Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate

Cristina Sobacchi, Eleonora Palagano, Anna Villa, Ciro Menale, Cristina Sobacchi, Eleonora Palagano, Anna Villa, Ciro Menale

Abstract

Mesenchymal stem cells (MSCs) are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.

Keywords: RANKL; bone marrow microenvironment; cytokines; growth factors; hormones; mesenchymal stem cells.

Figures

Figure 1
Figure 1
Molecular pathways activated by soluble factors influencing bone marrow mesenchymal stem cells (MSCs) differentiation. Simplified representation of cellular players in bone marrow microenviroment (BM-ME) showing that growth factors, hormones, and cytokines, by binding to their respective receptors on the MSC plasma membrane, trigger activation of signaling cascades that ultimately result in gene expression regulation relevant for MSCs differentiation fate.
Figure 2
Figure 2
Effects of soluble factors on bone marrow mesenchymal stem cells (MSCs) trilineage differentiation. Schematic representation of the effect exerted by the described soluble molecules on MSCs osteogenic, chondrogenic, and adipogenic differentiation. Green circle, enhancement; red circle, suppression; orange circle, context-dependent regulation; TBD, to be determined.

References

    1. Ahuja S. S., Zhao S., Bellido T., Plotkin L. I., Jimenez F., Bonewald L. F. (2003). CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology 144, 1761–1769.10.1210/en.2002-221136
    1. Azab A. K., Runnels J. M., Pitsillides C., Moreau A. S., Azab F., Leleu X., et al. (2009). CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113, 4341–4351.10.1182/blood-2008-10-186668
    1. Bernardo M. E., Fibbe W. E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402.10.1016/j.stem.2013.09.006
    1. Bianco P., Cao X., Frenette P. S., Mao J. J., Robey P. G., Simmons P. J., et al. (2013). The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35–42.10.1038/nm.3028
    1. Bolzoni M., Donofrio G., Storti P., Guasco D., Toscani D., Lazzaretti M., et al. (2013). Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells. Leukemia 27, 451–463.10.1038/leu.2012.190
    1. Bourin P., Bunnell B. A., Casteilla L., Dominici M., Katz A. J., March K. L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15, 641–648.10.1016/j.jcyt.2013.02.006
    1. Buchwald Z. S., Yang C., Nellore S., Shashkova E. V., Davis J. L., Cline A., et al. (2015). A bone anabolic effect of RANKL in a murine model of osteoporosis mediated through FoxP3+ CD8 T cells. J. Bone Miner. Res. 30, 1508–1522.10.1002/jbmr.2472
    1. Calvi L. M., Adams G. B., Weibrecht K. W., Weber J. M., Olson D. P., Knight M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846.10.1038/nature02040
    1. Chen G., Deng C., Li Y. P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272–288.10.7150/ijbs.2929
    1. Choy L., Derynck R. (2003). Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J. Biol. Chem. 278, 9609–9619.10.1074/jbc.M212259200
    1. Cipriani P., Di Benedetto P., Ruscitti P., Liakouli V., Berardicurti O., Carubbi F., et al. (2016). Perivascular cells in diffuse cutaneous systemic sclerosis overexpress activated ADAM12 and are involved in myofibroblast transdifferentiation and development of fibrosis. J. Rheumatol. 43, 1340–1349.10.3899/jrheum.150996
    1. Claros S., Rico-Llanos G. A., Becerra J., Andrades J. A. (2014). A novel human TGF-beta1 fusion protein in combination with rhBMP-2 increases chondro-osteogenic differentiation of bone marrow mesenchymal stem cells. Int. J. Mol. Sci. 15, 11255–11274.10.3390/ijms150711255
