Interplay between BMPs and Reactive Oxygen Species in Cell Signaling and Pathology

Cristina Sánchez-de-Diego, José Antonio Valer, Carolina Pimenta-Lopes, José Luis Rosa, Francesc Ventura, Cristina Sánchez-de-Diego, José Antonio Valer, Carolina Pimenta-Lopes, José Luis Rosa, Francesc Ventura

Abstract

The integration of cell extrinsic and intrinsic signals is required to maintain appropriate cell physiology and homeostasis. Bone morphogenetic proteins (BMPs) are cytokines that belong to the transforming growth factor-β (TGF-β) superfamily, which play a key role in embryogenesis, organogenesis and regulation of whole-body homeostasis. BMPs interact with membrane receptors that transduce information to the nucleus through SMAD-dependent and independent pathways, including PI3K-AKT and MAPKs. Reactive oxygen species (ROS) are intracellular molecules derived from the partial reduction of oxygen. ROS are highly reactive and govern cellular processes by their capacity to regulate signaling pathways (e.g., NF-κB, MAPKs, KEAP1-NRF2 and PI3K-AKT). Emerging evidence indicates that BMPs and ROS interplay in a number of ways. BMPs stimulate ROS production by inducing NOX expression, while ROS regulate the expression of several BMPs. Moreover, BMPs and ROS influence common signaling pathways, including PI3K/AKT and MAPK. Additionally, dysregulation of BMPs and ROS occurs in several pathologies, including vascular and musculoskeletal diseases, obesity, diabetes and kidney injury. Here, we review the current knowledge on the integration between BMP and ROS signals and its potential applications in the development of new therapeutic strategies.

Keywords: BMP; MAPK; NOX; NRF2; PI3K; SMAD; cell signaling; reactive oxygen species (ROS).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
BMP signaling pathways. Once BMP receptors (BMPR) are stimulated they form a complex and initiate an intracellular transduction cascade. In the canonical pathway, BMP receptors phosphorylate and activate the SMAD family of transcription factors that transduce the signal to the nucleus. Besides SMADs, BMPs modulate other intracellular signaling pathways (non-canonical BMP signaling) including PI3K/AKT and various types of MAPKs pathways.
Figure 2
Figure 2
ROS-mediated cellular signaling. ROS are highly reactive molecules that act as second messengers inside the cell. Besides mitochondrial respiration, NOXs represent the major ROS source. Under physiological conditions, intracellular ROS target and stimulate several transductor proteins NF-κB, MAPKs, KEAP1-NRF2 and PI3K-AKT important for cell survival, proliferation and differentiation.
Figure 3
Figure 3
Interplay between BMPs and ROS signaling. Production of BMPs and ROSs are reciprocally regulated. BMPs stimulate ROS production by activation and/or induction of NOX1-5 expression while ROS regulate the expression of several BMPs. Furthermore, both BMPs and ROS activate several common signaling pathways including PI3K-AKT, ERK, JNK and p38 MAPKs.
Figure 4
Figure 4
Coordinated contribution of ROS and BMPs to vascular diseases. Vascular vessels are structures integrated by endothelial, smooth muscle cells (SMCs) and fibroblasts. In the endothelium, ROS are mainly produced by NOXs and its levels increase as a response to high pressure. In vascular vessels, ROS induce the expression of several BMPs, inactivates nitric oxide, and stimulate NF-κB pathway. By its part, BMPs activate MAPK pathways, increase NOX1/4 and COX2 expression and consequently enhance ROS generation. BMP6 and oxidized low-density lipoprotein (oxLDL) increase the expression of the osteoblast markers Osterix and Osteopontin in a NOX dependent manner. In SMCs, BMPs promotes the expression of the type III sodium-dependent phosphate cotransporter PIT1, increases the activity of NOX, and the levels of osteogenic markers (RUNX2 and ALPL).

References

    1. Urist M.R., Rosen V., Celeste A., Mitsock L., Whitters M., Kriz R., Hewick R., Wang E. Bone: Formation by Autoinduction. Volume 150. American Association for the Advancement of Science; Washington, DC, USA: 1965. pp. 893–899.
    1. Winnier G., Blessing M., Labosky P.A., Hogan B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9:2105–2116. doi: 10.1101/gad.9.17.2105.
    1. Fujiwara T., Dehart D.B., Sulik K.K., Hogan B.L.M. Distinct requirements for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left-right asymmetry in the mouse. Development. 2002;129:4685–4696.
    1. Hébert J.M., Mishina Y., McConnell S.K. BMP Signaling Is Required Locally to Pattern the Dorsal Telencephalic Midline. Neuron. 2002;35:1029–1041. doi: 10.1016/S0896-6273(02)00900-5.
    1. Mehler M.F., Mabie P.C., Zhang D., Kessler J.A. Bone morphogenetic proteins in the nervous system. Trends Neurosci. 1997;20:309–317. doi: 10.1016/S0166-2236(96)01046-6.
    1. Storm E.E., Huynh T.V., Copeland N.G., Jenkins N.A., Kingsley D.M., Lee S.J. Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily. Nature. 1994;368:639–643. doi: 10.1038/368639a0.
    1. Zhao M., Harris S.E., Horn D., Geng Z., Nishimura R., Mundy G.R., Chen D. Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J. Cell Biol. 2002;157:1049–1060. doi: 10.1083/jcb.200109012.
    1. Pizette S., Niswander L. BMPs Are Required at Two Steps of Limb Chondrogenesis: Formation of Prechondrogenic Condensations and Their Differentiation into Chondrocytes. Dev. Biol. 2000;219:237–249. doi: 10.1006/dbio.2000.9610.
    1. Wozney J.M. The bone morphogenetic protein family and osteogenesis. Mol. Reprod. Dev. 1992;32:160–167. doi: 10.1002/mrd.1080320212.
