Interplay Between Statins, Cav1 (Caveolin-1), and Aldosterone

Andrea V Haas, Rene Baudrand, Rebecca M Easly, Gillian R Murray, Rhian M Touyz, Luminita H Pojoga, Xavier Jeunemaitre, Paul N Hopkins, Bernard Rosner, Jonathan S Williams, Gordon H Williams, Gail K Adler, Andrea V Haas, Rene Baudrand, Rebecca M Easly, Gillian R Murray, Rhian M Touyz, Luminita H Pojoga, Xavier Jeunemaitre, Paul N Hopkins, Bernard Rosner, Jonathan S Williams, Gordon H Williams, Gail K Adler

Abstract

Statin use is associated with lower aldosterone levels. We hypothesized that caveolin-1 may be important for the uptake of statins into the adrenal gland and would affect statin's aldosterone-lowering effects. The aim of this study was to test whether the caveolin-1 risk allele (rs926198) would affect aldosterone levels associated with statin use. The Hypertensive Pathotype database includes healthy and hypertensive individuals who have undergone assessment of adrenal hormones. Individuals were studied off antihypertensive medications but were maintained on statins if prescribed by their personal physician. Adrenal hormones were measured at baseline and after 1 hour of angiotensin II stimulation on both high- and low-sodium diets. A mixed-model repeated-measures analysis was employed with a priori selected covariates of age, sex, body mass index, and protocol (low versus high sodium, baseline versus angiotensin II stimulated aldosterone). A total of 250 individuals were included in the study; 31 individuals were taking statins (12.4%) and 219 were not. Among statin users, carrying a caveolin-1 risk allele resulted in a 25% (95% CI, 1-43.2) lower aldosterone level (P=0.04). However, among nonstatin users, carrying a caveolin-1 risk allele resulted in no significant effect on aldosterone levels (P=0.38). Additionally, the interaction between caveolin-1 risk allele and statin use on aldosterone levels was significant (P=0.03). These findings suggest caveolin-1 risk allele carrying individuals are likely to receive the most benefit from statin's aldosterone-lowering properties; however, due to the observational nature of this study, these findings need further investigation.

Keywords: aldosterone; alleles; cardiovascular disease; caveolin-1; hypertension.

Conflict of interest statement

None.

Figures

Figure.
Figure.
Adjusted aldosterone values in nonstatin/statin users and Cav1 (caveolin-1) nonrisk/risk allele carriers. Among statin users, Cav1 risk allele carriers had a 25% lower aldosterone (P=0.04). Among nonstatin users, there was no effect of the Cav1 risk allele on aldosterone levels (P=0.38). The interaction between Cav1 allele and statin use was significant (P=0.03). ns indicates nonsignificant.