    1. Cline-Smith A., Gibbs J., Shashkova E., Buchwald Z. S., Novack D. V., Aurora R. (2016). Pulsed low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis. JCI Insight 1, e88839.10.1172/jci.insight.88839
    1. Colaianni G., Cuscito C., Mongelli T., Pignataro P., Buccoliero C., Liu P., et al. (2015). The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. U.S.A. 112, 12157–12162.10.1073/pnas.1516622112
    1. Colucci S., Brunetti G., Oranger A., Mori G., Sardone F., Specchia G., et al. (2011). Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J. 1, e27.10.1038/bcj.2011.22
    1. Cong Q., Jia H., Biswas S., Li P., Qiu S., Deng Q., et al. (2016). p38alpha MAPK regulates lineage commitment and OPG synthesis of bone marrow stromal cells to prevent bone loss under physiological and pathological conditions. Stem Cell Reports 6, 566–578.10.1016/j.stemcr.2016.02.001
    1. Coricor G., Serra R. (2016). TGF-beta regulates phosphorylation and stabilization of Sox9 protein in chondrocytes through p38 and Smad dependent mechanisms. Sci. Rep. 6, 38616.10.1038/srep38616
    1. Corre J., Mahtouk K., Attal M., Gadelorge M., Huynh A., Fleury-Cappellesso S., et al. (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21, 1079–1088.10.1038/sj.leu.2404621
    1. Crane J. L., Cao X. (2014). Function of matrix IGF-1 in coupling bone resorption and formation. J. Mol. Med. (Berl) 92, 107–115.10.1007/s00109-013-1084-3
    1. Croes M., Oner F. C., Kruyt M. C., Blokhuis T. J., Bastian O., Dhert W. J., et al. (2015). Proinflammatory mediators enhance the osteogenesis of human mesenchymal stem cells after lineage commitment. PLoS ONE 10:e0132781.10.1371/journal.pone.0132781
    1. Croes M., Oner F. C., van Neerven D., Sabir E., Kruyt M. C., Blokhuis T. J., et al. (2016). Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 84, 262–270.10.1016/j.bone.2016.01.010
    1. David Roodman G., Silbermann R. (2015). Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep. 4, 753.10.1038/bonekey.2015.122
    1. Dexheimer V., Gabler J., Bomans K., Sims T., Omlor G., Richter W. (2016). Differential expression of TGF-beta superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. Sci. Rep. 6, 36655.10.1038/srep36655
    1. D’Souza S., del Prete D., Jin S., Sun Q., Huston A. J., Kostov F. E., et al. (2011). Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 118, 6871–6880.10.1182/blood-2011-04-346775
    1. Dubon M. J., Yu J., Choi S., Park K. S. (2017). Transforming growth factor beta induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J. Cell. Physiol. 10.1002/jcp.25863
    1. Ducy P., Amling M., Takeda S., Priemel M., Schilling A. F., Beil F. T., et al. (2000). Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207.10.1016/S0092-8674(00)81558-5
    1. Fairfield H., Falank C., Avery L., Reagan M. R. (2016). Multiple myeloma in the marrow: pathogenesis and treatments. Ann. N. Y. Acad. Sci. 1364, 32–51.10.1111/nyas.13038
    1. Fan Y., Hanai J. I., Le P. T., Bi R., Maridas D., DeMambro V., et al. (2017). Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661–672.10.1016/j.cmet.2017.01.001
    1. Ferrara N., Gerber H. P., LeCouter J. (2003). The biology of VEGF and its receptors. Nat. Med. 9, 669–676.10.1038/nm0603-669
    1. Fischer J., Aulmann A., Dexheimer V., Grossner T., Richter W. (2014). Intermittent PTHrP(1-34) exposure augments chondrogenesis and reduces hypertrophy of mesenchymal stromal cells. Stem Cells Dev. 23, 2513–2523.10.1089/scd.2014.0101