    1. Miyazaki Y., Oshima K., Fogo A., Hogan B.L., Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Investig. 2000;105:863–873. doi: 10.1172/JCI8256.
    1. Lowery J.W., De Caestecker M.P. BMP signaling in vascular development and disease. Cytokine Growth Factor Rev. 2010;21:287–298. doi: 10.1016/j.cytogfr.2010.06.001.
    1. De Vinuesa A.G., Abdelilah-Seyfried S., Knaus P., Zwijsen A., Bailly S., Information P.E.K.F.C. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev. 2016;27:65–79. doi: 10.1016/j.cytogfr.2015.12.005.
    1. Morrell N.W., Bloch D.B., Ten Dijke P., Goumans M.J.T.H., Hata A., Smith J., Yu P.B., Bloch K.D. Targeting BMP signaling in cardiovascular disease and anaemia. Nat. Rev. Cardiol. 2016;13:106–120. doi: 10.1038/nrcardio.2015.156.
    1. Zhao G.Q., Liaw L., Hogan B.L. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development. 1998;125:1103–1112.
    1. Otsuka F., Yao Z., Lee T., Yamamoto S., Erickson G.F., Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J. Biol. Chem. 2000;275:39523–39528. doi: 10.1074/jbc.M007428200.
    1. Zhang Y.E. Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harb. Perspect. Biol. 2017;9:a022129. doi: 10.1101/cshperspect.a022129.
    1. Song P., Zou M.H. Atherosclerosis: Risks, Mechanisms, and Therapies. Wiley; Hoboken, NJ, USA: 2015. Roles of Reactive Oxygen Species in Physiology and Pathology; pp. 379–392.
    1. Brieger K., Schiavone S., Miller F.J., Krause K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659.
    1. Roy J., Galano J.M., Durand T., Le Guennec J.Y., Lee J.C.Y. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 2017;31:3729–3745. doi: 10.1096/fj.201700170R.
    1. Reid M.B., Khawli F.A., Moody M.R. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J. Appl. Physiol. 1993;75:1081–1087.
    1. Kraaij M.D., Savage N.D.L., Van Der Kooij S.W., Koekkoek K., Wang J., Berg J.M.V.D., Ottenhoff T.H.M., Kuijpers T.W., Holmdahl R., Van Kooten C., et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl. Acad. Sci. USA. 2010;107:17686–17691. doi: 10.1073/pnas.1012016107.
    1. Sellak H., Franzini E., Hakim J., Pasquier C. Reactive oxygen species rapidly increase endothelial ICAM-1 ability to bind neutrophils without detectable upregulation. Blood. 1994;83:2669–2677.
    1. Kawabata M. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998;9:49–61. doi: 10.1016/S1359-6101(97)00036-1.
    1. Nohe A. Signal transduction of bone morphogenetic protein receptors. Cell. Signal. 2004;16:291–299. doi: 10.1016/j.cellsig.2003.08.011.
    1. Hinck A.P. Structural studies of the TGF-βs and their receptors—Insights into evolution of the TGF-β superfamily. FEBS Lett. 2012;586:1860–1870. doi: 10.1016/j.febslet.2012.05.028.
    1. Massagué J. TGF-β Signal Transduction. Annu. Rev. Biochem. 1998;67:753–791. doi: 10.1146/annurev.biochem.67.1.753.
    1. Shi Y., Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. doi: 10.1016/S0092-8674(03)00432-X.
    1. Gámez B., Rodríguez-Carballo E., Ventura F. BMP signaling in telencephalic neural cell specification and maturation. Front. Cell. Neurosci. 2013;7:87. doi: 10.3389/fncel.2013.00087.
    1. Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003;425:577–584. doi: 10.1038/nature02006.
    1. Zhang Y.E. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–139. doi: 10.1038/cr.2008.328.
    1. Yamashita M., Fatyol K., Jin C., Wang X., Liu Z., Zhang Y.E. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol. Cell. 2008;31:918–924. doi: 10.1016/j.molcel.2008.09.002.
    1. Brazil D.P., Church R.H., Surae S., Godson C., Martin F. BMP signalling: Agony and antagony in the family. Trends Cell Biol. 2015;25:249–264. doi: 10.1016/j.tcb.2014.12.004.
    1. Rider C.C., Mulloy B. Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem. J. 2010;429:1–12. doi: 10.1042/BJ20100305.
    1. Bragdon B., Moseychuk O., Saldanha S., King D., Julian J., Nohe A. Bone Morphogenetic Proteins: A critical review. Cell. Signal. 2011;23:609–620. doi: 10.1016/j.cellsig.2010.10.003.
    1. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008.
    1. Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034.
    1. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. Oxidative Med. Cell. Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965.
    1. Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011;194:7–15. doi: 10.1083/jcb.201102095.
    1. Schoonbroodt S., Ferreira V., Best-Belpomme M., Boelaert J.R., Legrand-Poels S., Korner M., Piette J. Crucial Role of the Amino-Terminal Tyrosine Residue 42 and the Carboxyl-Terminal PEST Domain of I B in NF- B Activation by an Oxidative Stress. J. Immunol. 2000;164:4292–4300. doi: 10.4049/jimmunol.164.8.4292.
    1. Reynaert N.L., van der Vliet A., Guala A.S., McGovern T., Hristova M., Pantano C., Heintz N.H., Heim J., Ho Y.S., Matthews D.E., et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc. Natl. Acad. Sci. USA. 2006;103:13086–13091. doi: 10.1073/pnas.0603290103.
