TSG (2,3,5,4'-Tetrahydroxystilbene-2-O- β -D-glucoside) from the Chinese Herb Polygonum multiflorum Increases Life Span and Stress Resistance of Caenorhabditis elegans

Christian Büchter, Liang Zhao, Susannah Havermann, Sebastian Honnen, Gerhard Fritz, Peter Proksch, Wim Wätjen, Christian Büchter, Liang Zhao, Susannah Havermann, Sebastian Honnen, Gerhard Fritz, Peter Proksch, Wim Wätjen

Abstract

2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) was isolated from Polygonum multiflorum, a plant which is traditionally used as an anti-ageing drug. We have analysed ageing-related effects of TSG in the model organism C. elegans in comparison to resveratrol. TSG exerted a high antioxidative capacity both in a cell-free assay and in the nematode. The antioxidative capacity was even higher compared to resveratrol. Presumably due to its antioxidative effects, treatment with TSG decreased the juglone-mediated induction of the antioxidative enzyme SOD-3; the induction of the GST-4 by juglone was diminished slightly. TSG increased the resistance of C. elegans against lethal thermal stress more prominently than resveratrol (50 μM TSG increased mean survival by 22.2%). The level of the ageing pigment lipofuscin was decreased after incubation with the compound. TSG prolongs the mean, median, and maximum adult life span of C. elegans by 23.5%, 29.4%, and 7.2%, respectively, comparable to the effects of resveratrol. TSG-mediated extension of life span was not abolished in a DAF-16 loss-of-function mutant strain showing that this ageing-related transcription factor is not involved in the effects of TSG. Our data show that TSG possesses a potent antioxidative capacity, enhances the stress resistance, and increases the life span of the nematode C. elegans.

Figures

Figure 1
Figure 1
Radical scavenging properties (TEAC assay) of TSG. Chemical structures of resveratrol, quercetin, and TSG are shown in (a); the antioxidative capacity of the substances measured by the TEAC assay is shown in (b). The decolourisation of the radical-solution was detected spectrophotometrically at 734 nm (mean values ± SD, n = 3, *P < 0.05 versus control value, Student's t-test).
Figure 2
Figure 2
Modulation of ROS accumulation in C. elegans by TSG. Modulation of ROS accumulation in wild type nematodes at 37°C after incubation with TSG, quercetin, and resveratrol (50, 100 μM). The fluorescence intensity of DCF (rfu) was used as a marker for intracellular ROS; mean ± SEM, 5–7 independent experiments; at least 80 animals per concentration were analysed; *P < 0.05 versus DMSO value, one-way ANOVA with Dunnett's post hoc test.
Figure 3
Figure 3
Modulation of SOD-3 expression by TSG. The images show GFP fluorescence of the head and anterior part of the intestine of CF1553 transgenic nematodes pretreated with 100 μM of the compounds without (DMSO) or with oxidative stress (150 μM juglone; 3 h). Data represent mean values ± SEM, n = 3, *P < 0.05 versus corresponding DMSO value, one-way ANOVA with Dunnett's post hoc test. At least 10 animals per group and experiment were analysed.
Figure 4
Figure 4
Modulation of GST-4 expression by TSG. The images show GFP fluorescence of the head and the anterior part of the intestine of CL2166 transgenic nematodes pretreated with 100 μM of the compounds followed by an incubation under physiological conditions or under conditions of oxidative stress (150 μM Juglone; 3 h). Data represent mean values ± SEM, n = 3, *P < 0.05 versus corresponding DMSO value, one-way ANOVA with Dunnett's post hoc test. At least 10 animals per group and experiment were analysed.
Figure 5
Figure 5
Increased resistance against lethal heat-stress by treatment with TSG. TSG treatment increases the resistance against thermal stress at 50 μM and 100 μM (a). Resveratrol treatment (b) and quercetin treatment effectively increased the survival only at 100 μM. Survival curves represent the data of 4 independent experiments with a total of 48 animals per group (Kaplan-Meier survival analysis); corresponding data are summarised in Table 1.
Figure 6
Figure 6
Prolongation of life span by treatment with TSG. (a) Pretreatment with 100 μM of TSG, resveratrol, and quercetin reduced the accumulation of the ageing marker lipofuscin (mean values ± SEM, n = 3, *P < 0.05 versus control value, Student's t-test). 20 animals per group and experiment were analysed. (b) All compounds (100 μM) induced a prolongevity effect during the complete adult life (Kaplan-Meier survival analysis of three independent experiments with at least 30 animals per group/experiment; survival data are summarised in Table 2).
Figure 7
Figure 7
The TSG-mediated prolongation of life span is independent of DAF-16. Treatment with the compounds (100 μM) during the complete adult life induced a prolongevity effect in the daf-16 loss-of-function mutant strain CF1038 (Kaplan-Meier survival analysis of two independent experiments with at least 30 animals per group/experiment; survival data are summarised in Table 2).