    1. Fukumoto S., Martin T. J. (2009). Bone as an endocrine organ. Trends Endocrinol. Metab. 20, 230–236.10.1016/j.tem.2009.02.001
    1. Fukumoto T., Sperling J. W., Sanyal A., Fitzsimmons J. S., Reinholz G. G., Conover C. A., et al. (2003). Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr. Cartil. 11, 55–64.10.1053/joca.2002.0869
    1. Gao Y., Wu X., Terauchi M., Li J. Y., Grassi F., Galley S., et al. (2008). T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab. 8, 132–145.10.1016/j.cmet.2008.07.001
    1. Giuliani N., Colla S., Morandi F., Lazzaretti M., Sala R., Bonomini S., et al. (2005). Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 106, 2472–2483.10.1182/blood-2004-12-4986
    1. Gomes S. A., Rangel E. B., Premer C., Dulce R. A., Cao Y., Florea V., et al. (2013). S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 110, 2834–2839.10.1073/pnas.1220185110
    1. Gopalakrishnan V., Vignesh R. C., Arunakaran J., Aruldhas M. M., Srinivasan N. (2006). Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem. Cell Biol. 84, 93–101.10.1139/o05-163
    1. Guise T. A., Mohammad K. S., Clines G., Stebbins E. G., Wong D. H., Higgins L. S., et al. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 12(20 Pt 2), 6213s–6216s.10.1158/1078-0432.CCR-06-1007
    1. He Q., Scott Swindle C., Wan C., Flynn R. J., Oster R. A., Chen D., et al. (2017). Enhanced hematopoietic stem cell self-renewal-promoting ability of clonal primary mesenchymal stromal/stem cells versus their osteogenic progeny. Stem Cells 35, 473–484.10.1002/stem.2481
    1. Hess K., Ushmorov A., Fiedler J., Brenner R. E., Wirth T. (2009). TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone 45, 367–376.10.1016/j.bone.2009.04.252
    1. Hock J. M., Gera I. (1992). Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J. Bone Miner. Res. 7, 65–72.10.1002/jbmr.5650070110
    1. Huh J. E., Lee S. Y. (2013). IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. Biochim. Biophys. Acta 1833, 2608–2616.10.1016/j.bbamcr.2013.06.025
    1. Indrawattana N., Chen G., Tadokoro M., Shann L. H., Ohgushi H., Tateishi T., et al. (2004). Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 320, 914–919.10.1016/j.bbrc.2004.06.029
    1. Jain R. K. (2003). Molecular regulation of vessel maturation. Nat. Med. 9, 685–693.10.1038/nm0603-685
    1. Jaiswal R. K., Jaiswal N., Bruder S. P., Mbalaviele G., Marshak D. R., Pittenger M. F. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275, 9645–9652.10.1074/jbc.275.13.9645
    1. Jilka R. L. (2007). Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40, 1434–1446.10.1016/j.bone.2007.03.017
    1. Kaigler D., Krebsbach P. H., Polverini P. J., Mooney D. J. (2003). Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng. 9, 95–103.10.1089/107632703762687573
    1. Kang Q., Song W. X., Luo Q., Tang N., Luo J., Luo X., et al. (2009). A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev. 18, 545–559.10.1089/scd.2008.0130
    1. Kang Y., Siegel P. M., Shu W., Drobnjak M., Kakonen S. M., Cordon-Cardo C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549.10.1016/S1535-6108(03)00132-6
    1. Kassen D., Moore S., Percy L., Herledan G., Bounds D., Rodriguez-Justo M., et al. (2014). The bone marrow stromal compartment in multiple myeloma patients retains capability for osteogenic differentiation in vitro: defining the stromal defect in myeloma. Br. J. Haematol. 167, 194–206.10.1111/bjh.13020
    1. Kastrinaki M. C., Pavlaki K., Batsali A. K., Kouvidi E., Mavroudi I., Pontikoglou C., et al. (2013). Mesenchymal stem cells in immune-mediated bone marrow failure syndromes. Clin. Dev. Immunol. 2013, 265608.10.1155/2013/265608
