Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable

Bernard M F M Duvivier, Nicolaas C Schaper, Michelle A Bremers, Glenn van Crombrugge, Paul P C A Menheere, Marleen Kars, Hans H C M Savelberg, Bernard M F M Duvivier, Nicolaas C Schaper, Michelle A Bremers, Glenn van Crombrugge, Paul P C A Menheere, Marleen Kars, Hans H C M Savelberg

Abstract

Background: Epidemiological studies suggest that excessive sitting time is associated with increased health risk, independent of the performance of exercise. We hypothesized that a daily bout of exercise cannot compensate the negative effects of inactivity during the rest of the day on insulin sensitivity and plasma lipids.

Methodology/principal findings: Eighteen healthy subjects, age 21±2 year, BMI 22.6±2.6 kgm(-2) followed randomly three physical activity regimes for four days. Participants were instructed to sit 14 hr/day (sitting regime); to sit 13 hr/day and to substitute 1 hr of sitting with vigorous exercise 1 hr (exercise regime); to substitute 6 hrs sitting with 4 hr walking and 2 hr standing (minimal intensity physical activity (PA) regime). The sitting and exercise regime had comparable numbers of sitting hours; compared to the exercise regime, the minimal intensity PA regime had a higher estimated daily energy expenditure (238kcal/day) [corrected]. PA was assessed continuously by an activity monitor (ActivPAL) and a diary. Measurements of insulin sensitivity (oral glucose tolerance test, OGTT) and plasma lipids were performed in the fasting state, the morning after the 4 days of each regime. In the sitting regime, daily energy expenditure was about 500 kcal lower than in both other regimes. Area under the curve for insulin during OGTT was significantly lower after the minimal intensity PA regime compared to both sitting and exercise regimes 6727.3±4329.4 vs 7752.0±3014.4 and 8320.4±5383.7 mU•min/ml, respectively. Triglycerides, non-HDL cholesterol and apolipoprotein B plasma levels improved significantly in the minimal intensity PA regime compared to sitting and showed non-significant trends for improvement compared to exercise.

Conclusions: One hour of daily physical exercise cannot compensate the negative effects of inactivity on insulin level and plasma lipids if the rest of the day is spent sitting. Reducing inactivity by increasing the time spent walking/standing is more effective than one hour of physical exercise, when energy expenditure is kept constant.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Time spent on different activities…
Figure 1. Time spent on different activities per regime.
Graphical overview of time spent in different activity categories (sleeping, sitting, standing, MVPA cycling and activity (walking)) in the three regimes followed by the participants.
Figure 2. Patterns of insulin, glucose and…
Figure 2. Patterns of insulin, glucose and C-peptide concentration during 2 h oral glucose tolerance test. 2a.
Average insulin levels for each of the three regimes (blue: sitting, red: exercise, green: minimal intensity PA) during the oral glucose tolerance tests that were performed after each regime (left hand panel) and average area under the curve for each of the three regimes (right hand panel). Area under the curve was in the minimal intensity PA regime significantly smaller than in both other conditions. 2b. Average glucose levels for each of the three regimes (blue: sitting, red: exercise, green: minimal intensity PA) during the oral glucose tolerance tests that were performed after each regime (left hand panel) and average area under the curve for each of the three regimes (right hand panel). 2c. Average C-peptide levels for each of the three regimes (blue: sitting, red: exercise, green: minimal intensity PA) during the oral glucose tolerance tests that were performed after each regime (left hand panel) and average area under the curve for each of the three regimes (right hand panel). Abbreviations: PA, physical activity.