    1. León-Buitimea A., Rodríguez-Fragoso L., Lauer F.T., Bowles H., Thompson T.A., Burchiel S.W. Ethanol-induced oxidative stress is associated with EGF receptor phosphorylation in MCF-10A cells overexpressing CYP2E1. Toxicol. Lett. 2012;209:161–165. doi: 10.1016/j.toxlet.2011.12.009.
    1. Wentworth C.C., Alam A., Jones R.M., Nusrat A., Neish A.S. Enteric Commensal Bacteria Induce Extracellular Signal-regulated Kinase Pathway Signaling via Formyl Peptide Receptor-dependent Redox Modulation of Dual Specific Phosphatase 3. J. Biol. Chem. 2011;286:38448–38455. doi: 10.1074/jbc.M111.268938.
    1. Banan A., Fields J.Z., Zhang Y., Keshavarzian A. Phospholipase C-γ inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants. Am. J. Physiol. Liver Physiol. 2001;281:G412–G423. doi: 10.1152/ajpgi.2001.281.2.G412.
    1. Matsukawa J., Matsuzawa A., Takeda K., Ichijo H. The ASK1-MAP Kinase Cascades in Mammalian Stress Response. J. Biochem. 2004;136:261–265. doi: 10.1093/jb/mvh134.
    1. Brown J.S., Banerji U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther. 2017;172:101–115. doi: 10.1016/j.pharmthera.2016.12.001.
    1. Wlodarchak N., Xing Y. PP2A as a master regulator of the cell cycle. Crit. Rev. Biochem. Mol. Biol. 2016;51:162–184. doi: 10.3109/10409238.2016.1143913.
    1. Li Y., Wang X., Yue P., Tao H., Ramalingam S.S., Owonikoko T.K., Deng X., Wang Y., Fu H., Khuri F.R., et al. Protein Phosphatase 2A and DNA-dependent Protein Kinase Are Involved in Mediating Rapamycin-induced Akt Phosphorylation. J. Biol. Chem. 2013;288:13215–13224. doi: 10.1074/jbc.M113.463679.
    1. Lee S.R., Yang K.S., Kwon J., Jeong W., Rhee S.G., Lee C. Reversible Inactivation of the Tumor Suppressor PTEN by H2O2. J. Biol. Chem. 2002;277:20336–20342. doi: 10.1074/jbc.M111899200.
    1. Shimura T., Sasatani M., Kamiya K., Kawai H., Inaba Y., Kunugita N. Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts. Oncotarget. 2016;7:3559–3570. doi: 10.18632/oncotarget.6518.
    1. Srinivasan S., Spear J., Chandran K., Joseph J., Kalyanaraman B., Avadhani N.G. Oxidative Stress Induced Mitochondrial Protein Kinase A Mediates Cytochrome C Oxidase Dysfunction. PLoS ONE. 2013;8:e77129. doi: 10.1371/journal.pone.0077129.
    1. Thompson J.W., Narayanan S.V., Perez-Pinzon M.A. Redox Signaling Pathways Involved in Neuronal Ischemic Preconditioning. Curr. Neuropharmacol. 2012;10:354–369. doi: 10.2174/157015912804499519.
    1. Eisenberg-Lerner A., Kimchi A. PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 2012;19:788–797. doi: 10.1038/cdd.2011.149.
    1. Kruk J.S., Vasefi M.S., Heikkila J.J., Beazely M.A. Reactive Oxygen Species Are Required for 5-HT-Induced Transactivation of Neuronal Platelet-Derived Growth Factor and TrkB Receptors, but Not for ERK1/2 Activation. PLoS ONE. 2013;8:e77027. doi: 10.1371/journal.pone.0077027.
    1. Luczak E.D., Anderson M.E. CaMKII oxidative activation and the pathogenesis of cardiac disease. J. Mol. Cell. Cardiol. 2014;73:112–116. doi: 10.1016/j.yjmcc.2014.02.004.
    1. Brennan J.P., Bardswell S.C., Burgoyne J.R., Fuller W., Schröder E., Wait R., Begum S., Kentish J.C., Eaton P. Oxidant-induced Activation of Type I Protein Kinase A Is Mediated by RI Subunit Interprotein Disulfide Bond Formation. J. Biol. Chem. 2006;281:21827–21836. doi: 10.1074/jbc.M603952200.
    1. Newton A.C. Protein Kinase C: Structure, Function, and Regulation. J. Biol. Chem. 1995;270:28495–28498. doi: 10.1074/jbc.270.48.28495.
    1. Gopalakrishna R., Jaken S. Protein kinase C signaling and oxidative stress. Free. Radic. Biol. Med. 2000;28:1349–1361. doi: 10.1016/S0891-5849(00)00221-5.
    1. Cosentino-Gomes D., Rocco-Machado N., Meyer-Fernandes J.R. Cell Signaling through Protein Kinase C Oxidation and Activation. Int. J. Mol. Sci. 2012;13:10697–10721. doi: 10.3390/ijms130910697.
    1. Cowell C.F., Döppler H., Yan I.K., Hausser A., Umezawa Y., Storz P. Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J. Cell Sci. 2009;122:919–928. doi: 10.1242/jcs.041061.
    1. Wang Q.J. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol. Sci. 2006;27:317–323. doi: 10.1016/j.tips.2006.04.003.
    1. Joo M.S., Kim W.D., Lee K.Y., Kim J.H., Koo J.H., Kim S.G. AMPK Facilitates Nuclear Accumulation of Nrf2 by Phosphorylating at Serine 550. Mol. Cell. Biol. 2016;36:1931–1942. doi: 10.1128/MCB.00118-16.
    1. Silva-Islas C.A., Maldonado P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 2018;134:92–99. doi: 10.1016/j.phrs.2018.06.013.
