Diuretic Effects of Sodium Glucose Cotransporter 2 Inhibitors and Their Influence on the Renin-Angiotensin System

Tuba M Ansary, Daisuke Nakano, Akira Nishiyama, Tuba M Ansary, Daisuke Nakano, Akira Nishiyama

Abstract

The renin-angiotensin system (RAS) plays an important role in regulating body fluids and blood pressure. However, inappropriate activation of the RAS contributes to the pathogenesis of cardiovascular and renal diseases. Recently, sodium glucose cotransporter 2 (SGLT2) inhibitors have been used as anti-diabetic agents. SGLT2 inhibitors induce glycosuria and improve hyperglycemia by inhibiting urinary reabsorption of glucose. However, in the early stages of treatment, these inhibitors frequently cause polyuria and natriuresis, which potentially activate the RAS. Nevertheless, the effects of SGLT2 inhibitors on RAS activity are not straightforward. Available data indicate that treatment with SGLT2 inhibitors transiently activates the systemic RAS in type 2 diabetic patients, but not the intrarenal RAS. In this review article, we summarize current evidence of the diuretic effects of SGLT2 inhibitors and their influence on RAS activity.

Keywords: diuretic effect; natriuresis; renin-angiotensin system (RAS); sodium glucose cotransporter 2 (SGLT2) inhibitor; type 2 diabetes.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Figures

Figure 1
Figure 1
Possible mechanisms by which SGLT2 inhibitors influence the systemic and intrarenal RAS. SGLT2 inhibitors transiently increase plasma renin activity acutely through osmotic diuresis. Meanwhile, SGLT2 inhibitors decrease renal AGT expression by reducing glucose levels in the kidney. However, SGLT2 inhibitors can increase the glucose load in distal proximal tubule and that might increase the AGT production. SGLT2, sodium-glucose cotransporter 2; RAS, renin-angiotensin system; AGT, angiotensinogen. ↑, increase; ↓, decrease; →, no change; +, in case of plasma volume compensation; −, in case of no plasma volume compensation.

References

    1. Aguillón A.R., Mascarello A., Segretti N.D., de Azevedo H.F.Z., Guimaraes C.R.W., Miranda L.S.M., de Souza R.O.M.A. Synthetic Strategies toward SGLT2 Inhibitors. Org. Process Res. Dev. 2018;22:467–488. doi: 10.1021/acs.oprd.8b00017.
    1. Hsia D.S., Grove O., Cefalu W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017;24:73–79. doi: 10.1097/MED.0000000000000311.
    1. Tahara A., Takasu T., Yokono M., Imamura M., Kurosaki E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors: Part 2. Antidiabetic effects in type 2 diabetic mice. J. Pharmacol. Sci. 2016;131:198–208. doi: 10.1016/j.jphs.2016.06.004.
    1. Ferrannini E., Solini A. SGLT2 inhibition in diabetes mellitus: Rationale and clinical prospects. Nat. Rev. Endocrinol. 2012;8:495–502. doi: 10.1038/nrendo.2011.243.
    1. DeFronzo R.A., Davidson J.A., Del Prato S. The role of the kidneys in glucose homeostasis: A new path towards normalizing glycaemia. Diabetes Obes. Metab. 2012;14:5–14. doi: 10.1111/j.1463-1326.2011.01511.x.
    1. Liu J.J., Lee T., DeFronzo R.A. Why Do SGLT2 inhibitors inhibit only 30–50% of renal glucose reabsorption in humans? Diabetes. 2012;61:2199–2204. doi: 10.2337/db12-0052.
    1. Rahmoune H., Thompson P.W., Ward J.M., Smith C.D., Hong G., Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54:3427–3434. doi: 10.2337/diabetes.54.12.3427.
    1. Abdul-Ghani M.A., DeFronzo R.A., Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes. 2013;62:3324–3328. doi: 10.2337/db13-0604.
    1. Vallon V., Platt K.A., Cunard R., Schroth J., Whaley J., Thomson S.C., Koepsell H., Rieg T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 2011;22:104–112. doi: 10.1681/ASN.2010030246.
    1. Rieg T., Masuda T., Gerasimova M., Mayoux E., Platt K., Powell D.R., Thomson S.C., Koepsell H., Vallon V. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Ren. Physiol. 2014;306:F188–F193. doi: 10.1152/ajprenal.00518.2013.
