouselle CM, Sandvig I, Scheffner T, Sheridan E, Simpson N, Sykora P, Tomlinson R, Trounce J, Webb D, Weschke B, Scheffer H, Willemsen MA. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133:655–70.
    1. Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 2013;70:1440–4.
    1. Levy B, Wang D, Ullner PM, Engelstad K, Yang H, Nahum O, Chung WK, De Vivo DC. Uncovering microdeletions in patients with severe Glut-1 deficiency syndrome using SNP oligonucleotide microarray analysis. Mol Genet Metab. 2010;100:129–35.
    1. Mochel F. Triheptanoin for the treatment of brain energy deficit: a 14-year experience. J Neurosci Res. 2017;95:2236–43.
    1. Monani UR, Tang M, Yang H, Li H, Engelstad K, Shetler K, Gao G, De Vivo DC. Gene therapy for Glut1 deficiency syndrome. Ann Neurol. 2014;76 Suppl 18:S176.
    1. Overweg-Plandsoen WC, Groener JE, Wang D, Onkenhout W, Brouwer OF, Bakker HD, De Vivo DC. GLUT-1 deficiency without epilepsy--an exceptional case. J Inherit Metab Dis. 2003;26:559–63.
    1. Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, Good LB, Ma Q, Marin-Valencia I, Zhang X, Park JY, Hynan LS, Stavinoha P, Roe CR, Lu H. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol. 2014;71:1255–65.
    1. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52:458–64.
    1. Pascual JM, Wang D, Yang R, Shi L, Yang H, De Vivo DC. Structural signatures and membrane helix 4 in GLUT1: inferences from human blood-brain glucose transport mutants. J Biol Chem. 2008;283:16732–42.
    1. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13:342.
    1. Pearson TS, Pons R, Engelstad K, Kane SA, Goldberg ME, De Vivo DC. Paroxysmal eye-head movements in Glut1 deficiency syndrome. Neurology. 2017;88:1666–73.
    1. Pérez-Dueñas B, Prior C, Ma Q, Fernández-Alvarez E, Setoain X, Artuch R, Pascual JM. Childhood chorea with cerebral hypotrophy: a treatable GLUT1 energy failure syndrome. Arch Neurol. 2009;66:1410–4.
    1. Pike M. Opsoclonus-myoclonus syndrome. Handb Clin Neurol. 2013;112:1209–11.
    1. Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53:1503–10.
    1. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25:275–81.
    1. Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, De Vivo DC. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68:955–8.
    1. Roubergue A, Apartis E, Mesnage V, Doummar D, Trocello JM, Roze E, Taieb G, De Villemeur TB, Vuillaumier-Barrot S, Vidailhet M, Levy R. Dystonic tremor caused by mutation of the glucose transporter gene GLUT1. J Inherit Metab Dis. 2011;34:483–8.
    1. Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, Wang D, Spinner NB, Birnbaum MJ, De Vivo DC. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet. 1998;18:188–91.
    1. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, Kempfle J, Wuttke TV, Weber Y, Lerche H, Afawi Z, Vandenberghe W, Korczyn AD, Berkovic SF, Ekstein D, Kivity S, Ryvlin P, Claes LR, Deprez L, Maljevic S, Vargas A, Van Dyck T, Goossens D, Del-Favero J, Van Laere K, De Jonghe P, Van Paesschen W. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131:1831–44.
    1. Tang M, Gao G, Rueda CB, Yu H, Thibodeaux DN, Awano T, Engelstad KM, Sanchez-Quintero MJ, Yang H, Li F, Li H, Su Q, Shetler KE, Jones L, Seo R, McConathy J, Hillman EM, Noebels JL, De Vivo DC, Monani UR (2017) Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun. 20;8:14152 .
    1. Urbizu A, Cuenca-León E, Raspall-Chaure M, Gratacòs M, Conill J, Redecillas S, Roig-Quilis M, Macaya A. Paroxysmal exercise-induced dyskinesia, writer's cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295:110–3.
    1. Vermeer S, Koolen DA, Visser G, Brackel HJ, van der Burgt I, de Leeuw N, Willemsen MA, Sistermans EA, Pfundt R, de Vries BB. A novel microdeletion in 1(p34.2p34.3), involving the SLC2A1 (GLUT1) gene, and severe delayed development. Dev Med Child Neurol. 2007;49:380–4.
    1. von Moers A, Brockmann K, Wang D, Korenke CG, Huppke P, De Vivo DC, Hanefeld F. EEG features of glut-1 deficiency syndrome. Epilepsia. 2002;43:941–5.
    1. Wang D, Ho Y-Y, Pascual JM, Hinton V, Yang H, Anolik M, Kranz-Eble P, Jhung S, Engelstadt K, De Vivo DC. GLUT1 deficiency syndrome: R333W genotype and paternal mosaicism. Ann Neurol. 2001;50:S124.
    1. Wang D, Kranz-Eble P, De Vivo DC. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum Mutat. 2000;16:224–31.
    1. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, De Vivo DC. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57:111–8.
    1. Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC. A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet. 2006;15:1169–79.
    1. Wang D, Yang H, Shi L, Ma L, Fujii T, Engelstad K, Pascual JM, De Vivo DC. Functional studies of the T295M mutation Causing Glut1 Deficiency:Glucose efflux preferentially affected by T295M. Pediatr Res. 2008;64:538–43.
    1. Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schüle R, Wuttke TV, Maljevic S, Liebrich J, Gasser T, Ludolph AC, Van Paesschen W, Schöls L, De Jonghe P, Auburger G, Lerche H. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77:959–64.
    1. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, Margari L, Kamm C, Schneider SA, Huber SM, Pekrun A, Roebling R, Seebohm G, Koka S, Lang C, Kraft E, Blazevic D, Salvo-Vargas A, Fauler M, Mottaghy FM, Münchau A, Edwards MJ, Presicci A, Margari F, Gasser T, Lang F, Bhatia KP, Lehmann-Horn F, Lerche H. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118:2157–68.
    1. Wong HY, Chu TS, Lai JC, Fung PK, Fok TF, Fuji T, Ho YY. Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem. 2005;96:775–85.
    1. Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, Aggarwal V, Levy B, Ma L, Chung WK, De Vivo DC. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70:996–1005.
    1. Zorzi G, Castellotti B, Zibordi F, Gellera C, Nardocci N. Paroxysmal movement disorders in GLUT1 deficiency syndrome. Neurology. 2008;71:146–8.

Source: PubMed

3
Abonnere