Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering

Jordan D Green, Viktor Tollemar, Mark Dougherty, Zhengjian Yan, Liangjun Yin, Jixing Ye, Zachary Collier, Maryam K Mohammed, Rex C Haydon, Hue H Luu, Richard Kang, Michael J Lee, Sherwin H Ho, Tong-Chuan He, Lewis L Shi, Aravind Athiviraham, Jordan D Green, Viktor Tollemar, Mark Dougherty, Zhengjian Yan, Liangjun Yin, Jixing Ye, Zachary Collier, Maryam K Mohammed, Rex C Haydon, Hue H Luu, Richard Kang, Michael J Lee, Sherwin H Ho, Tong-Chuan He, Lewis L Shi, Aravind Athiviraham

Abstract

Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.

Keywords: BMPs; Cartilage; Cell signaling; Chondrogenesis; FGF; Hedgehog; Regenerative medicine; Sox9; TGFβ; Wnt.

Figures

Figure 1
Figure 1
Currently hypothesized lineage-specific differentiation of mesenchymal stem cells (MSCs). Upon receiving appropriate differentiation cues, MSCs are multipotent stem cells and may undergo a cascade of differentiation stages, including progenitor proliferation and expansion, lineage commitment and progression, differentiation and maturation, and subsequently differentiate into multiple types of tissues, such as bone, cartilage, fat, msulce, tendon, etc. It remains a challenge to direct MSCs to differentiate into a specific type of cells/tissues. Furthermore, it is not well understood how early different lineages diverge from MSCs. Nonetheless, MSCs represent one of the most promising populations of progenitors for regenerative medicine and tissue engineering.
Figure 2
Figure 2
Marker/regulator gene expression in different zones of the growth plate and the perichondrium. The important and representative marker genes are listed.
Figure 3
Figure 3
Currently identified regulators of chondrogenic differentiation from MSCs. Currently reported signaling molecules, transcription factors, microRNAs and other regulators are listed. Positive regulators are shown on the top panel in green, while the inhibitory regulators are shown in red at the bottom panel.

References

    1. Kurtz S., Ong K., Lau E. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–785.
    1. Martin G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 1998;12:1571–1586.
    1. Barrow J.R., Thomas K.R., Boussadia-Zahui O. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 2003;17:394–409.
    1. Ohuchi H., Nakagawa T., Yamamoto A. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development. 1997;124:2235–2244.
    1. Handorf A.M., Li W.J. Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One. 2011;6:e22887.
    1. Solchaga L.A., Penick K., Porter J.D. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2005;203:398–409.
    1. Ito T., Sawada R., Fujiwara Y., Tsuchiya T. FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology. 2008;56:1–7.
    1. Oseni AO, Crowley C, Boland MZ, et al. Cartilage tissue engineering: the application of nanomaterials and stem cell technology. Tissue Eng Regen Med. 201:doi:10.5772/22453.
    1. Correa D., Somoza R.A., Lin P. Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthr Cartil. 2015;23:443–453.
    1. Hellingman C.A., Koevoet W., Kops N. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng Part A. 2010;16:545–556.
    1. Stevens M.M., Marini R.P., Martin I. FGF-2 enhances TGF-β1-induced periosteal chondrogenesis. J Orthop Res. 2004;25:1114–1119.
    1. Richter W., Bock R., Hennig T., Weiss S. Influence of FGF-2 and PTHrP on chondrogenic differentiation of human mesenchymal stem cells. J Bone Jt Surg Br. 2009;91-B(suppl III):444.
    1. Narcisi R., Cleary M.A., Brama P.A. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Rep. 2015;4:459–472.
    1. Ng F., Boucher S., Koh S. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112:295–307.
    1. Dai J., Wang J., Lu J. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials. 2012;33:7699–7711.
    1. Hung I.H., Yu K., Lavine K.J., Ornitz D.M. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol. 2007;307:300–313.
    1. Govindarajan V., Overbeek P.A. FGF9 can induce endochondral ossification in cranial mesenchyme. BMC Dev Biol. 2006;6:7.
    1. Liu Z., Xu J., Colvin J.S., Ornitz D.M. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002;16:859–869.
    1. Davidson D., Blanc A., Filion D. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem. 2005;280:20509–20515.
    1. Moore E.E., Bendele A.M., Thompson D.L. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthr Cartil. 2005;13:623–631.
    1. Goldring M., Tsuchimochi K., Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97:33–44.
    1. Cleary M.A., van Osch G.J., Brama P.A. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen. 2015;9:332–342.
    1. Carrington J.L., Chen P., Yanagishita M., Reddi A.H. Osteogenin (bone morphogenetic protein-3) stimulates cartilage formation by chick limb bud cells in vitro. Dev Biol. 1991;146:406–415.
    1. Leonard C.M., Fuld H.M., Frenz D.A. Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-β and evidence for endogenous TGF-β-like activity. Dev Biol. 1991;145:99–109.
    1. Chimal-Monroy J., Díaz de León L. Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. Int J Dev Biol. 1997;41:91–102.
    1. Merino R., Ganan Y., Macias D. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFβs, and Noggin through BMP signaling. Dev Biol. 1998;200:35–45.
    1. Karamboulas K., Dranse H.J., Underhill T.M. Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFβ signals. J Cell Sci. 2010;123:2068–2076.
    1. Joyce M.E., Roberts A.B., Sporn M.B., Bolander M.E. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990;110:2195–2207.
    1. Canalis E., McCarthy T., Centrella M. Growth factors and the regulation of bone remodeling. J Clin Invest. 1988;81:277–281.
    1. Centrella M., McCarthy T.L., Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem. 1987;262:2869–2874.
    1. Robey P.G., Young M.F., Flanders K.C. Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol. 1987;105:457–463.
    1. Seyedin S.M., Thomas T.C., Thompson A.Y. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci U. S. A. 1985;82:2267–2271.