    1. Keating A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell 10, 709–716.10.1016/j.stem.2012.05.015
    1. Kennelly H., Mahon B. P., English K. (2016). Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci. Rep. 6, 38207.10.1038/srep38207
    1. Kim R. Y., Yang H. J., Song Y. M., Kim I. S., Hwang S. J. (2015). Estrogen modulates bone morphogenetic protein-induced sclerostin expression through the Wnt signaling pathway. Tissue Eng. Part A 21, 2076–2088.10.1089/ten.TEA.2014.0585
    1. Kontogianni M. D., Dafni U. G., Routsias J. G., Skopouli F. N. (2004). Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J. Bone Miner. Res. 19, 546–551.10.1359/JBMR.040107
    1. La Cava A., Matarese G. (2004). The weight of leptin in immunity. Nat. Rev. Immunol. 4, 371–379.10.1038/nri1350
    1. Lacey D. C., Simmons P. J., Graves S. E., Hamilton J. A. (2009). Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation. Osteoarthr. Cartil. 17, 735–742.10.1016/j.joca.2008.11.011
    1. Le Blanc K., Mougiakakos D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396.10.1038/nri3209
    1. Le Blanc S., Simann M., Jakob F., Schutze N., Schilling T. (2015). Fibroblast growth factors 1 and 2 inhibit adipogenesis of human bone marrow stromal cells in 3D collagen gels. Exp. Cell Res. 338, 136–148.10.1016/j.yexcr.2015.09.009
    1. Lee M. H., Kim Y. J., Kim H. J., Park H. D., Kang A. R., Kyung H. M., et al. (2003). BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278, 34387–34394.10.1074/jbc.M211386200
    1. Li J., Liu X., Zuo B., Zhang L. (2016). The role of bone marrow microenvironment in governing the balance between osteoblastogenesis and adipogenesis. Aging Dis. 7, 514–525.10.14336/AD.2015.1206
    1. Li J. Y., Adams J., Calvi L. M., Lane T. F., Weitzmann M. N., Pacifici R. (2013a). Ovariectomy expands murine short-term hemopoietic stem cell function through T cell expressed CD40L and Wnt10B. Blood 122, 2346–2357.10.1182/blood-2013-03-487801
    1. Li L., Yao X. L., He X. L., Liu X. J., Wu W. C., Kuang W., et al. (2013b). Role of mechanical strain and estrogen in modulating osteogenic differentiation of mesenchymal stem cells (MSCs) from normal and ovariectomized rats. Cell. Mol. Biol. (Noisy-le-grand) 59, OL1889–OL1893.
    1. Li Y., He X., Olauson H., Larsson T. E., Lindgren U. (2013c). FGF23 affects the lineage fate determination of mesenchymal stem cells. Calcif. Tissue Int. 93, 556–564.10.1007/s00223-013-9795-6
    1. Liao J., Li X., Koh A. J., Berry J. E., Thudi N., Rosol T. J., et al. (2008). Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int. J. Cancer 123, 2267–2278.10.1002/ijc.23602
    1. Liu Y., Berendsen A. D., Jia S., Lotinun S., Baron R., Ferrara N., et al. (2012). Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest. 122, 3101–3113.10.1172/JCI61209
    1. Liu Y., Olsen B. R. (2014). Distinct VEGF functions during bone development and homeostasis. Arch. Immunol. Ther. Exp. (Warsz.) 62, 363–368.10.1007/s00005-014-0285-y
    1. Luo J., Yang Z., Ma Y., Yue Z., Lin H., Qu G., et al. (2016). LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat. Med. 22, 539–546.10.1038/nm.4076
    1. Ma Q., Xia X., Tao Q., Lu K., Shen J., Xu Q., et al. (2016). Profound actions of an agonist of growth hormone-releasing hormone on angiogenic therapy by mesenchymal stem cells. Arterioscler. Thromb. Vasc. Biol. 36, 663–672.10.1161/ATVBAHA.116.307126
