Ex vivo vs. in vivo antibacterial activity of two antiseptics on oral biofilm

Isabel Prada-López, Víctor Quintas, Maria A Casares-De-Cal, Juan A Suárez-Quintanilla, David Suárez-Quintanilla, Inmaculada Tomás, Isabel Prada-López, Víctor Quintas, Maria A Casares-De-Cal, Juan A Suárez-Quintanilla, David Suárez-Quintanilla, Inmaculada Tomás

Abstract

Aim: To compare the immediate antibacterial effect of two application methods (passive immersion and active mouthwash) of two antiseptic solutions on the in situ oral biofilm.

Material and methods: A randomized observer-masked crossover study was conducted. Fifteen healthy volunteers wore a specific intraoral device for 48 h to form a biofilm in three glass disks. One of these disks was used as a baseline; another one was immersed in a solution of 0.2% Chlorhexidine (0.2% CHX), remaining the third in the device, placed in the oral cavity, during the 0.2% CHX mouthwash application. After a 2-weeks washout period, the protocol was repeated using a solution of Essential Oils (EO). Samples were analyzed for bacterial viability with the confocal laser scanning microscope after previous staining with LIVE/DEAD® BacLight™.

Results: The EO showed a better antibacterial effect compared to the 0.2% CHX after the mouthwash application (% of bacterial viability = 1.16 ± 1.00% vs. 5.08 ± 5.79%, respectively), and was more effective in all layers (p < 0.05). In the immersion, both antiseptics were significantly less effective (% of bacterial viability = 26.93 ± 13.11%, EO vs. 15.17 ± 6.14%, 0.2% CHX); in the case of EO immersion, there were no significant changes in the bacterial viability of the deepest layer in comparison with the baseline.

Conclusions: The method of application conditioned the antibacterial activity of the 0.2% CHX and EO solutions on the in situ oral biofilm. The in vivo active mouthwash was more effective than the ex vivo passive immersion in both antiseptic solutions. There was more penetration of the antiseptic inside the biofilm with an active mouthwash, especially with the EO. Trial registered in clinicaltrials.gov with the number NCT02267239. URL: https://ichgcp.net/clinical-trials-registry/NCT02267239.

Keywords: PL-biofilm; antiseptic; chlorhexidine; essential oils; immersion; mouthwash.

Figures

Figure 1
Figure 1
Protocol of the study.
Figure 2
Figure 2
Intraoral view of the Intraoral Device Overlaid Disk-holding Splint (IDODS).
Figure 3
Figure 3
Representative images of the PL-biofilm (“stacked projection” of images in the “Z” axis) bacterial viability under basal conditions, after immersion and after mouthwash with 0.2% Chlorhexidine and Essential Oils. (They are images of representative fields of the PL-biofilm. It is a maximum projection of all obtained images in the plane XY in the Z axis for a same field. That is commonly called “stacked projection.” These images do not represent nor the outer, the middle or the inner layers, they represent all of them projected in the same axis).
Figure 4
Figure 4
Total bacterial viability and by PL-biofilm layers in the 0.2% Chlorhexidine series. (PL-biofilm, plaque like-biofilm; 0.2% CHX, 0.2% of Chlorhexidine; CLSM, confocal laser scanning microscope).
Figure 5
Figure 5
Total bacterial viability and by PL-biofilm layers in the Essential Oils series. (PL-biofilm, plaque like-biofilm; EO, Essential Oils; CLSM, confocal laser scanning microscope).