References

    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al. ; American Heart Association Statistics Committee and Stroke Statistics Subcommittee Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 2014129399–410doi: 10.1161/01.cir.0000442015.53336.12
    1. Baigent C, Blackwell L, Emberson J, Holland L, Reith C, Bhala N, Peto R, Barnes E, Keech A, Simes J, Collins R. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 20103761670–1681doi: 10.1016/S0140-6736(10)61350-5
    1. Brugts JJ, Yetgin T, Hoeks SE, Gotto AM, Shepherd J, Westendorp RG, de Craen AJ, Knopp RH, Nakamura H, Ridker P, et al. . The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 2009338b2376.doi: 10.1136/bmj.b2376
    1. Baudrand R, Pojoga LH, Vaidya A, Garza AE, Vöhringer PA, Jeunemaitre X, Hopkins PN, Yao TM, Williams J, Adler GK, et al. . Statin use and adrenal aldosterone production in hypertensive and diabetic subjects. Circulation 20151321825–1833doi: 10.1161/CIRCULATIONAHA.115.016759
    1. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999341709–717doi: 10.1056/NEJM199909023411001
    1. Catena C, Colussi G, Nadalini E, Chiuch A, Baroselli S, Lapenna R, Sechi LA. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch Intern Med 200816880–85doi: 10.1001/archinternmed.2007.33
    1. Mulatero P, Monticone S, Bertello C, Viola A, Tizzani D, Iannaccone A, Crudo V, Burrello J, Milan A, Rabbia F, et al. . Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J Clin Endocrinol Metab 2013984826–4833doi: 10.1210/jc.2013-2805
    1. Ivanes F, Susen S, Mouquet F, Pigny P, Cuilleret F, Sautière K, Collet JP, Beygui F, Hennache B, Ennezat PV, et al. . Aldosterone, mortality, and acute ischaemic events in coronary artery disease patients outside the setting of acute myocardial infarction or heart failure. Eur Heart J 201233191–202doi: 10.1093/eurheartj/ehr176
    1. Beygui F, Collet JP, Benoliel JJ, Vignolles N, Dumaine R, Barthélémy O, Montalescot G. High plasma aldosterone levels on admission are associated with death in patients presenting with acute ST-elevation myocardial infarction. Circulation 20061142604–2610doi: 10.1161/CIRCULATIONAHA.106.634626
    1. Qin L, Zhu N, Ao BX, Liu C, Shi YN, Du K, Chen JX, Zheng XL, Liao DF. Caveolae and caveolin-1 integrate reverse cholesterol transport and inflammation in atherosclerosis. Int J Mol Sci 201617429.doi: 10.3390/ijms17030429
    1. Kowalska K, Habrowska-Górczyńska DE, Neumayer C, Bolliger M, Domenig C, Piastowska-Ciesielska AW, Huk I, Piechota-Polanczyk A. Lower levels of Caveolin-1 and higher levels of endothelial nitric oxide synthase are observed in abdominal aortic aneurysm patients treated with simvastatin. Acta Biochim Pol 201865111–118doi: 10.18388/abp.2017_2305
    1. Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013931317–1542doi: 10.1152/physrev.00004.2012
    1. Baudrand R, Gupta N, Garza AE, et al. . Caveolin 1 modulates aldosterone-mediated pathways of glucose and lipid homeostasis. J Am Heart Assoc 20165e003845.doi: 10.1161/JAHA.116.003845
    1. Vaidya A, Underwood PC, Hopkins PN, Jeunemaitre X, Ferri C, Williams GH, Adler GK. Abnormal aldosterone physiology and cardiometabolic risk factors. Hypertension 201361886–893doi: 10.1161/HYPERTENSIONAHA.111.00662
    1. Vaidya A, Forman JP, Underwood PC, Hopkins PN, Williams GH, Pojoga LH, Williams JS. The influence of body mass index and renin-angiotensin-aldosterone system activity on the relationship between 25-hydroxyvitamin D and adiponectin in Caucasian men. Eur J Endocrinol 2011164995–1002doi: 10.1530/EJE-11-0025
    1. Garza AE, Rariy CM, Sun B, Williams J, Lasky-Su J, Baudrand R, Yao T, Moize B, Hafiz WM, Romero JR, et al. . Variants in striatin gene are associated with salt-sensitive blood pressure in mice and humans. Hypertension 201565211–217doi: 10.1161/HYPERTENSIONAHA.114.04233
    1. Litchfield WR, Hunt SC, Jeunemaitre X, Fisher ND, Hopkins PN, Williams RR, Corvol P, Williams GH. Increased urinary free cortisol: a potential intermediate phenotype of essential hypertension. Hypertension 199831569–574doi: 10.1161/01.hyp.31.2.569
    1. Pojoga LH, Underwood PC, Goodarzi MO, Williams JS, Adler GK, Jeunemaitre X, Hopkins PN, Raby BA, Lasky-Su J, Sun B, et al. . Variants of the caveolin-1 gene: a translational investigation linking insulin resistance and hypertension. J Clin Endocrinol Metab 201196e1288–e1292doi: 10.1210/jc.2010-2738
    1. Baudrand R, Goodarzi MO, Vaidya A, Underwood PC, Williams JS, Jeunemaitre X, Hopkins PN, Brown N, Raby BA, Lasky-Su J, et al. . A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism 2015641674–1681doi: 10.1016/j.metabol.2015.09.005
    1. Pojoga LH, Adamová Z, Kumar A, Stennett AK, Romero JR, Adler GK, Williams GH, Khalil RA. Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol 2010298H1776–H1788doi: 10.1152/ajpheart.00661.2009
    1. Schooling CM, Au Yeung SL, Freeman G, Cowling BJ. The effect of statins on testosterone in men and women, a systematic review and meta-analysis of randomized controlled trials. BMC Med 20131157.doi: 10.1186/1741-7015-11-57
    1. Smals AG, Weusten JJ, Benraad TJ, Kloppenborg PW. The HMG-CoA reductase inhibitor simvastatin suppresses human testicular testosterone synthesis in vitro by a selective inhibitory effect on 17-ketosteroid-oxidoreductase enzyme activity. J Steroid Biochem Mol Biol 199138465–468doi: 10.1016/0960-0760(91)90333-z
    1. Dobs AS, Schrott H, Davidson MH, Bays H, Stein EA, Kush D, Wu M, Mitchel Y, Illingworth RD. Effects of high-dose simvastatin on adrenal and gonadal steroidogenesis in men with hypercholesterolemia. Metabolism 2000491234–1238doi: 10.1053/meta.2000.7716a
    1. Baudrand R, Pojoga LH, Romero JR, Williams GH. Aldosterone’s mechanism of action: roles of lysine-specific demethylase 1, caveolin and striatin. Curr Opin Nephrol Hypertens 20142332–37doi: 10.1097/01.mnh.0000436543.48391.e0
    1. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 20078185–194doi: 10.1038/nrm2122
    1. Callera GE, Yogi A, Briones AM, Montezano AC, He Y, Tostes RC, Schiffrin EL, Touyz RM. Vascular proinflammatory responses by aldosterone are mediated via c-Src trafficking to cholesterol-rich microdomains: role of PDGFR. Cardiovasc Res 201191720–731doi: 10.1093/cvr/cvr131
    1. Pelat M, Dessy C, Massion P, Desager JP, Feron O, Balligand JL. Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E-/- mice in vivo. Circulation 20031072480–2486doi: 10.1161/01.CIR.0000065601.83526.3E
    1. Fernandez-Rojo MA, Ramm GA. Caveolin-1 function in liver physiology and disease. Trends Mol Med 201622889–904doi: 10.1016/j.molmed.2016.08.007
    1. Nezasa K, Higaki K, Takeuchi M, Nakano M, Koike M. Uptake of rosuvastatin by isolated rat hepatocytes: comparison with pravastatin. Xenobiotica 200333379–388doi: 10.1080/0049825031000066259
    1. Otis JP, Shen MC, Quinlivan V, Anderson JL, Farber SA. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech 201710283–295doi: 10.1242/dmm.027300
    1. Ramírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, et al. . Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 2019140225–239doi: 10.1161/CIRCULATIONAHA.118.038571

Source: PubMed

3
Abonnere