    1. Maes C., Stockmans I., Moermans K., Van Looveren R., Smets N., Carmeliet P., et al. (2004). Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J. Clin. Invest. 113, 188–199.10.1172/JCI19383
    1. Marie P. J. (2012). Fibroblast growth factor signaling controlling bone formation: an update. Gene 498, 1–4.10.1016/j.gene.2012.01.086
    1. Marsano A., Medeiros da Cunha C. M., Ghanaati S., Gueven S., Centola M., Tsaryk R., et al. (2016). Spontaneous in vivo chondrogenesis of bone marrow-derived mesenchymal progenitor cells by blocking vascular endothelial growth factor signaling. Stem Cells Transl. Med. 5, 1730–1738.10.5966/sctm.2015-0321
    1. Martino M. M., Maruyama K., Kuhn G. A., Satoh T., Takeuchi O., Muller R., et al. (2016). Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat. Commun. 7, 11051.10.1038/ncomms11051
    1. Menagh P. J., Turner R. T., Jump D. B., Wong C. P., Lowry M. B., Yakar S., et al. (2010). Growth hormone regulates the balance between bone formation and bone marrow adiposity. J. Bone Miner. Res. 25, 757–768.10.1359/jbmr.091015
    1. Mendez-Ferrer S., Michurina T. V., Ferraro F., Mazloom A. R., Macarthur B. D., Lira S. A., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834.10.1038/nature09262
    1. Moore K. A., Lemischka I. R. (2006). Stem cells and their niches. Science 311, 1880–1885.10.1126/science.1110542
    1. Mundy G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593.10.1038/nrc867
    1. Murphy M. B., Moncivais K., Caplan A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 45, e54.10.1038/emm.2013.94
    1. Nagaya N., Kangawa K., Itoh T., Iwase T., Murakami S., Miyahara Y., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112, 1128–1135.10.1161/CIRCULATIONAHA.104.500447
    1. Nakagawa M., Kaneda T., Arakawa T., Morita S., Sato T., Yomada T., et al. (2000). Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett. 473, 161–164.10.1016/S0014-5793(00)01520-9
    1. Nakase T., Takaoka K., Masuhara K., Shimizu K., Yoshikawa H., Ochi T. (1997). Interleukin-1 beta enhances and tumor necrosis factor-alpha inhibits bone morphogenetic protein-2-induced alkaline phosphatase activity in MC3T3-E1 osteoblastic cells. Bone 21, 17–21.10.1016/S8756-3282(97)00038-0
    1. Nakashima T., Hayashi M., Fukunaga T., Kurata K., Oh-Hora M., Feng J. Q., et al. (2011). Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234.10.1038/nm.2452
    1. Niida S., Kaku M., Amano H., Yoshida H., Kataoka H., Nishikawa S., et al. (1999). Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J. Exp. Med. 190, 293–298.10.1084/jem.190.2.293
    1. Okazaki R., Inoue D., Shibata M., Saika M., Kido S., Ooka H., et al. (2002). Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143, 2349–2356.10.1210/endo.143.6.8854
    1. Ornitz D. M., Legeai-Mallet L. (2017). Achondroplasia: development, pathogenesis, and therapy. Dev. Dyn. 246, 291–309.10.1002/dvdy.24479
    1. Ouji Y., Yoshikawa M., Shiroi A., Ishizaka S. (2006). Wnt-10b secreted from lymphocytes promotes differentiation of skin epithelial cells. Biochem. Biophys. Res. Commun. 342, 1063–1069.10.1016/j.bbrc.2006.02.028
    1. Pacifici R. (2016a). The role of IL-17 and TH17 cells in the bone catabolic activity of PTH. Front. Immunol. 7:57.10.3389/fimmu.2016.00057
    1. Pacifici R. (2016b). T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann. N. Y. Acad. Sci. 1364, 11–24.10.1111/nyas.12969
    1. Papadaki H. A., Palmblad J., Eliopoulos G. D. (2001). Non-immune chronic idiopathic neutropenia of adult: an overview. Eur. J. Haematol. 67, 35–44.10.1034/j.1600-0609.2001.00473.x