    1. Heerspink H.J., Perkins B.A., Fitchett D.H., Husain M., Cherney D.Z. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation. 2016;134:752–772. doi: 10.1161/CIRCULATIONAHA.116.021887.
    1. Lytvyn Y., Skrtic M., Yang G.K., Yip P.M., Perkins B.A., Cherney D.Z. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am. J. Physiol. Ren. Physiol. 2015;308:F77–F83. doi: 10.1152/ajprenal.00555.2014.
    1. Yamazaki D., Hitomi H., Nishiyama A. Hypertension with diabetes mellitus complications. Hypertens. Res. 2018;41:147–156. doi: 10.1038/s41440-017-0008-y.
    1. Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. Radholm K., Figtree G., Perkovic V., Solomon S.D., Mahaffey K.W., de Zeeuw D., Fulcher G., Barrett T.D., Shaw W., Desai M., et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study) Circulation. 2018 doi: 10.1161/CIRCULATIONAHA.118.034222.
    1. Tanaka H., Takano K., Iijima H., Kubo H., Maruyama N., Hashimoto T., Arakawa K., Togo M., Inagaki N., Kaku K. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus. Adv. Ther. 2017;34:436–451. doi: 10.1007/s12325-016-0457-8.
    1. Rajasekeran H., Lytvyn Y., Cherney D.Z. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: The emerging role of natriuresis. Kidney Int. 2016;89:524–526. doi: 10.1016/j.kint.2015.12.038.
    1. Sha S., Polidori D., Heise T., Natarajan J., Farrell K., Wang S.S., Sica D., Rothenberg P., Plum-Morschel L. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2014;16:1087–1095. doi: 10.1111/dom.12322.
    1. Iijima H., Kifuji T., Maruyama N., Inagaki N. Pharmacokinetics, Pharmacodynamics, and Safety of Canagliflozin in Japanese Patients with Type 2 Diabetes Mellitus. Adv. Ther. 2015;32:768–782. doi: 10.1007/s12325-015-0234-0.
    1. Rahman A., Kittikulsuth W., Fujisawa Y., Sufiun A., Rafiq K., Hitomi H., Nakano D., Sohara E., Uchida S., Nishiyama A. Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome. J. Hypertens. 2016;34:893–906. doi: 10.1097/HJH.0000000000000871.
    1. Ansary T.M., Fujisawa Y., Rahman A., Nakano D., Hitomi H., Kobara H., Masaki T., Titze J.M., Kitada K., Nishiyama A. Responses of renal hemodynamics and tubular functions to acute sodium-glucose cotransporter 2 inhibitor administration in non-diabetic anesthetized rats. Sci. Rep. 2017;7:9555. doi: 10.1038/s41598-017-09352-5.
    1. Thomson S.C., Rieg T., Miracle C., Mansoury H., Whaley J., Vallon V., Singh P. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302:R75–R83. doi: 10.1152/ajpregu.00357.2011.
    1. Takeshige Y., Fujisawa Y., Rahman A., Kittikulsuth W., Nakano D., Mori H., Masaki T., Ohmori K., Kohno M., Ogata H., et al. A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats. Hypertens. Res. 2016;39:415–422. doi: 10.1038/hr.2016.2.
    1. Ferrannini E., Baldi S., Frascerra S., Astiarraga B., Barsotti E., Clerico A., Muscelli E. Renal Handling of Ketones in Response to Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 2 Diabetes. Diabetes Care. 2017;40:771–776. doi: 10.2337/dc16-2724.
    1. Lambers Heerspink H.J., de Zeeuw D., Wie L., Leslie B., List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 2013;15:853–862. doi: 10.1111/dom.12127.
    1. Reed J.W. Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc. Health Risk Manag. 2016;12:393–405. doi: 10.2147/VHRM.S111991.
    1. Verma S., McMurray J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia. 2018;61:2108–2117. doi: 10.1007/s00125-018-4670-7.
    1. Lytvyn Y., Bjornstad P., Udell J.A., Lovshin J.A., Cherney D.Z.I. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation. 2017;136:1643–1658. doi: 10.1161/CIRCULATIONAHA.117.030012.
    1. Titze J. A different view on sodium balance. Curr. Opin. Nephrol. Hypertens. 2015;24:14–20. doi: 10.1097/MNH.0000000000000085.