    1. Heine U., Munoz E.F., Flanders K.C. Role of transforming growth factor-beta in the development of the mouse embryo. J Cell Biol. 1987;105:2861–2876.
    1. Joyce M.E. Expression and localization of transforming growth factor-beta in a model of fracture healing. Orthop Trans. 1989;13:460–461.
    1. Sandberg M., Autio-Harmainen H., Vuorio E. Localization of the expression of types I, III, and IV collagen, TGF-beta 1 and c-fos genes in developing human calvarial bones. Dev Biol. 1998;130:324–334.
    1. Carrington J.L., Roberts A.B., Flanders K.C. Accumulation, localization, and compartmentation of transforming growth factor beta during endochondral bone development. J Cell Biol. 1988;107:1969–1975.
    1. Long F., Ornitz D.M. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5:a008334.
    1. Hidaka C., Goldring M.B. Regulatory mechanisms of chondrogenesis and implications for understanding articular cartilage homeostasis. Curr Rheumatol Rev. 2008;4:136–147.
    1. Yoon B.S., Ovchinnikov D.A., Yoshii I. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U. S. A. 2005;102:5062–5067.
    1. Augustyniak E., Trzeciak T., Richter M. The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. Int Orthop. 2015;39:995–1003.
    1. Madry H., Rey-Rico A., Venkatesan J.K. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng Part B Rev. 2014;20:106–125.
    1. Coleman C.M. Tuan RS. Growth/differentiation factor 5 enhances chondrocyte maturation. Dev Dyn Off Publ Am Assoc Anat. 2003;228:208–216.
    1. Francis-West P.H., Richardson M.K., Bell E. The effect of overexpression of BMPs and GDF-5 on the development of chick limb skeletal elements. Ann N. Y Acad Sci. 1996;785:254–255.
    1. Francis-West P.H., Parish J., Lee K., Archer C.W. BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res. 1999;296:111–119.
    1. Storm E.E., Kingsley D.M. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999;209:11–27.
    1. Feng X.H., Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–693.
    1. Massagué J., Seoane J., Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–2810.
    1. Iwai T., Murai J., Yoshikawa H., Tsumaki N. Smad7 Inhibits chondrocyte differentiation at multiple steps during endochondral bone formation and down-regulates p38 MAPK pathways. J Biol Chem. 2008;283:27154–27164.
    1. Tuli R., Tuli S., Nandi S. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem. 2003;278:41227–41236.
    1. Zhang Y.E. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–139.
    1. Mu Y., Gudey S.K., Landström M. Non-Smad signaling pathways. Cell Tissue Res. 2012;347:11–20.
    1. Barna M., Niswander L. Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev Cell. 2007;12:931–941.
    1. Pizette S., Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol. 2000;219:237–249.
    1. Lorda-Diez C.I., Montero J.A., Garcia-Porrero J.A., Hurle J.M. Tgfbeta2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos. BMC Dev Biol. 2010;10:69.
    1. Merino R., Rodriguez-Leon J., Macias D. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Dev Camb Engl. 1999;126:5515–5522.
    1. Hofmann C., Luo G., Balling R., Karsenty G. Analysis of limb patterning in BMP-7-deficient mice. Dev Genet. 1996;19:43–50.
    1. Niswander L., Tickle C., Vogel A. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993;75:579–587.
    1. Ito T., Sawada R., Fujiwara Y., Seyama Y., Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun. 2007;359:108–114.
    1. Sawada R., Ito T., Tsuchiya T. Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs Off J Jpn Soc Artif Organs. 2006;9:179–184.
    1. Rosen D.M., Stempien S.A., Thompson A.Y. Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin B. Exp Cell Res. 1986;165:127–138.
    1. Johnstone B., Hering T.M., Caplan A.I. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–272.
    1. Tufan A.C., Tuan R.S. Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin-related functions. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15:1436–1438.
    1. Tufan A.C., Daumer K.M., DeLise A.M., Tuan R.S. AP-1 transcription factor complex is a target of signals from both WnT-7a and N-cadherin-dependent cell-cell adhesion complex during the regulation of limb mesenchymal chondrogenesis. Exp Cell Res. 2002;273:197–203.
    1. Oh C.D., Chang S.H., Yoon Y.M. Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem. 2000;275:5613–5619.
    1. Kozhemyakina E., Lassar A.B., Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Dev Camb Engl. 2015;142:817–831.
    1. Seo H.S., Serra R. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol. 2007;310:304–316.
    1. Spagnoli A., O'Rear L., Chandler R.L. TGF-β signaling is essential for joint morphogenesis. J Cell Biol. 2007;177:1105–1117.
    1. Retting K.N., Song B., Yoon B.S., Lyons K.M. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Dev Camb Engl. 2009;136:1093–1104.
    1. Chubinskaya S., Kuettner K.E. Regulation of osteogenic proteins by chondrocytes. Int J Biochem Cell Biol. 2003;35:1323–1340.
    1. Gründer T., Gaissmaier C., Fritz J. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr Cartil. 2004;12:559–567.
    1. Furuhashi M., Yagi K., Yamamoto H. Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol. 2001;21:5132–5141.
    1. Liu W., Rui H., Wang J. Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J. 2006;25:1646–1658.
    1. Dao D.Y., Yang X., Flick L.M. Axin2 regulates chondrocyte maturation and axial skeletal development. J Orthop Res. 2010;28:89–95.