    1. Polo S., Di Fiore P. P. (2006). Endocytosis conducts the cell signaling orchestra. Cell 124, 897–900.10.1016/j.cell.2006.02.025
    1. Post S., Abdallah B. M., Bentzon J. F., Kassem M. (2008). Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone 43, 32–39.10.1016/j.bone.2008.03.011
    1. Pourgholaminejad A., Aghdami N., Baharvand H., Moazzeni S. M. (2016). The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine 85, 51–60.10.1016/j.cyto.2016.06.003
    1. Pricola K. L., Kuhn N. Z., Haleem-Smith H., Song Y., Tuan R. S. (2009). Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell. Biochem. 108, 577–588.10.1002/jcb.22289
    1. Provot S., Kempf H., Murtaugh L. C., Chung U. I., Kim D. W., Chyung J., et al. (2006). Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development 133, 651–662.10.1242/dev.02258
    1. Qiao X., Nie Y., Ma Y., Chen Y., Cheng R., Yin W., et al. (2016). Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep. 6, 18732.10.1038/srep18732
    1. Qin L., Raggatt L. J., Partridge N. C. (2004). Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol. Metab. 15, 60–65.10.1016/j.tem.2004.01.006
    1. Qiu T., Wu X., Zhang F., Clemens T. L., Wan M., Cao X. (2010). TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat. Cell Biol. 12, 224–234.10.1038/ncb2022
    1. Reagan M. R., Mishima Y., Glavey S. V., Zhang Y., Manier S., Lu Z. N., et al. (2014). Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 124, 3250–3259.10.1182/blood-2014-02-558007
    1. Roccaro A. M., Sacco A., Purschke W. G., Moschetta M., Buchner K., Maasch C., et al. (2014). SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep. 9, 118–128.10.1016/j.celrep.2014.08.042
    1. Rodriguez J. P., Astudillo P., Rios S., Pino A. M. (2008). Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr. Stem Cell Res. Ther. 3, 208–218.10.2174/157488808785740325
    1. Sacchetti B., Funari A., Michienzi S., Di Cesare S., Piersanti S., Saggio I., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336.10.1016/j.cell.2007.08.025
    1. Sato F., Miyaoka Y., Miyajima A., Tanaka M. (2014). Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis. PLoS ONE 9:e116209.10.1371/journal.pone.0116209
    1. Scavo L. M., Karas M., Murray M., Leroith D. (2004). Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J. Clin. Endocrinol. Metab. 89, 3543–3553.10.1210/jc.2003-031682
    1. Schena F., Menale C., Caci E., Diomede L., Palagano E., Recordati C., et al. (2017). Murine Rankl-/- mesenchymal stromal cells display an osteogenic differentiation defect improved by a RANKL-expressing lentiviral vector. Stem Cells 35, 1365–1377.10.1002/stem.2574
    1. Sharaf-Eldin W. E., Abu-Shahba N., Mahmoud M., El-Badri N. (2016). The modulatory effects of mesenchymal stem cells on osteoclastogenesis. Stem Cells Int. 2016, 1908365.10.1155/2016/1908365
    1. Shipounova I. N., Petrova T. V., Svinareva D. A., Momotuk K. S., Mikhailova E. A., Drize N. I. (2009). Alterations in hematopoietic microenvironment in patients with aplastic anemia. Clin. Transl. Sci. 2, 67–74.10.1111/j.1752-8062.2008.00074.x
    1. Simann M., Le Blanc S., Schneider V., Zehe V., Ludemann M., Schutze N., et al. (2017). Canonical FGFs prevent osteogenic lineage commitment and differentiation of human bone marrow stromal cells via ERK1/2 signaling. J. Cell. Biochem. 118, 263–275.10.1002/jcb.25631
    1. Sobacchi C., Frattini A., Guerrini M. M., Abinun M., Pangrazio A., Susani L., et al. (2007). Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962.10.1038/ng2076