    1. Huang H.C., Nguyen T., Pickett C.B. Phosphorylation of Nrf2 at Ser-40 by Protein Kinase C Regulates Antioxidant Response Element-mediated Transcription. J. Biol. Chem. 2002;277:42769–42774. doi: 10.1074/jbc.M206911200.
    1. Nakaso K., Yano H., Fukuhara Y., Takeshima T., Wada-Isoe K., Nakashima K. PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett. 2003;546:181–184. doi: 10.1016/S0014-5793(03)00517-9.
    1. Lee J.M., Johnson J.A. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 2004;37:139–143. doi: 10.5483/BMBRep.2004.37.2.139.
    1. Rushworth S.A., Zaitseva L., Murray M.Y., Shah N.M., Bowles K.M., MacEwan D.J. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 2012;120:5188–5198. doi: 10.1182/blood-2012-04-422121.
    1. Jain A., Jaiswal A.K. GSK-3beta Acts Upstream of Fyn Kinase in Regulation of Nuclear Export and Degradation of NF-E2 Related Factor 2. J. Biol. Chem. 2007;282:16502–16510. doi: 10.1074/jbc.M611336200.
    1. Burtenshaw D., Hakimjavadi R., Redmond E.M., Cahill P.A. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants. 2017;6:90. doi: 10.3390/antiox6040090.
    1. Panday A., Sahoo M.K., Osorio D., Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015;12:5–23. doi: 10.1038/cmi.2014.89.
    1. Brandes R.P., Weissmann N., Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free. Radic. Biol. Med. 2014;76:208–226. doi: 10.1016/j.freeradbiomed.2014.07.046.
    1. Hoyal C.R., Gutierrez A., Young B.M., Catz S.D., Lin J.H., Tsichlis P.N., Babior B.M. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc. Natl. Acad. Sci. USA. 2003;100:5130–5135. doi: 10.1073/pnas.1031526100.
    1. Kanai F., Liu H., Field S.J., Akbary H., Matsuo T., Brown G.E., Cantley L.C., Yaffe M.B. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature. 2001;3:675–678. doi: 10.1038/35083070.
    1. Zhan Y., Virbasius J.V., Song X., Pomerleau D.P., Zhou G.W. The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J. Biol. Chem. 2002;277:4512–4518. doi: 10.1074/jbc.M109520200.
    1. Abo A., Pick E., Hall A., Totty N., Teahan C.G., Segal A.W. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991;353:668–670. doi: 10.1038/353668a0.
    1. Lambeth J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004;4:181–189. doi: 10.1038/nri1312.
    1. Wingler K., Wünsch S., Kreutz R., Rothermund L., Paul M., Schmidt H.H. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 2001;31:1456–1464. doi: 10.1016/S0891-5849(01)00727-4.
    1. Mahadev K., Motoshima H., Wu X., Ruddy J.M., Arnold R.S., Cheng G., Lambeth J.D., Goldstein B.J. The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H2O2 and Plays an Integral Role in Insulin Signal Transduction. Mol. Cell. Biol. 2004;24:1844–1854. doi: 10.1128/MCB.24.5.1844-1854.2004.
    1. Simone S., Cosola C., Loverre A., Cariello M., Sallustio F., Rascio F., Gesualdo L., Schena F.P., Grandaliano G., Pertosa G. BMP-2 induces a profibrotic phenotype in adult renal progenitor cells through Nox4 activation. Am. J. Physiol. Physiol. 2012;303:F23–F34. doi: 10.1152/ajprenal.00328.2011.
    1. Mandal C.C., Ganapathy S., Gorin Y., Mahadev K., Block K., Abboud H.E., Harris S.E., Ghosh-Choudhury G., Ghosh-Choudhury N. Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem. J. 2011;433:393–402. doi: 10.1042/BJ20100357.
    1. Rastogi R., Geng X., Li F., Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front. Cell. Neurosci. 2016;10:301. doi: 10.3389/fncel.2016.00301.
    1. Chandrasekaran V., Lea C., Sosa J.C., Higgins D., Lein P.J. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. Mol. Cell. Neurosci. 2015;67:116–125. doi: 10.1016/j.mcn.2015.06.007.
    1. Sorescu G.P., Song H., Tressel S.L., Hwang J., Dikalov S., Smith D.A., Boyd N.L., Platt M.O., Lassègue B., Griendling K.K., et al. Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Induces Monocyte Adhesion by Stimulating Reactive Oxygen Species Production From a Nox1-Based NADPH Oxidase. Circ. Res. 2004;95:773–779. doi: 10.1161/01.RES.0000145728.22878.45.
    1. Pache G., Schäfer C., Wiesemann S., Springer E., Liebau M., Reinhardt H.C., August C., Pavenstädt H., Bek M.J. Upregulation of Id-1 via BMP-2 receptors induces reactive oxygen species in podocytes. Am. J. Physiol. Physiol. 2006;291:F654–F662. doi: 10.1152/ajprenal.00214.2004.
    1. Susperregui A.R.G., Gamell C., Rodríguez-Carballo E., Ortuño M.J., Bartrons R., Rosa J.L., Ventura F. Noncanonical BMP Signaling Regulates Cyclooxygenase-2 Transcription. Mol. Endocrinol. 2011;25:1006–1017. doi: 10.1210/me.2010-0515.
    1. Hernanz R., Briones A.M., Salaices M., Alonso M.J. New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin. Sci. 2014;126:111–121. doi: 10.1042/CS20120651.
    1. Koundouros N., Poulogiannis G. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer. Front. Oncol. 2018;8:160. doi: 10.3389/fonc.2018.00160.
    1. Sampson N., Berger P., Zenzmaier C. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease. BioMed Res. Int. 2014;2014:1–14. doi: 10.1155/2014/131737.