    1. Hellingman C.A., Davidson E.N., Koevoet W. Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A. 2011;17:1157–1167.
    1. Leijten J.C., Emons J., Sticht C. Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum. 2012;64:3302–3312.
    1. Hartmann C., Tabin C.J. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127:3141–3159.
    1. Fischer L., Boland G., Tuan R.S. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem. 2002;277:30870–30878.
    1. Yano F., Kugimiya F., Ohba S. The canonical Wnt signalling pathway promotes chondrocyte differentiation in a Sox9- dependent manner. Biochem Biophys Res Commun. 2005;333:1300–1308.
    1. Hartmann C.A. Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006;16:151–158.
    1. Zhou S., Eid K., Glowacki J. Cooperation between TGF-β and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Min Res. 2004;19:463–470.
    1. Bradley E.W., Drissi M.H. Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J Cell Physiol. 2011;226:1683–1693.
    1. Kamel G., Hoyos T., Rochard L. Requirements for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis. Dev Biol. 2013;381:423–433.
    1. Nishita M., Yoo S.K., Nomachi A. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol. 2006;175:555–562.
    1. Matsumoto S., Fumoto K., Okamoto T. Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J. 2010;29:1192–1204.
    1. Geetha-Loganathan P., Nimmagadda S., Antoni L. Expression of WNT signalling pathway genes during chicken craniofacial development. Dev Dyn. 2009;238:1150–1165.
    1. Knight R.D., Schilling T.F. Cranial neural crest and development of the head skeleton. Adv Exp Med Biol. 2006;589:120–133.
    1. Schilling T.F., Kimmel C.B. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development. 1997;124:2945–2960.
    1. Topczewski J., Sepich D.S., Myers D.C. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell. 2001;1:251–264.
    1. Veeman M.T., Axelrod J.D., Moon R.T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–377.
    1. Wallingford J.B., Fraser S.E., Harland R.M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell. 2002;2:695–706.
    1. Yin C., Ciruna B., Solnica-Krezel L. Convergence and extension movements during vertebrate gastrulation. Curr Top Dev Biol. 2009;89:163–192.
    1. Brugmann S.A., Goodnough L.H., Gregorieff A. Wnt signaling mediates regional specification in the vertebrate face. Development. 2007;134:3283–3295.
    1. Garcia-Castro M.I., Marcelle C., Bronner-Fraser M. Ectodermal Wnt function as a neural crest inducer. Science. 2002;297:848–851.
    1. Lee J.M., Kim J.Y., Cho K.W. Wnt11/Fgfr1b cross-talk modulates the fate of cells in palate development. Dev Biol. 2008;314:341–350.
    1. Wodarz A., Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.
    1. Curtin E., Hickey G., Kamel G. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mech Dev. 2011;128:104–115.
    1. Dougherty M., Kamel G., Grimaldi M. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development. 2013;140:76–81.
    1. Enomoto-Iwamoto M., Kitagaki J., Koyama E. The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol. 2002;251:142–156.
    1. Filali M., Cheng N., Abbott D. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem. 2002;277:33398–33410.
    1. Sen M., Reifert J., Lauterbach K. Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum. 2002;46:2867–2877.
    1. Rudnicki J.A., Brown A.M. Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol. 1997;185:104–118.
    1. Hartmann C., Tabin J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104:341–351.
    1. Church V., Nohno T., Linker C. Wnt regulation of chondrocyte differentiation. J Cell Sci. 2002;115:4809–4818.
    1. Yan D., Wallingford J.B., Sun T.Q. Cell autonomous regulation of multiple Dishevelled-dependent path-ways by mammalian Nkd. Proc Natl Acad Sci U. S. A. 2001;98:3802–3807.
    1. Kawakami Y., Wada N., Nishimatsu S.I. Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev Growth Differ. 1999;41:29–40.
    1. Lako M., Lindsay S., Bullen P. A novel mammalian wnt gene, WNT8B, shows brain- restricted expression in early development, with sharply delimited expression boundaries in the developing forebrain. Hum Mol Genet. 1998;7:813–822.
    1. Kirton J.P., Crofts N.J., Brennan S.J., Canfield A.E. Wnt/β-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes. Circ Res. 2007;101:581–589.
    1. Seidensticker M.J., Behrens J. Biochemical interactions in the wnt pathway. Biochim Biophys Acta. 2000;1495:168–182.
    1. Moon R.T., Kohn A.D., De Ferrari G.V., Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5:691–701.
    1. Wada N., Javidan Y., Nelson S., Carney T.J., Kelsh R.N., Schilling T.F. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development. 2005;132:3977–3988.
    1. Daoud G., Kempf H., Kumar D. BMP-mediated induction of GATA4/5/6 blocks somitic responsiveness to SHH. Development. 2014;141:3978–3987.
    1. Enomoto-Iwamoto M., Nakamura T., Aikawa T. Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J Bone Min Res. 2000;15:1659–1668.
    1. Warzecha J., Göttig S., Brüning C. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci. 2006;11:491–496.
    1. Wu X., Cai Z.D., Lou L.M., Chen Z.R. The effects of inhibiting hedgehog signaling pathways by using specific antagonist cyclopamine on the chondrogenic differentiation of mesenchymal stem cells. Int J Mol Sci. 2013;14:5966–5977.
    1. Zeng L., Kempf H., Murtaugh L.C. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 2002;16:1990–2005.
    1. Murtaugh L.C., Zeng L., Chyung J.H., Lassar A.B. The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell. 2001;1:411–422.
    1. Cairns D.M., Sato M.E., Lee P.G. A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol. 2008;323:152–165.
    1. Provot S., Kempf H., Murtaugh L.C. Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development. 2006;133:651–662.
    1. Murtaugh L.C., Chyung J.H., Lassar A.B. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev. 1999;13:225–237.
    1. Liu W., Li G., Chien J.S. Sonic hedgehog regulates otic capsule chondrogenesis and inner ear development in the mouse embryo. Dev Biol. 2002;248:240–250.