    1. Schneider M.P., Raff U., Kopp C., Scheppach J.B., Toncar S., Wanner C., Schlieper G., Saritas T., Floege J., Schmid M., et al. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD. J. Am. Soc. Nephrol. 2017;28:1867–1876. doi: 10.1681/ASN.2016060662.
    1. Karg M.V., Bosch A., Kannenkeril D., Striepe K., Ott C., Schneider M.P., Boemke-Zelch F., Linz P., Nagel A.M., Titze J., et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: A randomised controlled trial. Cardiovasc. Diabetol. 2018;17:5. doi: 10.1186/s12933-017-0654-z.
    1. Heise T., Seewaldt-Becker E., Macha S., Hantel S., Pinnetti S., Seman L., Woerle H.J. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes. Metab. 2013;15:613–621. doi: 10.1111/dom.12073.
    1. Weir M.R., Januszewicz A., Gilbert R.E., Vijapurkar U., Kline I., Fung A., Meininger G. Effect of canagliflozin on blood pressure and adverse events related to osmotic diuresis and reduced intravascular volume in patients with type 2 diabetes mellitus. J. Clin. Hypertens. (Greenwich) 2014;16:875–882. doi: 10.1111/jch.12425.
    1. Bode B., Stenlof K., Sullivan D., Fung A., Usiskin K. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: A randomized trial. Hosp. Pract. (1995) 2013;41:72–84. doi: 10.3810/hp.2013.04.1020.
    1. Yale J.F., Bakris G., Cariou B., Yue D., David-Neto E., Xi L., Figueroa K., Wajs E., Usiskin K., Meininger G. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 2013;15:463–473. doi: 10.1111/dom.12090.
    1. Wilding J.P., Blonde L., Leiter L.A., Cerdas S., Tong C., Yee J., Meininger G. Efficacy and safety of canagliflozin by baseline HbA1c and known duration of type 2 diabetes mellitus. J. Diabetes Complicat. 2015;29:438–444. doi: 10.1016/j.jdiacomp.2014.12.016.
    1. Yasui A., Lee G., Hirase T., Kaneko T., Kaspers S., von Eynatten M., Okamura T. Empagliflozin Induces Transient Diuresis Without Changing Long-Term Overall Fluid Balance in Japanese Patients with Type 2 Diabetes. Diabetes Ther. 2018;9:863–871. doi: 10.1007/s13300-018-0385-5.
    1. List J.F., Woo V., Morales E., Tang W., Fiedorek F.T. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32:650–657. doi: 10.2337/dc08-1863.
    1. Han S., Hagan D.L., Taylor J.R., Xin L., Meng W., Biller S.A., Wetterau J.R., Washburn W.N., Whaley J.M. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes. 2008;57:1723–1729. doi: 10.2337/db07-1472.
    1. Zhang W., Welihinda A., Mechanic J., Ding H., Zhu L., Lu Y., Deng Z., Sheng Z., Lv B., Chen Y., et al. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA(1c) levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacol. Res. 2011;63:284–293. doi: 10.1016/j.phrs.2011.01.001.
    1. Yamamoto K., Uchida S., Kitano K., Fukuhara N., Okumura-Kitajima L., Gunji E., Kozakai A., Tomoike H., Kojima N., Asami J., et al. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity. Br. J. Pharmacol. 2011;164:181–191. doi: 10.1111/j.1476-5381.2011.01340.x.
    1. Nagata T., Fukuzawa T., Takeda M., Fukazawa M., Mori T., Nihei T., Honda K., Suzuki Y., Kawabe Y. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. Br. J. Pharmacol. 2013;170:519–531. doi: 10.1111/bph.12269.
    1. Tahara A., Kurosaki E., Yokono M., Yamajuku D., Kihara R., Hayashizaki Y., Takasu T., Imamura M., Li Q., Tomiyama H., et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur. J. Pharmacol. 2013;715:246–255. doi: 10.1016/j.ejphar.2013.05.014.
    1. Lin B., Koibuchi N., Hasegawa Y., Sueta D., Toyama K., Uekawa K., Ma M., Nakagawa T., Kusaka H., Kim-Mitsuyama S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol. 2014;13:148. doi: 10.1186/s12933-014-0148-1.
    1. O’Neill J., Fasching A., Pihl L., Patinha D., Franzen S., Palm F. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am. J. Physiol. Ren. Physiol. 2015;309:F227–F234. doi: 10.1152/ajprenal.00689.2014.