    1. Csiszar A., Smith K.E., Koller A., Kaley G., Edwards J.G., Ungvari Z. Regulation of Bone Morphogenetic Protein-2 Expression in Endothelial Cells. Circulation. 2005;111:2364–2372. doi: 10.1161/01.CIR.0000164201.40634.1D.
    1. Moriguchi T., Kuroyanagi N., Yamaguchi K., Gotoh Y., Irie K., Kano T., Shirakabe K., Muro Y., Shibuya H., Matsumoto K. A Novel Kinase Cascade Mediated by Mitogen-activated Protein Kinase Kinase 6and MKK3. J. Biol. Chem. 1996;271:13675–13679. doi: 10.1074/jbc.271.23.13675.
    1. Chen X., Liao J., Lu Y., Duan X., Sun W. Activation of the PI3K/Akt Pathway Mediates Bone Morphogenetic Protein 2-Induced Invasion of Pancreatic Cancer Cells Panc-1. Pathol. Oncol. Res. 2011;17:257–261. doi: 10.1007/s12253-010-9307-1.
    1. Murata H., Ihara Y., Nakamura H., Yodoi J., Sumikawa K., Kondo T. Glutaredoxin Exerts an Antiapoptotic Effect by Regulating the Redox State of Akt. J. Biol. Chem. 2003;278:50226–50233. doi: 10.1074/jbc.M310171200.
    1. Chen G., Deng C., Li Y.P. TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation. Int. J. Biol. Sci. 2012;8:272–288. doi: 10.7150/ijbs.2929.
    1. Hu C., Zhao L., Peng C., Li L. Regulation of the mitochondrial reactive oxygen species: Strategies to control mesenchymal stem cell fates ex vivo and in vivo. J. Cell. Mol. Med. 2018;22:5196–5207. doi: 10.1111/jcmm.13835.
    1. Li J., Dong S. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation. Stem Cells Int. 2016;2016:1–12. doi: 10.1155/2016/2470351.
    1. Kang I.S., Kim C. NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci. Rep. 2016;6:38014. doi: 10.1038/srep38014.
    1. Ha H., Kwak H.B., Lee S.W., Jin H.M., Kim H.M., Kim H.H., Lee Z.H. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp. Cell Res. 2004;301:119–127. doi: 10.1016/j.yexcr.2004.07.035.
    1. Li J., Stouffs M., Serrander L., Banfi B., Bettiol E., Charnay Y., Steger K., Krause K.H., Jaconi M.E. The NADPH Oxidase NOX4 Drives Cardiac Differentiation: Role in Regulating Cardiac Transcription Factors and MAP Kinase Activation. Mol. Biol. Cell. 2006;17:3978–3988. doi: 10.1091/mbc.e05-06-0532.
    1. Chen H., Shi S., Acosta L., Li W., Lu J., Bao S., Chen Z., Yang Z., Schneider M.D., Chien K.R., et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131:2219–2231. doi: 10.1242/dev.01094.
    1. Jiang C., Gong F. BMP-2 and icariin synergistically promote p38MAPK-mediated cardiomyocyte differentiation of mesenchymal stem cells via enhanced NOX4-driven ROS generation. Med. Chem. Res. 2017;26:2547–2556. doi: 10.1007/s00044-017-1954-2.
    1. Lein P., Johnson M., Guo X., Rueger D., Higgins D. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron. 1995;15:597–605. doi: 10.1016/0896-6273(95)90148-5.
    1. Charette M., Banker G., Withers G.S., Higgins D. Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. Eur. J. Neurosci. 2000;12:106–116.
    1. Le Roux P., Behar S., Higgins D., Charette M. OP-1 Enhances Dendritic Growth from Cerebral Cortical Neurons in Vitro. Exp. Neurol. 1999;160:151–163. doi: 10.1006/exnr.1999.7194.
    1. Hocking J.C., Hehr C.L., Chang R.Y., Johnston J., McFarlane S. TGFβ ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Mol. Cell. Neurosci. 2008;37:247–260. doi: 10.1016/j.mcn.2007.09.011.
    1. Thangnipon W., Puangmalai N., Suwanna N., Soi-Ampornkul R., Phonchai R., Kotchabhakdi N., Mukda S., Phermthai T., Julavijitphong S., Tuchinda P., et al. Potential role of N-benzylcinnamide in inducing neuronal differentiation from human amniotic fluid mesenchymal stem cells. Neurosci. Lett. 2016;610:6–12. doi: 10.1016/j.neulet.2015.10.050.
    1. Wei Z., Salmon R.M., Upton P.D., Morrell N.W., Li W. Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis. J. Biol. Chem. 2014;289:31150–31159. doi: 10.1074/jbc.M114.579771.
    1. Morrison S.J., Weissman I.L., Reya T., Clarke M.F. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111.
    1. Wang L., Park P., Zhang H., La Marca F., Claeson A., Valdivia J., Lin C.Y. BMP-2 inhibits the tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cell line. Cancer Biol. Ther. 2011;11:457–463. doi: 10.4161/cbt.11.5.14372.
    1. Lombardo Y., Scopelliti A., Cammareri P., Todaro M., Iovino F., Ricci–Vitiani L., Gulotta G., Dieli F., De Maria R., Stassi G. Bone Morphogenetic Protein 4 Induces Differentiation of Colorectal Cancer Stem Cells and Increases Their Response to Chemotherapy in Mice. Gastroenterology. 2011;140:297–309. doi: 10.1053/j.gastro.2010.10.005.
    1. Yan K., Wu Q., Yan D.H., Lee C.H., Rahim N., Tritschler I., DeVecchio J., Kalady M.F., Hjelmeland A.B., Rich J.N. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev. 2014;28:1085–1100. doi: 10.1101/gad.235515.113.