    1. Abzhanov A., Tabin C.J. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Dev Biol. 2004;273:134–148.
    1. Wu Q., Zhang Y., Chen Q. Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J Biol Chem. 2001;276:35290–35296.
    1. Chung U.I., Schipani E., McMahon A.P., Kronenberg H.M. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest. 2001;107:295–304.
    1. Später D., Hill T.P., O'sullivan R.J. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133:3039–3049.
    1. Zou S., Chen T., Wang Y. Mesenchymal stem cells overexpressing Ihh promote bone repair. J Orthop Surg Res. 2014;9:102.
    1. Steinert A.F., Weissenberger M., Kunz M. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther. 2012;14:R168.
    1. Handorf A.M., Chamberlain C.S., Li W.J. Endogenously produced Indian hedgehog regulates TGFβ-driven chondrogenesis of human bone marrow stromal/stem cells. Stem Cells Dev. 2015;24:995–1007.
    1. Kim E.J., Cho S.W., Shin J.O. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model. PLoS One. 2013;8:e55296.
    1. Yoshida C.A., Yamamoto H., Fujita T. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 2004;18:952–963.
    1. Zhou J., Meng J., Guo S. IHH and FGF8 coregulate elongation of digit primordia. Biochem Biophys Res Commun. 2007;363:513–518.
    1. Minina E., Kreschel C., Naski M.C. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002;3:439–449.
    1. St-Jacques B., Hammerschmidt M., McMahon A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13:2072–2086.
    1. Kronenberg H.M. Developmental regulation of the growth plate. Nature. 2003;423:332–336.
    1. Deckelbaum R.A., Chan G., Miao D. Ihh enhances differentiation of CFK-2 chondrocytic cells and antagonizes PTHrP-mediated activation of PKA. J Cell Sci. 2002;115:3015–3025.
    1. Kirimoto A., Takagi Y., Ohya K., Shimokawa H. Effects of retinoic acid on the differentiation of chondrogenic progenitor cells, ATDC5. J Med Dent Sci. 2005;52:153–162.
    1. Piao J., Tsuji K., Ochi H. Sirt6 regulates postnatal growth plate differentiation and proliferation via Ihh signaling. Sci Rep. 2013;3:3022.
    1. Bellon E., Luyten F.P., Tylzanowski P. delta-EF1 is a negative regulator of Ihh in the developing growth plate. J Cell Biol. 2009;187:685–699.
    1. Austin J., Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987;51:589–599.
    1. Watanabe N., Tezuka Y., Matsuno K. Suppression of differentiation and proliferation of early chondrogenic cells by Notch. J Bone Min Metab. 2003;21:344–352.
    1. Crowe R., Zikherman J., Niswander L. Delta-1 negatively regulates the transition from prehypertrophic to hypertrophic chondrocytes during cartilage formation. Development. 1999;126:987–998.
    1. Honjo T. The shortest path from the surface to the nucleus: RBP-J kappa/Su(H) transcription factor. Genes Cells. 1996;1:1–9.
    1. Kageyama R., Ohtsuka T., Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development. 2007;134:1243–1251.
    1. Grogan S.P., Olee T., Hiraoka K., Lotz M.K. Repression of chondrogenesis through binding of notch signaling proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer site. Arthritis Rheum. 2008;58:2754–2763.
    1. Haller R., Schwanbeck R., Martini S. Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ. 2012;19:461–469.
    1. Hayes A.J., Dowthwaite G.P., Webster S.V., Archer C.W. The distribution of Notch receptors and their ligands during articular cartilage development. J Anat. 2003;202:495–502.
    1. Shimizu K., Chiba S., Saito T. Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem Biophys Res Commun. 2002;291:775–779.
    1. Karlsson C., Stenhamre H., Sandstedt J., Lindahl A. Neither Notch1 expression nor cellular size correlate with mesenchymal stem cell properties of adult articular chondrocytes. Cells Tissues Organs. 2008;187:275–285.
    1. Mead T.J., Yutzey K.E. Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci U. S. A. 2009;106:14420–14425.
    1. Karlsson C., Jonsson M., Asp J., Brantsing C., Kageyama R., Lindahl A. Notch and HES5 are regulated during human cartilage differentiation. Cell Tissue Res. 2007;327:539–551.
    1. Oldershaw R.A., Murdoch A., Brennan K., Hardingham T.E. The putative role of the notch ligand, jagged 1, in the mediation of the early events of human mesenchymal stem cell chondrogenesis. Int J Exp Pathol. 2005;86:A47–A48.
    1. Brighton C.T., Krebs A.G. Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am. 1972;54:323–332.
    1. Brighton C.T., Heppenstall R.B. Oxygen tension of the epiphyseal plate distal to an arteriovenous fistula. Clin Orthop Relat Res. 1971;80:167–173.
    1. Cicione C., Muiños-López E., Hermida-Gómez T. Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int. 2013;2013:232896.
    1. Zuscik M.J., Hilton M.J., Zhang X. Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008;118:429–438.
    1. Komatsu D.E., Bosch-Marce M., Semenza G.L., Hadjiargyrou M. Enhanced bone regeneration associated with decreased apoptosis in mice with partial HIF-1alpha deficiency. J Bone Min Res. 2007;22:366–374.
    1. Coyle C.H., Izzo N.J., Chu C.R. Sustained hypoxia enhances chondrocyte matrix synthesis. J Orthop Res. 2009;27:793–799.
    1. Peansukmanee S., Vaughan-Thomas A., Carter S.D. Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J Orthop Res. 2008;27:529–535.
    1. Lafont J.E., Talma S., Murphy C.L. Hypoxia-inducible factor 2alpha is essential for hypoxic induction of the human articular chondrocyte phenotype. Arthritis Rheum. 2007;56:3297–3306.