References

    1. Arweiler N. B., Hellwig E., Sculean A., Hein N., Auschill T. M. (2004). Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity. Caries Res. 38, 442–447. 10.1159/000079625
    1. Auschill T. M., Arweiler N. B., Netuschil L., Brecx M., Reich E., Sculean A. (2001). Spatial distribution of vital and dead microorganisms in dental biofilms. Arch. Oral. Biol. 46, 471–476. 10.1016/S0003-9969(00)00136-9
    1. Auschill T. M., Hein N., Hellwig E., Follo M., Sculean A., Arweiler N. B. (2005). Effect of two antimicrobial agents on early in situ biofilm formation. J. Clin. Periodontol. 32, 147–152. 10.1111/j.1600-051X.2005.00650.x
    1. Auschill T. M., Hellwig E., Sculean A., Hein N., Arweiler N. B. (2004). Impact of the intraoral location on the rate of biofilm growth. Clin. Oral Investig. 8, 97–101. 10.1007/s00784-004-0255-6
    1. Axelsson P. (2004). Preventive Materials, Methods and Programs, 1st Edn. Surrey: Quintessence.
    1. Corbin A., Pitts B., Parker A., Stewart P. S. (2011). Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob. Agents Chemother. 55, 3338–3344. 10.1128/AAC.00206-11
    1. Davies D. (2003). Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122. 10.1038/nrd1008
    1. Dong W. L., Zhou Y. H., Li C. Z., Liu H., Shang S. H., Pan B. Q. (2010). Establishment and application of an intact natural model of human dental plaque biofilm. Shanghai Kou Qiang Yi Xue 19, 196–201.
    1. Fine D. H., Furgang D., Barnett M. L. (2001). Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of Actinobacillus actinomycetemcomitans. J. Clin. Periodontol. 28, 697–700. 10.1034/j.1600-051x.2001.028007697.x
    1. Fine D. H., Furgang D., Sinatra K., Charles C., McGuire A., Kumar L. D. (2005). In vivo antimicrobial effectiveness of an essential oil-containing mouth rinse 12 h after a single use and 14 days' use. J. Clin. Periodontol. 32, 335–340. 10.1111/j.1600-051x.2005.00674.x
    1. Fuchslocher Hellemann C., Grade S., Heuer W., Dittmer M. P., Stiesch M., Schwestka-Polly R., et al. . (2013). Three-dimensional analysis of initial biofilm formation on polytetrafluoroethylene in the oral cavity. J. Orofac. Orthop. 74, 458–467. 10.1007/s00056-013-0174-8
    1. García-Caballero L., Quintas V., Prada-López I., Seoane J., Donos N., Tomás I. (2013). Chlorhexidine substantivity on salivary flora and plaque-like biofilm: an in situ model. PLoS ONE 8:e83522. 10.1371/journal.pone.0083522
    1. Gosau M., Hahnel S., Schwarz F., Gerlach T., Reichert T. E., Burgers R. (2010). Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin. Oral Implants Res. 21, 866–872. 10.1111/j.1600-0501.2009.01908.x
    1. Gu H., Fan D., Gao J., Zou W., Peng Z., Zhao Z., et al. . (2012). Effect of ZnCl2 on plaque growth and biofilm vitality. Arch. Oral Biol. 57, 369–375. 10.1016/j.archoralbio.2011.10.001
    1. Gunsolley J. C. (2010). Clinical efficacy of antimicrobial mouthrinses. J. Dent. 38(Suppl. 1), S6–S10. 10.1016/S0300-5712(10)70004-X
    1. Hannig C., Kirsch J., Al-Ahmad A., Kensche A., Hannig M., Kummerer K. (2013). Do edible oils reduce bacterial colonization of enamel in situ? Clin. Oral Investig. 17, 649–658. 10.1007/s00784-012-0734-0
    1. Jentsch H., Hombach A., Beetke E., Jonas L. (2002). Quantitative transmission electron microscopic study of dental plaque–an in vivo study with different mouthrinses. Ultrastruct. Pathol. 26, 309–313. 10.1080/01913120290104584
    1. Netuschil L., Reich E., Unteregger G., Sculean A., Brecx M. (1998). A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch. Oral Biol. 43, 277–285. 10.1016/S0003-9969(97)00121-0
    1. Pan P., Barnett M. L., Coelho J., Brogdon C., Finnegan M. B. (2000). Determination of the in situ bactericidal activity of an essential oil mouthrinse using a vital stain method. J. Clin. Periodontol. 27, 256–261. 10.1034/j.1600-051x.2000.027004256.x
    1. Peeters H. H., Iskandar B., Suardita K., Suharto D. (2014). Visualization of the removal of trapped air from the apical region of the straight root canal models generating 2-phase intermittent counter flow during ultrasonically activated irrigation. J. Endod. 40, 857–861. 10.1016/j.joen.2013.10.011
    1. Prada-López I., Quintas V., Donos N., Suarez-Quintanilla D., Tomás I. (2015a). Characteristics of in situ oral biofilm after 2 and 4 days of evolution. Quintessence Int. 46, 287–298. 10.3290/j.qi.a33402
    1. Prada-López I., Quintas V., Tomás I. (2015b). The intraoral device of overlaid disk-holding splintsb as a new in situ oral biofilm model. J. Clin. Exp. Dent. 7, 126–132. 10.4317/jced.52093
    1. Quintas V., Prada-López I., Prados-Frutos J. C., Tomás I. (2015). In situ antimicrobial activity on oral biofilm: essential oils vs. 0.2 % chlorhexidine. Clin. Oral Investig. 19, 97–107. 10.1007/s00784-014-1224-3
    1. Tawakoli P. N., Al-Ahmad A., Hoth-Hannig W., Hannig M., Hannig C. (2013). Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin. Oral Investig. 17, 841–850. 10.1007/s00784-012-0792-3
    1. Varoni E., Tarce M., Lodi G., Carrassi A. (2012). Chlorhexidine (CHX) in dentistry: state of the art. Minerva Stomatol. 61, 399–419.
    1. Vitkov L., Hermann A., Krautgartner W. D., Herrmann M., Fuchs K., Klappacher M., et al. . (2005). Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microsc. Res. Techniq. 68, 85–89. 10.1002/jemt.20238
    1. von Ohle C., Gieseke A., Nistico L., Decker E. M., DeBeer D., Stoodley P. (2010). Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 76, 2326–2334. 10.1128/AEM.02090-09
    1. Weller R. N., Brady J. M., Bernier W. E. (1980). Efficacy of ultrasonic cleaning. J. Endod. 6, 740–743. 10.1016/S0099-2399(80)80185-3
    1. WHO (1997). Oral health surveys, basic methods, in World Health Organization, 4th Edn., ed Van Palenstein Helderman W. H. (Geneva: WHO; ), 36–38.
    1. Zaura-Arite E., van Marle J., ten Cate J. M. (2001). Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J. Dent. Res. 80, 1436–1440. 10.1177/00220345010800051001

Source: PubMed

3
Abonnere