References

    1. Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, et al... (2007) Physical Activity and Public Health: Updated Recommendation for Adults from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise 39: 1423–1434 1410.1249/mss.1420b1013e3180616b3180627.
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C (2009) Sitting Time and Mortality from All Causes, Cardiovascular Disease, and Cancer. Medicine & Science in Sports & Exercise 41: 998–1005 1010.1249/MSS.1000b1013e3181930355.
    1. Proper KI, Singh AS, van Mechelen W, Chinapaw MJM (2011) Sedentary Behaviors and Health Outcomes Among Adults: A Systematic Review of Prospective Studies. American Journal of Preventive Medicine 40: 174–182.
    1. Bey L, Hamilton MT (2003) Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. The Journal of Physiology 551: 673–682.
    1. Healy GN, Dunstan DW, Salmon J, Shaw JE, ZIimmet PZ, et al... (2008) Television Time and Continuous Metabolic Risk in Physically Active Adults. Medicine & Science in Sports & Exercise 40: 639–645 610.1249/MSS.1240b1013e3181607421.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, et al. (2008) Objectively Measured Sedentary Time, Physical Activity, and Metabolic Risk. Diabetes Care 31: 369–371.
    1. Bankoski A, Harris TB, McClain JJ, Brychta RJ, Caserotti P, et al. (2011) Sedentary Activity Associated With Metabolic Syndrome Independent of Physical Activity. Diabetes Care 34: 497–503.
    1. Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, et al. (2009) A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. Journal of Applied Physiology 108: 1034–1040.
    1. Stephens BR, Granados K, Zderic TW, Hamilton MT, Braun B (2011) Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake. Metabolism 60: 941–949.
    1. Hawley J, Gibala M (2012) What’s new since Hippocrates? Preventing type 2 diabetes by physical exercise and diet. Diabetologia 55: 535–539.
    1. WHO (2010) Global recommendation on physical activity for health.
    1. Tucker JM, Welk GJ, Beyler NK (2011) Physical Activity in U.S. Adults: Compliance with the Physical Activity Guidelines for Americans. American Journal of Preventive Medicine 40: 454–461.
    1. Grant PM, Ryan CG, Tigbe WW, Granat MH (2006) The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med 40: 992–997.
    1. Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Manttari AT (2003) Use of heart rate to predict energy expenditure from low to high activity levels. Int J Sports Med 24: 332–336.
    1. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499–502.
    1. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22: 1462–1470.
    1. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DRJ, et al... (2011) 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Medicine & Science in Sports & Exercise 43: 1575–1581 1510.1249/MSS.1570b1013e31821ece31812.
    1. Tudor-Locke C, Bassett DRJ (2004) How Many Steps/Day Are Enough?: Preliminary Pedometer Indices for Public Health. Sports Medicine 34: 1–8.
    1. Blanc Sp, Normand S, Pachiaudi C, Fortrat J-O, Laville M, et al. (2000) Fuel Homeostasis during Physical Inactivity Induced by Bed Rest. Journal of Clinical Endocrinology & Metabolism 85: 2223–2233.
    1. Yanagibori R, Suzuki Y, Kawakubo K, Iwamoto T, Itakura H, et al. (1997) The effects of 20 days bed rest on serum lipids and lipoprotein concentrations in healthy young subjects. J Gravit Physiol 4: S82–S90.
    1. Magkos F, Patterson BW, Mittendorfer B (2006) No effect of menstrual cycle phase on basal very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. American Journal of Physiology - Endocrinology And Metabolism 291: E1243–E1249.
    1. Yeung EH, Zhang C, Mumford SL, Ye A, Trevisan M, et al. (2010) Longitudinal Study of Insulin Resistance and Sex Hormones over the Menstrual Cycle: The BioCycle Study. Journal of Clinical Endocrinology & Metabolism 95: 5435–5442.
    1. Praet S, van Rooij E, Wijtvliet A, Boonman-de Winter L, Enneking T, et al. (2008) Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial. Diabetologia 51: 736–746.
    1. van Sloten TT, Savelberg HHCM, Duimel-Peeters IGP, Meijer K, Henry RMA, et al. (2011) Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Research and Clinical Practice 91: 32–39.
    1. Meijer EP, Westerterp KR, Verstappen FT (1999) Effect of exercise training on total daily physical activity in elderly humans. Eur J Appl Physiology Occup Physiol 80: 16–21.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, et al. (2007) Objectively Measured Light-Intensity Physical Activity Is Independently Associated With 2-h Plasma Glucose. Diabetes Care 30: 1384–1389.
    1. Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, et al... (2012) Association of sedentary time with mortality independent of moderate to vigorous physical activity. PloS One. In press.
    1. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, et al. (2012) Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. The American Journal of Clinical Nutrition 95: 437–445.
    1. van der Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A (2012) Sitting Time and All-Cause Mortality Risk in 222 497 Australian Adults. Arch Intern Med 172: 494–500.
    1. Yanagibori R, Suzuki Y, Kawakubo K, Makita Y, Gunji A (1994) Carbohydrate and lipid metabolism after 20 days of bed rest. Acta Physiol Scand 616: 51–57.
    1. Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. Journal of Applied Physiology 111: 1201–1210.
    1. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, et al. (2012) Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 35: 976–983.
    1. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of Low Energy Expenditure and Sitting in Obesity, Metabolic Syndrome, Type 2 Diabetes, and Cardiovascular Disease. Diabetes 56: 2655–2667.
    1. Pate RR, O’Neill JR, Lobelo F (2008) The Evolving Definition of “Sedentary”. Exercise & Sport Sciences Reviews 36: 173–178.
    1. Ekblom-Bak E, Hellénius M-L, Ekblom B (2011) Are we facing a new paradigm of inactivity physiology? Br J Sport Med 44: 834–835.

Source: PubMed

3
Abonnere