    1. Sobacchi C., Schulz A., Coxon F. P., Villa A., Helfrich M. H. (2013). Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 9, 522–536.10.1038/nrendo.2013.137
    1. Sullivan C. B., Porter R. M., Evans C. H., Ritter T., Shaw G., Barry F., et al. (2014). TNFalpha and IL-1beta influence the differentiation and migration of murine MSCs independently of the NF-kappaB pathway. Stem Cell Res Ther. 5, 104.10.1186/scrt492
    1. Tang Y., Wu X., Lei W., Pang L., Wan C., Shi Z., et al. (2009). TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765.10.1038/nm.1979
    1. Terauchi M., Li J. Y., Bedi B., Baek K. H., Tawfeek H., Galley S., et al. (2009). T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 10, 229–240.10.1016/j.cmet.2009.07.010
    1. Thomas T. (2004). The complex effects of leptin on bone metabolism through multiple pathways. Curr. Opin. Pharmacol. 4, 295–300.10.1016/j.coph.2004.01.009
    1. Tian E., Zhan F., Walker R., Rasmussen E., Ma Y., Barlogie B., et al. (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494.10.1056/NEJMoa030847
    1. van Zoelen E. J., Duarte I., Hendriks J. M., van der Woning S. P. (2016). TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation. Stem Cell Res Ther. 7, 123.10.1186/s13287-016-0375-3
    1. Vinatier C., Mrugala D., Jorgensen C., Guicheux J., Noel D. (2009). Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 27, 307–314.10.1016/j.tibtech.2009.02.005
    1. Walsh S., Jefferiss C., Stewart K., Beresford J. N. (2003). TGFβ1 limits the expansion of the osteoprogenitor fraction in cultures of human bone marrow stromal cells. Cell Tissue Res. 311, 187–198.10.1007/s00441-002-0679-8
    1. Wang Y., Bikle D. D., Chang W. (2013). Autocrine and paracrine actions of IGF-I signaling in skeletal development. Bone Res. 1, 249–259.10.4248/BR201303003
    1. Xia X., Tao Q., Ma Q., Chen H., Wang J., Yu H. (2016). Growth hormone-releasing hormone and its analogues: significance for MSCs-mediated angiogenesis. Stem Cells Int. 2016, 8737589.10.1155/2016/8737589
    1. Xian L., Wu X., Pang L., Lou M., Rosen C. J., Qiu T., et al. (2012). Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101.10.1038/nm.2793
    1. Xu Y., Takahashi Y., Wang Y., Hama A., Nishio N., Muramatsu H., et al. (2009). Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic anemia. Exp. Hematol. 37, 1393–1399.10.1016/j.exphem.2009.09.005
    1. Yang Q., McHugh K. P., Patntirapong S., Gu X., Wunderlich L., Hauschka P. V. (2008). VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biol. 27, 589–599.10.1016/j.matbio.2008.06.005
    1. Yu B., Zhao X., Yang C., Crane J., Xian L., Lu W., et al. (2012). Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J. Bone Miner. Res. 27, 2001–2014.10.1002/jbmr.1663
    1. Yue R., Zhou B. O., Shimada I. S., Zhao Z., Morrison S. J. (2016). Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782–796.10.1016/j.stem.2016.02.015
    1. Zelzer E., Mamluk R., Ferrara N., Johnson R. S., Schipani E., Olsen B. R. (2004). VEGFA is necessary for chondrocyte survival during bone development. Development 131, 2161–2171.10.1242/dev.01053
    1. Zhang J., Niu C., Ye L., Huang H., He X., Tong W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841.10.1038/nature02041
    1. Zhang M., Xie R., Hou W., Wang B., Shen R., Wang X., et al. (2009). PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J. Cell. Sci. 122(Pt 9), 1382–1389.10.1242/jcs.040709
    1. Zhou B. O., Yue R., Murphy M. M., Peyer J. G., Morrison S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168.10.1016/j.stem.2014.06.008

Source: PubMed

3
Abonnere