Serum proBDNF Is Associated With Changes in the Ketone Body β-Hydroxybutyrate and Shows Superior Repeatability Over Mature BDNF: Secondary Outcomes From a Cross-Over Trial in Healthy Older Adults

Jakob Norgren, Makrina Daniilidou, Ingemar Kåreholt, Shireen Sindi, Ulrika Akenine, Karin Nordin, Staffan Rosenborg, Tiia Ngandu, Miia Kivipelto, Anna Sandebring-Matton, Jakob Norgren, Makrina Daniilidou, Ingemar Kåreholt, Shireen Sindi, Ulrika Akenine, Karin Nordin, Staffan Rosenborg, Tiia Ngandu, Miia Kivipelto, Anna Sandebring-Matton

Abstract

Background: β-hydroxybutyrate (BHB) can upregulate brain-derived neurotrophic factor (BDNF) in mice, but little is known about the associations between BHB and BDNF in humans. The primary aim here was to investigate whether ketosis (i.e., raised BHB levels), induced by a ketogenic supplement, influences serum levels of mature BDNF (mBDNF) and its precursor proBDNF in healthy older adults. A secondary aim was to determine the intra-individual stability (repeatability) of those biomarkers, measured as intra-class correlation coefficients (ICC). Method: Three of the arms in a 6-arm randomized cross-over trial were used for the current sub-study. Fifteen healthy volunteers, 65-75 y, 53% women, were tested once a week. Test oils, mixed in coffee and cream, were ingested after a 12-h fast. Labeled by their level of ketosis, the arms provided: sunflower oil (lowK); coconut oil (midK); caprylic acid + coconut oil (highK). Repeated blood samples were collected for 4 h after ingestion. Serum BDNF levels were analyzed for changes from baseline to 1, 2 and 4 h to compare the arms. Individual associations between BHB and BDNF were analyzed cross-sectionally and for a delayed response (changes in BHB 0-2 h to changes in BDNF at 0-4 h). ICC estimates were calculated from baseline levels from the three study days. Results: proBDNF increased more in highK vs. lowK between 0 and 4 h (z-score: β = 0.25, 95% CI 0.07-0.44; p = 0.007). Individual change in BHB 0-2 h, predicted change in proBDNF 0-4 h, (β = 0.40, CI 0.12-0.67; p = 0.006). Change in mBDNF was lower in highK vs. lowK at 0-2 h (β = -0.88, CI -1.37 to -0.40; p < 0.001) and cumulatively 0-4 h (β = -1.01, CI -1.75 to -0.27; p = 0.01), but this could not be predicted by BHB levels. ICC was 0.96 (95% CI 0.92-0.99) for proBDNF, and 0.72 (CI 0.47-0.89) for mBDNF. Conclusions: The findings support a link between changes in peripheral BHB and proBDNF in healthy older adults. For mBDNF, changes differed between arms but independent to BHB levels. Replication is warranted due to the small sample. Excellent repeatability encourages future investigations on proBDNF as a predictor of brain health. Clinical Trial Registration:ClinicalTrials.gov, NCT03904433.

Keywords: aged humans; brain-derived neurotrophic factor; cognitive health; ketosis; proBDNF; repeatability; signaling metabolites; β-hydroxybutyrate.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Norgren, Daniilidou, Kåreholt, Sindi, Akenine, Nordin, Rosenborg, Ngandu, Kivipelto and Sandebring-Matton.