References

    1. Tosato M., Zamboni V., Ferrini A., Cesari M. The aging process and potential interventions to extend life expectancy. Clinical Interventions in Aging. 2007;2(3):401–412.
    1. Harman D. The free radical theory of aging. Antioxidants and Redox Signaling. 2003;5(5):557–561. doi: 10.1089/152308603770310202.
    1. Gems D., de la Guardia Y. Alternative perspectives on aging in Caenorhabditis elegans: reactive oxygen species or hyperfunction? Antioxidants & Redox Signaling. 2013;19(3):321–329. doi: 10.1089/ars.2012.4840.
    1. Chung H. Y., Kim H. J., Kim J. W., Yu B. P. The inflammation hypothesis of aging: molecular modulation by calorie restriction. Annals of the New York Academy of Sciences. 2001;928:327–335.
    1. Cadenas E., Davies K. J. A. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine. 2000;29(3-4):222–230. doi: 10.1016/S0891-5849(00)00317-8.
    1. Chan Y.-C., Cheng F.-C., Wang M.-F. Beneficial effects of different Polygonum multiflorum Thunb. extracts on memory and hippocampus morphology. Journal of Nutritional Science and Vitaminology. 2002;48(6):491–497. doi: 10.3177/jnsv.48.491.
    1. Chen J. An experimental study on the anti-senility effects of shou xing bu zhi. Zhong Xi Yi Jie He Za Zhi. 1989;9(4):226–227.
    1. Li X., Matsumoto K., Murakami Y., Tezuka Y., Wu Y., Kadota S. Neuroprotective effects of Polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice. Pharmacology Biochemistry and Behavior. 2005;82(2):345–352. doi: 10.1016/j.pbb.2005.09.004.
    1. Liu L.-F., Durairajan S. S. K., Lu J.-H., Koo I., Li M. In vitro screening on amyloid precursor protein modulation of plants used in Ayurvedic and Traditional Chinese medicine for memory improvement. Journal of Ethnopharmacology. 2012;141(2):754–760. doi: 10.1016/j.jep.2011.08.065.
    1. Um M.-Y., Choi W.-H., Aan J.-Y., Kim S.-R., Ha T.-Y. Protective effect of Polygonum multiflorum Thunb on amyloid β-peptide 25–35 induced cognitive deficits in mice. Journal of Ethnopharmacology. 2006;104(1-2):144–148. doi: 10.1016/j.jep.2005.08.054.
    1. Steele M. L., Truong J., Govindaraghavan S., Ooi L., Sucher N. J., Münch G. Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells. Neurochemistry International. 2013;62(5):522–529. doi: 10.1016/j.neuint.2012.08.018.
    1. Chan Y.-C., Wang M.-F., Chang H.-C. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice. The American Journal of Chinese Medicine. 2003;31(2):171–179. doi: 10.1142/S0192415X03000862.
    1. Jang J. Y., Kim H. N., Kim Y. R., et al. Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons. Journal of Ethnopharmacology. 2013;145(1):261–268. doi: 10.1016/j.jep.2012.10.061.
    1. Rao G.-X., Xue Y.-M., Hui T.-T., Wang W.-J., Zhang Q.-L. Studies on the chemical constituents of the leaves of Polygonum multiflorum . Journal of Chinese Medicinal Materials. 2009;32(6):891–893.
    1. Chen Y., Wang M., Rosen R. T., Ho C.-T. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb. Journal of Agricultural and Food Chemistry. 1999;47(6):2226–2228. doi: 10.1021/jf990092f.
    1. Ryu G., Jeung H. J., Yong J. P., Shi Y. R., Byoung W. C., Bong H. L. The radical scavenging effects of stilbene glucosides from Polygonum multiflorum . Archives of Pharmacal Research. 2002;25(5):636–639. doi: 10.1007/BF02976935.
    1. Wang X., Zhao L., Han T., Chen S., Wang J. Protective effects of 2,3,5,4′-tetrahydroxystilbene-2-O-beta-d-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice. European Journal of Pharmacology. 2008;578(2-3):339–348. doi: 10.1016/j.ejphar.2007.09.013.