    1. Koay E.J., Athanasiou K.A. Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthr Cartil. 2008;16:1450–1456.
    1. Adesida A.B., Mulet-Sierra A., Jomha N.M. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3:9.
    1. Duval E., Leclercq S., Elissalde J.M., Demoor M., Galéra P., Boumédiene K. Hypoxia-inducible factor 1alpha inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1alpha-dependent redifferentiation of chondrocytes. Arthritis Rheum. 2009;60:3038–3048.
    1. Schipani E. Hypoxia and HIF-1 alpha in chondrogenesis. Semin Cell Dev Biol. 2005;16:539–546.
    1. Malladi P., Xu Y., Chiou M. Hypoxia inducible factor-1α deficiency affects chondrogenesis of adipose-derived adult stromal cells. Tissue Eng. 2007;13:1159–1171.
    1. Kanichai M., Ferguson D., Prendergast P.J., Campbell V.A. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol. 2008;216:708–715.
    1. Schipani E., Ryan H.E., Didrickson S. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 2001;15:2865–2876.
    1. Sun X., Wei Y. The role of hypoxia-inducible factor in osteogenesis and chondrogenesis. Cytotherapy. 2009;11:261–267.
    1. Ke Q., Costa M. Hypoxia-inducible factor-1 (HIF-1) Mol Pharmacol. 2006;70:1469–1480.
    1. Genin O., Hasdai A., Shinder D., Pines M. Hypoxia, hypoxia-inducible factor-1α (HIF-1α), and heat-shock proteins in tibial dyschondroplasia. Poult Sci. 2008;87:1556–1564.
    1. Yudoh K., Nakamura H., Masuko-Hongo K. Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1 alpha in articular chondrocytes: involvement of HIF-1 alpha in the pathogenesis of osteoarthritis. Arthritis Res Ther. 2005;7:R904–R914.
    1. Lee S.H., Che X., Jeong J.H. Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 2012;287:14760–14771.
    1. Khan W.S., Adesida A.B., Hardingham T.E. Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Res Ther. 2007;9:R55.
    1. Lee H.H., Chang C.C., Shieh M.J. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci Rep. 2013;3:2683.
    1. Gerber H.P., Vu T.H., Ryan A.M. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623e8.
    1. Bian L., Zhai D.Y., Tous E. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials. 2011;32:6425–6434.
    1. Carlevaro M.F., Cermelli S., Cancedda R., Descalzi Cancedda F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci. 2000;113:59–69.
    1. Chen G., Shi X., Sun C. VEGF-mediated proliferation of human adipose tissue-derived stem cells. PLoS One. 2013;8:e73673.
    1. Murata M., Yudoh K., Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthr Cartil. 2008;16:279–286.
    1. Kubo S., Cooper G.M., Matsumoto T. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 2009;60:155–165.
    1. Matsumoto T., Cooper G.M., Gharaibeh B. Blocking VEGF as a potential approach to improve cartilage healing after osteoarthritis. J Musculoskelet Neuronal Interact. 2008;8:316–317.
    1. Centola M., Abbruzzese F., Scotti C. Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Eng Part A. 2013;19:1960–1971.
    1. Chae S.S., Paik J.H., Allende M.L. Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/VEGF axis. Dev Biol. 2004;268:441–447.
    1. Yin M., Pacifici M. Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb. Dev Dyn. 2001;222:522–533.
    1. Haigh J.J., Gerber H.P., Ferrara N., Wagner E.F. Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development. 2000;127:1445–1453.
    1. Zhao Q., Eberspaecher H., Lefebvre V., de Crombrugghe B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn. 1997;209:377–386.
    1. Ushita M., Saito T., Ikeda T. Transcriptional induction of SOX9 by NF-kappaB family member RelA in chondrogenic cells. Osteoarthr Cartil. 2009;17:1065–1075.
    1. Wang Y. Sul HS. Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab. 2009;9:287–302.
    1. Hata K., Takashima R., Amano K. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat Commun. 2013;4:2850.
    1. Takahashi I., Nuckolls G.H., Takahashi K. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci. 1998;111:2067–2076.
    1. Juhász T., Matta C., Somogyi C. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal. 2014;26:468–482.
    1. Yamashita S., Miyaki S., Kato Y. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem. 2012;287:22206–22215.
    1. Akiyama H., Chaboissier M.C., Martin J.F. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16:2813–2828.
    1. Hino K., Saito A., Kido M. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem. 2014;289:13810–13820.
    1. Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol. 2008;18:213–219.
    1. Ikeda T., Kamekura S., Mabuchi A. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheumatism. 2004;50:3561–3573.
    1. Smits P., Li P., Mandel J. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell. 2001;1:277–290.
    1. Lefebvre V., Behringer R.R., de Crombrugghe B. L-Sox5, Sox6 and SOx9 control essential steps of the chondrocyte differentiation pathway. Osteoarthr Cartil. 2001;9:S69–S75.
    1. Mori-Akiyama Y., Akiyama H., Rowitch D.H., de Crombrugghe B. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U. S. A. 2003;100:9360–9365.
    1. Akiyama H., Lyons J.P., Mori-Akiyama Y. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 2004;18:1072–1087.
    1. Quintana L., Zur Nieden N.I., Semino C.E. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng B. 2009;15:29–41.
    1. Shi S., Wang C., Acton A.J. Role of Sox9 in growth factor regulation of articular chondrocytes. J Cell Biochem. 2015;116:1391–1400.
    1. Pan Q., Yu Y., Chen Q. Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol. 2008;217:228–241.
    1. Liao J., Hu N., Zhou N. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One. 2014;9:e89025.
    1. Hata K., Nishimura R., Muramatsu S. Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest. 2008;118:3098–3108.
    1. Furumatsu T., Tsuda M., Taniguchi N. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem. 2005;280:8343–8350.
    1. Kawakami Y., Tsuda M., Takahashi S. Transcriptional coactivator PGC-1alpha regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci U. S. A. 2005;102:2414–2419.