    1. Ding S., Li C., Cheng N., Cui X., Xu X., Zhou G. Redox Regulation in Cancer Stem Cells. Oxidative Med. Cell. Longev. 2015;2015:1–11. doi: 10.1155/2015/750798.
    1. Epstein F.H., Gibbons G.H., Dzau V.J. The Emerging Concept of Vascular Remodeling. N. Engl. J. Med. 1994;330:1431–1438. doi: 10.1056/NEJM199405193302008.
    1. Mueller C.F.H., Laude K., McNally J.S., Harrison D.G. Redox Mechanisms in Blood Vessels. Arterioscler. Thromb. Vasc. Biol. 2005;25:274–278. doi: 10.1161/01.ATV.0000149143.04821.eb.
    1. Kojda G., Harrison D. Interactions between NO and reactive oxygen species: Pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc. Res. 1999;43:562–571.
    1. Csiszar A., Lehoux S., Ungvari Z. Hemodynamic Forces, Vascular Oxidative Stress, and Regulation of BMP-2/4 Expression. Antioxid. Redox Signal. 2009;11:1683–1697. doi: 10.1089/ars.2008.2401.
    1. Hruska K.A., Mathew S., Saab G. Bone Morphogenetic Proteins in Vascular Calcification. Circ. Res. 2005;97:105–114. doi: 10.1161/01.RES.00000175571.53833.6c.
    1. Zhang M., Sara J.D., Wang F.L., Liu L.P., Su L.X., Zhe J., Wu X., Liu J.H. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients. Cardiovasc. Diabetol. 2015;14:64. doi: 10.1186/s12933-015-0214-3.
    1. Li X., Yang H.Y., Giachelli C.M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 2008;199:271–277. doi: 10.1016/j.atherosclerosis.2007.11.031.
    1. Liberman M., Johnson R.C., Handy D.E., Loscalzo J., Leopold J.A. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification. Biochem. Biophys. Res. Commun. 2011;413:436–441.
    1. Csiszar A., Ahmad M., Smith K.E., Labinskyy N., Gao Q., Kaley G., Edwards J.G., Wolin M.S., Ungvari Z. Bone Morphogenetic Protein-2 Induces Proinflammatory Endothelial Phenotype. Am. J. Pathol. 2006;168:629–638. doi: 10.2353/ajpath.2006.050284.
    1. Tian X.Y., Yung L.H., Wong W.T., Liu J., Leung F.P., Liu L., Chen Y., Kong S.K., Kwan K.M., Ng S.M., et al. Bone morphogenic protein-4 induces endothelial cell apoptosis through oxidative stress-dependent p38MAPK and JNK pathway. J. Mol. Cell. Cardiol. 2012;52:237–244. doi: 10.1016/j.yjmcc.2011.10.013.
    1. Csiszar A., Labinskyy N., Jo H., Ballabh P., Ungvari Z. Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells. Am. J. Physiol. Circ. Physiol. 2008;295:H569–H577. doi: 10.1152/ajpheart.00180.2008.
    1. Wong W.T., Tian X.Y., Chen Y., Leung F.P., Liu L., Lee H.K., Ng C.F., Xu A., Yao X., Vanhoutte P.M., et al. Bone Morphogenic Protein-4 Impairs Endothelial Function Through Oxidative Stress–Dependent Cyclooxygenase-2 Upregulation. Circ. Res. 2010;107:984–991. doi: 10.1161/CIRCRESAHA.110.222794.
    1. Luo J.Y., Zhang Y., Wang L., Huang Y. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system. J. Physiol. 2015;593:2995–3011. doi: 10.1113/JP270207.
    1. Wong C.M., Zhang Y., Huang Y. Bone morphogenic protein-4-induced oxidant signaling via protein carbonylation for endothelial dysfunction. Free Radic. Biol. Med. 2014;75:178–190. doi: 10.1016/j.freeradbiomed.2014.07.035.
    1. Grgurevic L., Christensen G.L., Schulz T.J., Vukicevic S., Information P.E. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev. 2016;27:105–118. doi: 10.1016/j.cytogfr.2015.12.009.
    1. Yung L.M., Sánchez-Duffhues G., Dijke P.T., Yu P.B. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc. Res. 2015;108:278–287. doi: 10.1093/cvr/cvv221.
    1. Derwall M., Malhotra R., Lai C.S., Beppu Y., Aikawa E., Seehra J.S., Zapol W.M., Bloch K.D., Yu P.B. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arter. Thromb. Vasc. Biol. 2012;32:613–622. doi: 10.1161/ATVBAHA.111.242594.
    1. Sánchez-Duffhues G., De Vinuesa A.G., Van De Pol V., Geerts M.E., De Vries M.R., Janson S.G.T., Van Dam H., Lindeman J.H., Goumans M.J., Dijke P.T. Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J. Pathol. 2019;247:333–346. doi: 10.1002/path.5193.
    1. Sun B., Huo R., Sheng Y., Li Y., Xie X., Chen C., Liu H.B., Li N., Li C.B., Guo W.T., et al. Bone Morphogenetic Protein-4 Mediates Cardiac Hypertrophy, Apoptosis, and Fibrosis in Experimentally Pathological Cardiac Hypertrophy. Hypertension. 2013;61:352–360. doi: 10.1161/HYPERTENSIONAHA.111.00562.
    1. Mao H., Tao T., Wang X., Liu M., Song D., Liu X., Shi D. Zedoarondiol Attenuates Endothelial Cells Injury Induced by Oxidized Low-Density Lipoprotein via Nrf2 Activation. Cell. Physiol. Biochem. 2018;48:1468–1479. doi: 10.1159/000492257.
    1. Lin X.P., Cui H.J., Yang A.L., Luo J.K., Tang T. Astragaloside IV Improves Vasodilatation Function by Regulating the PI3K/Akt/eNOS Signaling Pathway in Rat Aorta Endothelial Cells. J. Vasc. Res. 2018;55:169–176. doi: 10.1159/000489958.