    1. Gallo L.A., Ward M.S., Fotheringham A.K., Zhuang A., Borg D.J., Flemming N.B., Harvie B.M., Kinneally T.L., Yeh S.M., McCarthy D.A., et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci. Rep. 2016;6:26428. doi: 10.1038/srep26428.
    1. Salim H.M., Fukuda D., Yagi S., Soeki T., Shimabukuro M., Sata M. Glycemic Control with Ipragliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorated Endothelial Dysfunction in Streptozotocin-Induced Diabetic Mouse. Front. Cardiovasc. Med. 2016;3:43. doi: 10.3389/fcvm.2016.00043.
    1. Xu L., Nagata N., Nagashimada M., Zhuge F., Ni Y., Chen G., Mayoux E., Kaneko S., Ota T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine. 2017;20:137–149. doi: 10.1016/j.ebiom.2017.05.028.
    1. Wilding J.P., Norwood P., T’Joen C., Bastien A., List J.F., Fiedorek F.T. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: Applicability of a novel insulin-independent treatment. Diabetes Care. 2009;32:1656–1662. doi: 10.2337/dc09-0517.
    1. Cherney D.Z., Perkins B.A., Soleymanlou N., Maione M., Lai V., Lee A., Fagan N.M., Woerle H.J., Johansen O.E., Broedl U.C., et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081.
    1. Sha S., Devineni D., Ghosh A., Polidori D., Hompesch M., Arnolds S., Morrow L., Spitzer H., Demarest K., Rothenberg P. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS ONE. 2014;9:e110069. doi: 10.1371/journal.pone.0105638.
    1. Sasaki T., Seino Y., Fukatsu A., Ubukata M., Sakai S., Samukawa Y. Pharmacokinetics, Pharmacodynamics, and Safety of Luseogliflozin in Japanese Patients with Type 2 Diabetes Mellitus: A Randomized, Single-blind, Placebo-controlled Trial. Adv. Ther. 2015;32:319–340. doi: 10.1007/s12325-015-0200-x.
    1. Takeuchi T., Dohi K., Omori T., Moriwaki K., Sato Y., Nakamori S., Fujimoto N., Fujii E., Yamada N., Ito M. Diuretic effects of sodium-glucose cotransporter 2 inhibitor in patients with type 2 diabetes mellitus and heart failure. Int. J. Cardiol. 2015;201:1–3. doi: 10.1016/j.ijcard.2015.07.072.
    1. Kawasoe S., Maruguchi Y., Kajiya S., Uenomachi H., Miyata M., Kawasoe M., Kubozono T., Ohishi M. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol. Toxicol. 2017;18:23. doi: 10.1186/s40360-017-0125-x.
    1. Klein J.D., Rash A., Sands J.M., Ecelbarger C.M., Tiwari S. Candesartan Differentially Regulates Epithelial Sodium Channel in Cortex Versus Medulla of Streptozotocin-Induced Diabetic Rats. J. Epithel. Biol. Pharmacol. 2009;2:23. doi: 10.2174/1875044300902010023.
    1. Song J., Knepper M.A., Verbalis J.G., Ecelbarger C.A. Increased renal ENaC subunit and sodium transporter abundances in streptozotocin-induced type 1 diabetes. Am. J. Physiol. Ren. Physiol. 2003;285:F1125–F1137. doi: 10.1152/ajprenal.00143.2003.
    1. Kim D., Sands J.M., Klein J.D. Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats. Am. J. Physiol. Ren. Physiol. 2003;285:F303–F309. doi: 10.1152/ajprenal.00438.2002.
    1. Harris R.C., Brenner B.M., Seifter J.L. Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus. J. Clin. Investig. 1986;77:724–733. doi: 10.1172/JCI112367.
    1. Madala Halagappa V.K., Tiwari S., Riazi S., Hu X., Ecelbarger C.M. Chronic candesartan alters expression and activity of NKCC2, NCC, and ENaC in the obese Zucker rat. Am. J. Physiol. Ren. Physiol. 2008;294:F1222–F1231. doi: 10.1152/ajprenal.00604.2007.
    1. Chavez-Canales M., Arroyo J.P., Ko B., Vazquez N., Bautista R., Castaneda-Bueno M., Bobadilla N.A., Hoover R.S., Gamba G. Insulin increases the functional activity of the renal NaCl cotransporter. J. Hypertens. 2013;31:303–311. doi: 10.1097/HJH.0b013e32835bbb83.