    1. Wang T., Gu J., Wu P.-F., et al. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-κB pathways and inhibition of intracellular ROS/RNS generation. Free Radical Biology and Medicine. 2009;47(3):229–240. doi: 10.1016/j.freeradbiomed.2009.02.027.
    1. Liu Q.-L., Xiao J.-H., Ma R., Ban Y., Wang J.-L. Effect of 2,3,5,4′-tetrahydroxystilbene-2-O-beta-d-glucoside on lipoprotein oxidation and proliferation of coronary arterial smooth cells. Journal of Asian Natural Products Research. 2007;9(8):689–697. doi: 10.1080/17415990500209064.
    1. Lv L., Shao X. I., Wang L., Huang D., Ho C.-T., Sang S. Stilbene glucoside from Polygonum multiflorum thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal. Journal of Agricultural and Food Chemistry. 2010;58(4):2239–2245. doi: 10.1021/jf904122q.
    1. Tao L., Li X., Zhang L., et al. Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. PLoS ONE. 2011;6(10) doi: 10.1371/journal.pone.0026055.e26055
    1. Sun F.-L., Zhang L., Zhang R.-Y., Li L. Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. European Journal of Pharmacology. 2011;660(2-3):283–290. doi: 10.1016/j.ejphar.2011.03.046.
    1. Qin R., Li X., Li G., et al. Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation. Toxicology Letters. 2011;202(1):1–7. doi: 10.1016/j.toxlet.2011.01.001.
    1. Li X., Li Y., Chen J., Sun J., Sun X., Kang X. Tetrahydroxystilbene glucoside attenuates MPP+-induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation. Neuroscience Letters. 2010;483(1):1–5. doi: 10.1016/j.neulet.2010.07.027.
    1. Kampkötter A., Timpel C., Zurawski R. F., et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology B. 2008;149(2):314–323. doi: 10.1016/j.cbpb.2007.10.004.
    1. Büchter C., Ackermann D., Havermann S., et al. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. International Journal of Molecular Sciences. 2013;14(6):11895–11914. doi: 10.3390/ijms140611895.
    1. Saul N., Pietsch K., Menzel R., Stürzenbaum S. R., Steinberg C. E. W. Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mechanisms of Ageing and Development. 2009;130(8):477–486. doi: 10.1016/j.mad.2009.05.005.
    1. Abbas S., Wink M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans . Planta Medica. 2009;75(3):216–221. doi: 10.1055/s-0028-1088378.
    1. Havermann S., Rohrig R., Chovolou Y., Humpf H.-U., Wätjen W. Molecular effects of baicalein in Hct116 cells and Caenorhabditis elegans: activation of the Nrf2 signaling pathway and prolongation of lifespan. Journal of Agricultural and Food Chemistry. 2013;61(9):2158–2164. doi: 10.1021/jf304553g.
    1. Baur J. A., Sinclair D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery. 2006;5(6):493–506. doi: 10.1038/nrd2060.
    1. Dasgupta B., Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(17):7217–7222. doi: 10.1073/pnas.0610068104.
    1. Brenner S. The genetics of Caenorhabditis elegans . Genetics. 1974;77(1):71–94.
    1. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 1999;26(9-10):1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
    1. Kampkötter A., Pielarski T., Rohrig R., et al. The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in Caenorhabditis elegans . Pharmacological Research. 2007;55(2):139–147. doi: 10.1016/j.phrs.2006.11.006.