    1. Hattori T., Coustry F., Stephens S. Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5. Nucleic Acids Res. 2008;36:3011–3024.
    1. Huang W., Lu N., Eberspaecher H., de Crombrugghe B. A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. J Biol Chem. 2002;277:50668–50675.
    1. Guo M., Shen J., Kwak J.H. A novel role of Cyclophilin A in regulation of chondrogenic commitment and endochondral ossification. Mol Cell Biol. 2015 pii:MCB.01414–14.
    1. Furumatsu T., Asahara H. Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama. 2015;64:351–357.
    1. Leung V.Y., Gao B., Leung K.K. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet. 2011;7:e1002356.
    1. Cheng A., Genever P.G. SOX9 determines RUNX2 transactivity by directing intracellular degradation. J Bone Min Res. 2010;25:2680–2689.
    1. Kumar D., Lassar A.B. The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol Cell Biol. 2009 Aug;29:4262–4273.
    1. Yoshida C.A., Komori T. Role of Runx proteins in chondrogenesis. Crit Rev Eukaryot Gene Expr. 2005;15:243–254.
    1. Fujita T., Azuma Y., Fukuyama R. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol. 2004;166:85–95.
    1. Zhou G., Zheng Q., Engin F. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U. S. A. 2006;103:19004–19009.
    1. Lengner C.J., Hassan M.Q., Serra R.W. Nkx3.2-mediated repression of Runx2 promotes chondrogenic differentiation. J Biol Chem. 2005;280:15872–15879.
    1. Woodburry B.W., Rodova M., Lu Q. March 6-9, 2010. uRunx2 and Wnt/β-catenin Signaling Cooperatively Suppress Chondrogenic Differentiation of Adult Dural Cells During BMP-induced Cranial Bone Repair. 56th Annual Meeting of the Orthopaedic Research Society, New Orleans, LA.
    1. Zheng Q., Zhou G., Morello R. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol. 2003;162:833–842.
    1. Kwon T.G., Zhao X., Yang Q. Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem. 2011;112:3582–3593.
    1. Enomoto H., Furuichi T., Zanma A. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci. 2004;117:417–425.
    1. Hinoi E., Bialek P., Chen Y.T. Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev. 2006;20:2937–2942.
    1. Itoh S., Kanno S., Gai Z. Trps1 plays a pivotal role downstream of Gdf5 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells. 2008;13:355–363.
    1. Fantauzzo K.A., Kurban M., Levy B., Christiano A.M. Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis. PLoS Genet. 2012;8:e1003002.
    1. Suemoto H., Muragaki Y., Nishioka K. Trps1 regulates proliferation and apoptosis of chondrocytes through Stat3 signaling. Dev Biol. 2007;312:572–581.
    1. Lolli A., Lambertini E., Penolazzi L. Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs. Stem Cell Rev. 2014;10:841–855.
    1. Zhang Y., Xie R.L., Gordon J. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J Biol Chem. 2012;287:21926–21935.
    1. Nishioka K., Itoh S., Suemoto H. Trps1 deficiency enlarges the proliferative zone of growth plate cartilage by upregulation of Pthrp. Bone. 2008;43:64–71.
    1. Wuelling M., Kaiser F.J., Buelens L.A. Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol. 2009;328:40–53.
    1. Bosserhoff A.K., Kondo S., Moser M. Mouse CD-RAP/MIA gene: structure, chromosomal localization, and expression in cartilage and chondrosarcoma. Dev Dyn. 1997;208:516–525.
    1. Schmid R., Meyer K., Spang R. YBX1 is a modulator of MIA/CD-RAP-dependent chondrogenesis. PLoS One. 2013;8:e82166.
    1. Schubert T., Schlegel J., Schmid R. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) Exp Mol Med. 2010;42:166–174.
    1. Schmid R., Bosserhoff A.K. Redundancy in regulation of chondrogenesis in MIA/CD-RAP-deficient mice. Mech Dev. 2014;131:24–34.
    1. Li J, Sandell LJ. E-box-related transcription factors regulate CD-RAP gene expression by alternate formation of activating and repressing nucleoprotein complexes. 48th Annual Meeting of the Orthopaedic Research Society, Dallas, TX, February 10–13, 2002.
    1. Xie W.F., Zhang X., Sakano S. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J Bone Min Res. 1999;14:757–763.
    1. Xie W.F., Kondo S., Sandell L.J. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. J Biol Chem. 1998;273:5026–5032.
    1. De Martino I., Visone R., Palmieri D. The Mia/Cd-rap gene expression is downregulated by the high-mobility group A proteins in mouse pituitary adenomas. Endocr Relat Cancer. 2007;14:875–886.
    1. Hong S., Derfoul A., Pereira-Mouries L., Hall D.J. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 2009;23:3539–3552.
    1. Liu C.J., Prazak L., Fajardo M. Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis. J Biol Chem. 2004;279:47081–47091.
    1. Hu N., Wang C., Liang X. Inhibition of histone deacetylases potentiates BMP9-induced osteogenic signaling in mouse mesenchymal stem cells. Cell Physiol Biochem. 2013;32:486–498.
    1. Lee H.W., Suh J.H., Kim A.Y. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol. 2006 Oct;20:2432–2443.
    1. Weston A.D., Chandraratna R.A., Torchia J., Underhill T.M. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol. 2002;158:39–51.
    1. Sakimura R., Tanaka K., Yamamoto S. The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res. 2007;13:275.
    1. Pei M., Chen D., Li J., Wei L. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. Differentiation. 2009;78:260–268.
    1. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.
    1. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858.