    1. Layton A.T., Vallon V., Edwards A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am. J. Physiol. Ren. Physiol. 2016;310:F1269–F1283. doi: 10.1152/ajprenal.00543.2015.
    1. Pessoa T.D., Campos L.C., Carraro-Lacroix L., Girardi A.C., Malnic G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J. Am. Soc. Nephrol. 2014;25:2028–2039. doi: 10.1681/ASN.2013060588.
    1. Fu Y., Gerasimova M., Mayoux E., Masuda T., Vallon V. Acute and Chronic Cmplications. Diabetes. 2014;63:A103–A170. doi: 10.2337/db14-389-664.
    1. Novikov A., Vallon V. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: An update. Curr. Opin. Nephrol. Hypertens. 2016;25:50–58. doi: 10.1097/MNH.0000000000000187.
    1. Cassis P., Locatelli M., Cerullo D., Corna D., Buelli S., Zanchi C., Villa S., Morigi M., Remuzzi G., Benigni A., et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018;3 doi: 10.1172/jci.insight.98720.
    1. Takiyama Y., Sera T., Nakamura M., Ishizeki K., Saijo Y., Yanagimachi T., Maeda M., Bessho R., Takiyama T., Kitsunai H., et al. Impacts of Diabetes and an SGLT2 Inhibitor on the Glomerular Number and Volume in db/db Mice, as Estimated by Synchrotron Radiation Micro-CT at SPring-8. EBioMedicine. 2018;36:329–346. doi: 10.1016/j.ebiom.2018.09.048.
    1. Vallon V., Gerasimova M., Rose M.A., Masuda T., Satriano J., Mayoux E., Koepsell H., Thomson S.C., Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Ren. Physiol. 2014;306:F194–F204. doi: 10.1152/ajprenal.00520.2013.
    1. Nishiyama A., Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin. Exp. Nephrol. 2018;22:1231–1239. doi: 10.1007/s10157-018-1567-1.
    1. Li L., Konishi Y., Morikawa T., Zhang Y., Kitabayashi C., Kobara H., Masaki T., Nakano D., Hitomi H., Kobori H., et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats. J. Pharmacol. Sci. 2018;137:220–223. doi: 10.1016/j.jphs.2017.10.006.
    1. Kobori H., Navar L.G. Urinary Angiotensinogen as a Novel Biomarker of Intrarenal Renin-Angiotensin System in Chronic Kidney Disease. Int. Rev. Thromb. 2011;6:108–116.
    1. Nijst P., Verbrugge F.H., Martens P., Bertrand P.B., Dupont M., Francis G.S., Tang W.W., Mullens W. Plasma renin activity in patients with heart failure and reduced ejection fraction on optimal medical therapy. J. Renin Angiotensin Aldosterone Syst. 2017;18:1470320317729919. doi: 10.1177/1470320317729919.
    1. Kobori H., Harrison-Bernard L.M., Navar L.G. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61:579–585. doi: 10.1046/j.1523-1755.2002.00155.x.
    1. Satirapoj B., Siritaweesuk N., Supasyndh O. Urinary angiotensinogen as a potential biomarker of diabetic nephropathy. Clin. Kidney J. 2014;7:354–360. doi: 10.1093/ckj/sfu059.
    1. Shin S.J., Chung S., Kim S.J., Lee E.M., Yoo Y.H., Kim J.W., Ahn Y.B., Kim E.S., Moon S.D., Kim M.J., et al. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLoS ONE. 2016;11:e0165703. doi: 10.1371/journal.pone.0165703.
    1. Yoshimoto T., Furuki T., Kobori H., Miyakawa M., Imachi H., Murao K., Nishiyama A. Effects of sodium-glucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes. J. Investig. Med. 2017;65:1057–1061. doi: 10.1136/jim-2017-000445.
    1. MORI I., ISHIZUKA T. Effects of SGLT2 Inhibitors on Renin-Aldosterone System for One Month and Six Months in Type 2 Diabetes. Diabetes. 2018;67 doi: 10.2337/db18-1196-P.
    1. Nomiyama T., Shimono D., Horikawa T., Fujimura Y., Ohsako T., Terawaki Y., Fukuda T., Motonaga R., Tanabe M., Yanase T., et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitor ipragliflozin on glycemic control and cardiovascular parameters in Japanese patients with type 2 diabetes mellitus; Fukuoka Study of Ipragliflozin (FUSION) Endocr. J. 2018;65:859–867. doi: 10.1507/endocrj.EJ18-0022.