    1. Rösen P., Nawroth P.P., King G., Möller W., Tritschler H.J., Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: A summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes. Metab. Res. Rev. 2001;17:189–212. doi: 10.1002/dmrr.196.
    1. Asaba K., Tojo A., Onozato M.L., Goto A., Quinn M.T., Fujita T., Wilcox C.S. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 2005;67:1890–1898. doi: 10.1111/j.1523-1755.2005.00287.x.
    1. Martín A.S., Du P., Dikalova A., Lassegue B., Aleman M., Góngora M.C., Brown K., Joseph G., Harrison D.G., Taylor W.R., et al. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. Am. J. Physiol. Circ. Physiol. 2007;292:H2073–H2082. doi: 10.1152/ajpheart.00943.2006.
    1. Zhen D., Chen Y., Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J. Diabetes Complicat. 2010;24:334–344. doi: 10.1016/j.jdiacomp.2009.05.002.
    1. Kowluru R.A. Diabetic Retinopathy: Mitochondrial Dysfunction and Retinal Capillary Cell Death. Antioxid. Redox Signal. 2005;7:1581. doi: 10.1089/ars.2005.7.1581.
    1. Konior A., Schramm A., Czesnikiewicz-Guzik M., Guzik T.J. NADPH oxidases in vascular pathology. Antioxid. Redox Signal. 2014;20:2794–2814. doi: 10.1089/ars.2013.5607.
    1. Wang H.T., Liu C.F., Tsai T.H., Chen Y.L., Chang H.W., Tsai C.Y., Leu S., Zhen Y.Y., Chai H.T., Chung S.Y., et al. Effect of obesity reduction on preservation of heart function and attenuation of left ventricular remodeling, oxidative stress and inflammation in obese mice. J. Transl. Med. 2012;10:145. doi: 10.1186/1479-5876-10-145.
    1. Saeed O., Otsuka F., Polavarapu R., Karmali V., Weiss D., Davis T., Rostad B., Pachura K., Adams L., Elliott J., et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012;32:299–307. doi: 10.1161/ATVBAHA.111.240101.
    1. Gustafson B., Hammarstedt A., Hedjazifar S., Hoffmann J.M., Svensson P.A., Grimsby J., Rondinone C., Smith U. BMP4 and BMP Antagonists Regulate Human White and Beige Adipogenesis. Diabetes. 2015;64:1670–1681. doi: 10.2337/db14-1127.
    1. De Villiers D., Potgieter M., Ambele M.A., Adam L., Durandt C., Pepper M.S. Genome Editing. Volume 1083. Springer; Cham, Switzerland: 2017. The Role of Reactive Oxygen Species in Adipogenic Differentiation; pp. 125–144.
    1. Youn J.Y., Gao L., Cai H. The p47phox-and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetology. 2012;55:2069–2079. doi: 10.1007/s00125-012-2557-6.
    1. Youn J.Y., Zhou J., Cai H. Bone Morphogenic Protein 4 Mediates NOX1-Dependent eNOS Uncoupling, Endothelial Dysfunction, and COX2 Induction in Type 2 Diabetes Mellitus. Mol. Endocrinol. 2015;29:1123–1133. doi: 10.1210/ME.2014-1313.
    1. Liu F., Zhong H., Liang J.Y., Fu P., Luo Z.J., Zhou L., Gou R., Huang J. Effect of high glucose levels on the calcification of vascular smooth muscle cells by inducing osteoblastic differentiation and intracellular calcium deposition via BMP-2/Cbfα-1 pathway. J. Zhejiang Univ. Sci. B. 2010;11:905–911. doi: 10.1631/jzus.B1000119.
    1. Kim C.W., Song H., Kumar S., Nam D., Kwon H.S., Chang K.H., Son D.J., Kang D.W., Brodie S.A., Weiss D., et al. Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells. Arter. Thromb. Vasc. Biol. 2013;33:1350–1359. doi: 10.1161/ATVBAHA.112.300287.
    1. Shao J.S., Aly Z.A., Lai C.F., Cheng S.L., Cai J., Huang E., Behrmann A., Towler D.A. Vascular Bmp Msx2 Wnt Signaling and Oxidative Stress in Arterial Calcification. Ann. N. Y. Acad. Sci. 2007;1117:40–50. doi: 10.1196/annals.1402.075.
    1. Boström K.I., Jumabay M., Matveyenko A., Nicholas S.B., Yao Y. Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circ. Res. 2011;108:446–457. doi: 10.1161/CIRCRESAHA.110.236596.
    1. Kolset S.O., Reinholt F.P., Jenssen T. Diabetic Nephropathy and Extracellular Matrix. J. Histochem. Cytochem. 2012;60:976–986. doi: 10.1369/0022155412465073.
    1. Yeh C.H., Chang C.K., Cheng M.F., Lin H.J., Cheng J.T. The antioxidative effect of bone morphogenetic protein-7 against high glucose-induced oxidative stress in mesangial cells. Biochem. Biophys. Res. Commun. 2009;382:292–297. doi: 10.1016/j.bbrc.2009.03.011.
    1. Rodrigues-Díez R., Lavoz C., Carvajal G., Rayego-Mateos S., Diez R.R., Arduan A.O., Egido J., Mezzano S., Ruiz-Ortega M. Gremlin Is a Downstream Profibrotic Mediator of Transforming Growth Factor-Beta in Cultured Renal Cells. Nephron Exp. Nephrol. 2012;122:62–74. doi: 10.1159/000346575.
    1. Kane R., Stevenson L., Godson C., Stitt A.W., O’Brien C. Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose. Br. J. Ophthalmol. 2005;89:1638–1642. doi: 10.1136/bjo.2005.069591.