    1. Bernstein E., Kim S.Y., Carmell M.A. Dicer is essential for mouse development. NatGenet. 2003;35:215–217.
    1. Liu J., Carmell M.A., Rivas F.V. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–1441.
    1. Wienholds E., Kloosterman W.P., Miska E. MicroRNA expression in zebrafish embryonic development. Science. 2005;309:310–311.
    1. Zhang Z., Kang Y., Zhang Z. Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthr Cartil. 2012;20:1638–1646.
    1. Kim D., Song J., Kim S. MicroRNA-142-3p regulates TGF-beta3-mediated region-dependent chondrogenesis by regulating ADAM9. Biochem Biophys Res Commun. 2011;414:653–659.
    1. Kuo C.K., Li W.J., Mauck R.L., Tuan R.S. Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol. 2006;18:64–73.
    1. Betre H., Ong S.R., Guilak F. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2005;27:91–99.
    1. Kim M.S., Hwang N.S., Lee J. Musculoskeletal differentiation of cells derived from human embryonic germ cells. Stem Cells. 2005;23:113–123.
    1. Indrawattana N., Chen G., Tadokoro M. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320:914–919.
    1. Chua K.H., Aminuddin B.S., Fuzina N.H., Ruszymah B.H. Interaction between insulin-like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering. Med J Malays. 2004;59(suppl B):7–8.
    1. Li W.J., Tuli R., Okafor C. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609.
    1. Stevens M.M., Marini R.P., Martin I. FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J Orthop Res. 2004;22:1114–1119.
    1. Lee J.E., Kim K.E., Kwon I.C. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials. 2004;25:4163–4173.
    1. Barbero A., Grogan S., Schafer D. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr Cartil. 2004;12:476–484.
    1. Tay A.G., Farhadi J., Suetterlin R. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng. 2004;10:762–770.
    1. Hegewald A.A., Ringe J., Bartel J. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell. 2004;36:431–438.
    1. Glowacki J., Yates K., Maclean R., Mizuno S. In vitro engineering of cartilage: effects of serum substitutes, TGF-beta, and IL-1alpha. Orthod Craniofac Res. 2005;8:200–208.
    1. Vunjak-Novakovic G., Meinel L., Altman G., Kaplan D. Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res. 2005;8:209–218.
    1. Wang Y., Kim U.J., Blasioli D.J. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26:7082–7094.
    1. Park Y., Sugimoto M., Watrin A. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthr Cartil. 2005;13:527–536.
    1. Majumdar M.K., Wang E., Morris E.A. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol. 2001;189:275–284.
    1. Worster A.A., Brower-Toland B.D., Fortier L.A. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res. 2001;19:738–749.
    1. Awad H.A., Wickham M.Q., Leddy H.A. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25:3211–3222.
    1. Mauck R.L., Yuan X., Tuan R.S. Chondrogenic differentiation and maturation of MSC-laden hydrogel constructs. Trans Orthop Res Soc. 2005;30:262.
    1. Angele P., Kujat R., Nerlich M. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng. 1999;5:545–554.
    1. Caterson E.J., Li W.J., Nesti L.J. Polymer/alginate amalgam for cartilage-tissue engineering. Ann N. Y Acad Sci. 2002;961:134–138.
    1. Mentlein R., Pufe T. New functions of angiogenic peptides in osteoarthritic cartilage. Curr Rheumatol Rev. 2015;1:37–43.
    1. Portron S., Hivernaud V., Merceron C. Inverse regulation of early and late chondrogenic differentiation by oxygen tension provides cues for stem cell-based cartilage tissue engineering. Cell Physiol Biochem. 2015;35:841–857.
    1. Zhou N., Hu N., Liao J.Y. HIF-1α as a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral ossification in stem cells. Cell Physiol Biochem. 2015;36:44–60.
    1. Duval E., Baugé C., Andriamanalijaona R. Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering. Biomaterials. 2012;33:6042–6051.
    1. Wang Z.H., Li X.L., He X.J. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. Braz J Med Biol Res. 2014;47:279–286.
    1. Madry H., Cucchiarini M., Terwilliger E.F., Trippel S.B. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther. 2003;14:393–402.
    1. Zhang X.L., Mao Z.B., Yu C.L. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22:742–750.
    1. Arai M., Anderson D., Kurdi Y. Effect of adenovirus-mediated overexpression of bovine ADAMTS-4 and human ADAMTS-5 in primary bovine articular chondrocyte pellet culture system. Osteoarthr Cartil. 2004;12:599–613.
    1. Venkatesan N., Barre L., Benani A. Stimulation of proteoglycan synthesis by glucuronosyltransferase-1 gene delivery: a strategy to promote cartilage repair. Proc Natl Acad Sci U. S. A. 2004;101:18087–18092.
    1. Li Y., Tew S.R., Russell A.M. Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng. 2004;10:575–584.
    1. Peterson L., Minas T., Brittberg M. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–234.
    1. Marlovits S., Aldrian S., Wondrasch B. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med. 2012;40:2273–2280.
    1. Zheng M.H., Willers C., Kirilak L. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng. 2007;13:737–746.
    1. Caron M.M., Emans P.J., Coolsen M.M. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil. 2012;20:1170–1178.
    1. Grigolo B., Lisignoli G., Piacentini A. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002;23:1187–1195.
    1. Malda J., Woodfield T.B., van der Vloodt F. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials. 2005;26:63–72.
    1. Miot S., Woodfield T., Daniels A.U. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials. 2005;26:2479–2489.
    1. Vacanti C.A., Langer R., Schloo B., Vacanti J.P. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg. 1991;88:753–759.