    1. Lijnen P., Fagard R., Staessen J., Amery A. Effect of chronic diuretic treatment on the plasma renin-angiotensin-aldosterone system in essential hypertension. Br. J. Clin. Pharmacol. 1981;12:387–392. doi: 10.1111/j.1365-2125.1981.tb01231.x.
    1. Vaughan E.D., Jr., Carey R.M., Peach M.J., Ackerly J.A., Ayers C.R. The renin response to diuretic therapyl A limitation of antihypertensive potential. Circ. Res. 1978;42:376–381. doi: 10.1161/01.RES.42.3.376.
    1. Komoroski B., Vachharajani N., Feng Y., Li L., Kornhauser D., Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther. 2009;85:513–519. doi: 10.1038/clpt.2008.250.
    1. Hollenberg N.K., Stevanovic R., Agarwal A., Lansang M.C., Price D.A., Laffel L.M., Williams G.H., Fisher N.D. Plasma aldosterone concentration in the patient with diabetes mellitus. Kidney Int. 2004;65:1435–1439. doi: 10.1111/j.1523-1755.2004.00524.x.
    1. Budoff M.J., Wilding J.P.H. Effects of canagliflozin on cardiovascular risk factors in patients with type 2 diabetes mellitus. Int. J. Clin. Pract. 2017;71 doi: 10.1111/ijcp.12948.
    1. Pfeifer M., Townsend R.R., Davies M.J., Vijapurkar U., Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: A post hoc analysis. Cardiovasc. Diabetol. 2017;16:29. doi: 10.1186/s12933-017-0511-0.
    1. Rahman A., Fujisawa Y., Nakano D., Hitomi H., Nishiyama A. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin. Exp. Pharmacol. Physiol. 2017;44:522–525. doi: 10.1111/1440-1681.12725.
    1. Wan N., Rahman A., Hitomi H., Nishiyama A. The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Front. Endocrinol. (Lausanne) 2018;9:421. doi: 10.3389/fendo.2018.00421.
    1. Matsusaka T., Niimura F., Shimizu A., Pastan I., Saito A., Kobori H., Nishiyama A., Ichikawa I. Liver angiotensinogen is the primary source of renal angiotensin II. J. Am. Soc. Nephrol. 2012;23:1181–1189. doi: 10.1681/ASN.2011121159.
    1. Kobori H., Nishiyama A., Harrison-Bernard L.M., Navar L.G. Urinary angiotensinogen as an indicator of intrarenal Angiotensin status in hypertension. Hypertension. 2003;41:42–49. doi: 10.1161/.
    1. Wang J., Shibayama Y., Kobori H., Liu Y., Kobara H., Masaki T., Wang Z., Nishiyama A. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5. PLoS ONE. 2017;12:e0185600. doi: 10.1371/journal.pone.0185600.
    1. Fan Y.Y., Kobori H., Nakano D., Hitomi H., Mori H., Masaki T., Sun Y.X., Zhi N., Zhang L., Huang W., et al. Aberrant activation of the intrarenal renin-angiotensin system in the developing kidneys of type 2 diabetic rats. Horm. Metab. Res. 2013;45:338–343. doi: 10.1055/s-0032-1331256.
    1. Saito T., Urushihara M., Kotani Y., Kagami S., Kobori H. Increased urinary angiotensinogen is precedent to increased urinary albumin in patients with type 1 diabetes. Am. J. Med. Sci. 2009;338:478–480. doi: 10.1097/MAJ.0b013e3181b90c25.
    1. Lee M.J., Kim S.S., Kim I.J., Song S.H., Kim E.H., Seo J.Y., Kim J.H., Kim S., Jeon Y.K., Kim B.H., et al. Changes in Urinary Angiotensinogen Associated with Deterioration of Kidney Function in Patients with Type 2 Diabetes Mellitus. J. Korean Med. Sci. 2017;32:782–788. doi: 10.3346/jkms.2017.32.5.782.
    1. Lei L., Nishiyama A. A4490 Effects of esaxerenone (CS-3150), a non-steroidal selective of mineralocorticoid receptor antagonist, on blood pressure and renal injury in Dahl salt-sensitive rats. J. Hypertens. 2018;36:e18. doi: 10.1097/01.hjh.0000548059.43048.f7.

Source: PubMed

3
Abonnere