    1. Gill M. S., Olsen A., Sampayo J. N., Lithgow G. J. An automated high-throughput assay for survival of the nematode Caenorhabditis elegans . Free Radical Biology and Medicine. 2003;35(6):558–565. doi: 10.1016/S0891-5849(03)00328-9.
    1. Jang J.-H., Surh Y.-J. Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2001;496(1-2):181–190. doi: 10.1016/S1383-5718(01)00233-9.
    1. Michels G., Wätjen W., Weber N., et al. Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicology. 2006;225(2-3):173–182. doi: 10.1016/j.tox.2006.05.014.
    1. Vanaja K., Wahl M. A., Bukarica L., Heinle H. Liposomes as carriers of the lipid soluble antioxidant resveratrol: evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sciences. 2013;93(24):917–923. doi: 10.1016/j.lfs.2013.10.019.
    1. Farghali H., Kutinová Canová N., Lekić N. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. Physiological Research. 2013;62(1):1–13.
    1. Kim H. N., Kim Y. R., Jang J. Y., et al. Neuroprotective effects of Polygonum multiflorum extract against glutamate-induced oxidative toxicity in HT22 hippocampal cells. Journal of Ethnopharmacology. 2013;150(1):108–115. doi: 10.1016/j.jep.2013.08.014.
    1. Zhang J.-K., Yang L., Meng G.-L., et al. Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. European Journal of Pharmacology. 2012;689(1–3):31–37. doi: 10.1016/j.ejphar.2012.05.045.
    1. Robb E. L., Stuart J. A. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression. Phytotherapy Research. 2014;28(1):120–131. doi: 10.1002/ptr.4970.
    1. Khan M. A., Chen H.-C., Wan X.-X., et al. Regulatory effects of resveratrol on antioxidant enzymes: a mechanism of growth inhibition and apoptosis induction in cancer cells. Molecules and Cells. 2013;35(3):219–225. doi: 10.1007/s10059-013-2259-z.
    1. Kavas G. Ö., Ayral P. A., Elhan A. H. The effects of resveratrol on oxidant/antioxidant systems and their cofactors in rats. Advances in Clinical and Experimental Medicine. 2013;22(2):151–155.
    1. Li Y., Cao Z., Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacological Research. 2006;53(1):6–15. doi: 10.1016/j.phrs.2005.08.002.
    1. Jiang B., Guo L., Li B.-Y., et al. Resveratrol attenuates early diabetic nephropathy by down-regulating glutathione S-transferases Mu in diabetic rats. Journal of Medicinal Food. 2013;16(6):481–486. doi: 10.1089/jmf.2012.2686.
    1. Chen W., Rezaizadehnajafi L., Wink M. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans . Journal of Pharmacy and Pharmacology. 2013;65(5):682–688. doi: 10.1111/jphp.12023.
    1. Upadhyay A., Chompoo J., Taira N., Fukuta M., Tawata S. Significant longevity-extending effects of Alpinia zerumbet leaf extract on the life span of Caenorhabditis elegans . Bioscience, Biotechnology, and Biochemistry. 2013;77(2):217–223. doi: 10.1271/bbb.120351.
    1. Zarse K., Schmeisser S., Birringer M., Falk E., Schmoll D., Ristow M. Differential effects of resveratrol and SRT1720 on lifespan of adult Caenorhabditis elegans . Hormone and Metabolic Research. 2010;42(12):837–839. doi: 10.1055/s-0030-1265225.
    1. Bass T. M., Weinkove D., Houthoofd K., Gems D., Partridge L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans . Mechanisms of Ageing and Development. 2007;128(10):546–552. doi: 10.1016/j.mad.2007.07.007.
    1. Mukai D., Matsuda N., Yoshioka Y., Sato M., Yamasaki T. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans . Journal of Natural Medicines. 2008;62(2):155–159. doi: 10.1007/s11418-007-0201-4.

Source: PubMed

3
Abonnere