    1. Cima L.G., Vacanti J.P., Vacanti C. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng. 1991;113:143–151.
    1. Mahmoudifar N., Doran P.M. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotechnol Bioeng. 2005;91:338–355.
    1. Mouw J.K., Case N.D., Guldberg R.E. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr Cartil. 2005;13:828–836.
    1. Almarza A.J., Athanasiou K.A. Effects of initial cell seeding density for the tissue engineering of the temporomandibular joint disc. Ann Biomed Eng. 2005;33:943–950.
    1. Griffon D.J., Sedighi M.R., Sendemir-Urkmez A. Evaluation of vacuum and dynamic cell seeding of polyglycolic acid and chitosan scaffolds for cartilage engineering. Am J Vet Res. 2005;66:599–605.
    1. Fuchs J.R., Hannouche D., Terada S. Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells. 2005;23:958–964.
    1. Hunter C.J., Levenston M.E. Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng. 2004;10:736–746.
    1. Seidel J.O., Pei M., Gray M.L. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology. 2004;41:445–458.
    1. Estes B.T., Gimble J.M., Guilak F. Mechanical signals as regulators of stem cell fate. Curr Top Dev Biol. 2004;60:91–126.
    1. Archer C.W., Buxton P., Hall B.K., Francis-West P. Mechanical regulation of secondary chondrogenesis. Biorheology. 2006;43:355–370.
    1. Barrett-Jolley R., Lewis R., Fallman R., Mobasheri A. The emerging chondrocyte channelome. Front Physiol. 2010;1:135.
    1. Hoey D.A., Downs M.E., Jacobs C.R. The mechanics of the primary cilium: an intricate structure with complex function. J Biomech. 2012;45:17–26.
    1. Martins R.P., Finan J.D., Guilak F., Lee D.A. Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng. 2012;14:431–455.
    1. Blain E.J. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int J Exp Pathol. 2009;90:1–15.
    1. Choi J.W., Choi B.H., Park S.H. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artif Organs. 2013;37:648–655.
    1. Kupcsik L., Stoddart M.J., Li Z. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng Part A. 2010;16:1845–1855.
    1. Buschmann M.D., Gluzband Y.A., Grodzinsky A.J., Hunziker E.B. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108:1497–1508.
    1. Smith R.L., Carter D.R., Schurman D.J. Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res. 2004;(427 suppl):S89–S95.
    1. Carver S.E., Heath C.A. Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng. 1999;62:166–174.
    1. Carver S.E., Heath C.A. Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Eng. 1999;5:1–11.
    1. Carver S.E., Heath C.A. Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol Bioeng. 1999;65:274–281.
    1. Elder S.H., Fulzele K.S., McCulley W.R. Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech Model Mechanobiol. 2005;3:141–146.
    1. Neidlinger-Wilke C., Wurtz K., Liedert A. A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J Neurosurg Spine. 2005;2:457–465.
    1. Bhumiratana S., Vunjak-Novakovic G. Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells. Methods. 2015;84:109–114.
    1. Bhumiratana S., Eton R.E., Oungoulian S.R. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. PNAS. 2014;11:6940–6945.
    1. Hu J.C., Athanasiou K.A. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 2006;12:969–979.
    1. Mackay A.M., Beck S.C., Murphy J.M. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4:415–428.
    1. Murdoch A.D., Grady L.M., Ablett M.P. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells. 2007;25:2786–2796.
    1. Chun J.S., Oh H., Yang S., Park M. Wnt signaling in cartilage development and degeneration. BMB Rep. 2008;41:485–494.
    1. Qu F., Wang J., Xu N. WNT3A modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCs. Front Biosci (Landmark Ed) 2013;18:493–503.
    1. Lee H.H., Behringer R.R. Conditional expression of Wnt4 during chondrogenesis leads to Dwarfism in mice. PLoS One. 2007;2:e450.
    1. Bradley E.W., Drissi M.H. WNT5A regulates chondrocyte differentiation through differential use of the CaN/NFAT and IKK/NF-kappaB pathways. Mol Endocrinol. 2010;24:1581–1593.
    1. Shapiro I.M., Boyan B., Anderson H.C. 2002;1. The Growth Plate; pp. 1–280.
    1. Han J., Yang T., Gao J. Specific microRNA expression during chondrogenesis of human mesenchymal stem cells. Int J Mol Med. 2010;25:377–384.
    1. Miyaki S., Nakasa T., Otsuki S. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60:2723–2730.
    1. Ham O., Song B.W., Lee S.Y. The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials. 2012;33:4500–4507.
    1. Yang B., Guo H., Zhang Y. The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation. BMB Rep. 2011;44:28–33.
    1. Suomi S., Taipaleenmaki H., Seppanen A. MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul Syst Bio. 2008;2:177–191.
    1. Laine S.K., Alm J.J., Virtanen S.P. MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells. J Cell Biochem. 2012;113:2687–2695.
    1. Swingler T.E., Wheeler G., Carmont V. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;64:1909–1919.
    1. Zhong N., Sun J., Min Z. MicroRNA-337 is associated with chondrogenesis through regulating TGFBR2 expression. Osteoarthr Cartil. 2012;20:593–602.
    1. Guérit D., Philipot D., Chuchana P. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS One. 2013;8:e62582.
    1. Yang B., Guo H., Zhang Y. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 2011;6:e21679.
    1. Yang Z., Hao J., Hu Z.M. MicroRNA expression profiles in human adipose-derived stem cells during chondrogenic differentiation. Int J Mol Med. 2015;35:579–586.
    1. Dudek K.A., Lafont J.E., Martinez-Sanchez A., Murphy C.L. Type II collagen expression is regulated by tissue-specific MIR-675 in human articular chondrocytes. J Biol Chem. 2010;285:24381–24387.
    1. Lin E.A., Kong L., Bai X.H. miR-199a, a bone morphogenic protein 2- responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 2009;284:11326–11335.

Source: PubMed

3
Abonnere