    1. Kowluru R.A., Chan P.S. Oxidative Stress and Diabetic Retinopathy. Exp. Diabetes Res. 2007;2007:43603. doi: 10.1155/2007/43603.
    1. Makris K., Spanou L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016;37:85–98.
    1. Meran S., Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 2011;92:158–167. doi: 10.1111/j.1365-2613.2011.00764.x.
    1. Wang S., Chen Q., Simon T.C., Strebeck F., Chaudhary L., Morrissey J., Liapis H., Klahr S., Hruska K.A. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy11Professor Robert Chevalier served as a guest editor for this paper. Kidney Int. 2003;63:2037–2049. doi: 10.1046/j.1523-1755.2003.00035.x.
    1. Zeisberg M., Hanai J.I., Sugimoto H., Mammoto T., Charytan D., Strutz F., Kalluri R. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003;9:964–968. doi: 10.1038/nm888.
    1. Hsing C.H., Chou W., Wang J.J., Chen H.W., Yeh C.H. Propofol increases bone morphogenetic protein-7 and decreases oxidative stress in sepsis-induced acute kidney injury. Nephrol. Dial. Transplant. 2011;26:1162–1172. doi: 10.1093/ndt/gfq572.
    1. Lee H.B., Ha H. Mechanisms of Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells During Peritoneal Dialysis. J. Korean Med. Sci. 2007;22:943–945. doi: 10.3346/jkms.2007.22.6.943.
    1. Dolan V., Murphy M., Sadlier D., Lappin D., Doran P., Godson C., Martin F., O’Meara Y., Schmid H., Henger A., et al. Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am. J. Kidney Dis. 2005;45:1034–1039. doi: 10.1053/j.ajkd.2005.03.014.
    1. Zhang Y., Zhang Q. Bone morphogenetic protein-7 and Gremlin: New emerging therapeutic targets for diabetic nephropathy. Biochem. Biophys. Res. Commun. 2009;383:1–3. doi: 10.1016/j.bbrc.2009.03.086.
    1. Nezu M., Suzuki N., Yamamoto M. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression. Am. J. Nephrol. 2017;45:473–483. doi: 10.1159/000475890.
    1. Choi B.H., Kang K.S., Kwak M.K. Effect of Redox Modulating NRF2 Activators on Chronic Kidney Disease. Molecules. 2014;19:12727–12759. doi: 10.3390/molecules190812727.
    1. Verdijk L.B., Snijders T., Drost M., Delhaas T., Kadi F., van Loon L.J.C. Satellite cells in human skeletal muscle; from birth to old age. Age (Omaha) 2014;36:545–557. doi: 10.1007/s11357-013-9583-2.
    1. Frühbeck G., Sesma P., Burrell M.A. PRDM16: The interconvertible adipo-myocyte switch. Trends Cell Biol. 2009;19:141–146. doi: 10.1016/j.tcb.2009.01.007.
    1. Tseng Y.H., Kokkotou E., Schulz T.J., Huang T.L., Winnay J.N., Taniguchi C.M., Tran T.T., Suzuki R., Espinoza D.O., Yamamoto Y., et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454:1000–1004. doi: 10.1038/nature07221.
    1. Morozzi G., Beccafico S., Bianchi R., Riuzzi F., Bellezza I., Giambanco I., Arcuri C., Minelli A., Donato R. Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death Differ. 2017;24:2077–2088. doi: 10.1038/cdd.2017.132.
    1. Kim H.K., Bian H., Aya-Ay J., Garces A., Morgan E.F., Gilbert S.R. Hypoxia and HIF-1α expression in the epiphyseal cartilage following ischemic injury to the immature femoral head. Bone. 2009;45:280–288. doi: 10.1016/j.bone.2009.03.665.
    1. Nakase T., Miyaji T., Tomita T., Kaneko M., Kuriyama K., Myoui A., Sugamoto K., Ochi T., Yoshikawa H. Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthr. Cartil. 2003;11:278–284. doi: 10.1016/S1063-4584(03)00004-9.
    1. Kamiya N., Shafer S., Oxendine I., Mortlock D.P., Chandler R.L., Oxburgh L., Kim H.K. Acute BMP2 upregulation following induction of ischemic osteonecrosis in immature femoral head. Bone. 2013;53:239–247. doi: 10.1016/j.bone.2012.11.023.
    1. Jiang M., Ku W.Y., Zhou Z., Dellon E.S., Falk G.W., Nakagawa H., Wang M.L., Liu K., Wang J., Katzka D.A., et al. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J. Clin. Investig. 2015;125:1557–1568. doi: 10.1172/JCI78850.
    1. Tardif G., Hum D., Pelletier J.P., Boileau C., Ranger P., Martel-Pelletier J. Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts. Arthritis Rheum. 2004;50:2521–2530. doi: 10.1002/art.20441.
    1. Tardif G., Pelletier J.P., Boileau C., Martel-Pelletier J. The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: An immunohistochemical study. Osteoarthr. Cartil. 2009;17:263–270. doi: 10.1016/j.joca.2008.06.022.
    1. Han E.J., Yoo S.A., Kim G.M., Hwang D., Cho C.S., You S., Kim W.U. GREM1 Is a Key Regulator of Synoviocyte Hyperplasia and Invasiveness. J. Rheumatol. 2016;43:474–485. doi: 10.3899/jrheum.150523.
    1. Yi J., Jin Q., Zhang B., Wu X., Ge D. Gremlin-1 Concentrations Are Correlated with the Severity of Knee Osteoarthritis. Med. Sci. Monit. 2016;22:4062–4065. doi: 10.12659/MSM.897849.

Source: PubMed

3
Abonnere