Figures

Figure 1
Figure 1
Comparisons of biomarker differences between arms (A–E), and individual associations between BHB and BDNF (F–H). (A,B) Profile plots describing the dynamic changes in mean proBDNF-log and mBDNF, respectively. (C) The cumulative ketogenic response in arms, measured as nAUC (area under the curve normalized to T0 [min]) for β-hydroxybutyrate (BHB). (D,E) Box plots describing the response per arm for proBDNF and mBDNF, respectively. (F,G) Partial residual plots showing individual associations between BHB and BDNF outcomes. (H) Point estimates of cross-sectional associations between BHB and BDNF on an individual level at different timepoints. BDNF: brain-derived neurotropic factor. Box plots indicate median, interquartile range and maximum/minimum values.
Figure 2
Figure 2
Post-hoc analyses. (A) The early ketogenic response as a predictor of change in mBDNF, T0-120 (B) Changes in the log-ratio mBDNF/proBDNF by arm.
Figure 3
Figure 3
Distribution of proBDNF-log and mBDNF per individual, and the significance of pair-wise comparisons of differences in baseline means (A) Values from baseline (T0) at three study days within a month. The boxes indicate minimum, maximum and median values. ID: 1–15 represent individuals. (B) The proportion of pair-wise comparisons of individual baseline means, by categories p < 0.001, p < 0.05 and p ≥ 0.05.

References

    1. Alcalá-Barraza S. R., Lee M. S., Hanson L. R., McDonald A. A., Frey W. H., 2nd, McLoon L. K. (2010). Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J. Drug Target 18, 179–190. 10.3109/10611860903318134
    1. Bach A. C., Babayan V. K. (1982). Medium-chain triglycerides: an update. Am. J. Clin. Nutr. 36, 950–962. 10.1093/ajcn/36.5.950
    1. Balietti M., Giuli C., Conti F. (2018). Peripheral blood brain-derived neurotrophic factor as a biomarker of Alzheimer's Disease: are there methodological biases? Mol. Neurobiol. 55, 6661–6672. 10.1007/s12035-017-0866-y
    1. Bharani K. L., Ledreux A., Gilmore A., Carroll S. L., Granholm A. C. (2020). Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer's disease. Neurobiol. Aging 87, 49–59. 10.1016/j.neurobiolaging.2019.11.010
    1. Brandt J., Buchholz A., Henry-Barron B., Vizthum D., Avramopoulos D., Cervenka M. C. (2019). Preliminary report on the feasibility and efficacy of the modified atkins diet for treatment of mild cognitive impairment and early Alzheimer's disease. J. Alzheimers Dis. 68, 969–981. 10.3233/JAD-180995
    1. Costa M. S., Botton P. H., Mioranzza S., Ardais A. P., Moreira J. D., Souza D. O., et al. . (2008). Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochem. Int. 53, 89–94. 10.1016/j.neuint.2008.06.006
    1. Cunnane S. C., Trushina E., Morland C., Prigione A., Casadesus G., Andrews Z. B., et al. . (2020). Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633. 10.1038/s41573-020-0072-x
    1. Davis C. E. (1976). The effect of regression to the mean in epidemiologic and clinical studies. Am. J. Epidemiol. 104, 493–498. 10.1093/oxfordjournals.aje.a112321
    1. Diniz C., Casarotto P. C., Resstel L., Joca S. R. L. (2018). Beyond good and evil: a putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci. Biobehav. Rev. 90, 70–83. 10.1016/j.neubiorev.2018.04.001
    1. Fernandes B. S., Molendijk M. L., Köhler C. A., Soares J. C., Leite C. M., Machado-Vieira R., et al. . (2015a). Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med. 13:289. 10.1186/s12916-015-0529-7
    1. Fernandes B. S., Steiner J., Berk M., Molendijk M. L., Gonzalez-Pinto A., Turck C. W., et al. . (2015b). Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol. Psychiatry 20, 1108–1119. 10.1038/mp.2014.117
    1. Fortier M., Castellano C. A., Croteau E., Langlois F., Bocti C., St-Pierre V., et al. . (2019). A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 15, 625–634. 10.1016/j.jalz.2018.12.017
    1. Fortier M., Castellano C. A., St-Pierre V., Myette-Cote E., Langlois F., Roy M., et al. . (2020). A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6-month RCT. Alzheimers Dement. 17, 543–552. 10.1002/alz.12206
    1. Gejl A. K., Enevold C., Bugge A., Andersen M. S., Nielsen C. H., Andersen L. B. (2019). Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci. Rep. 9:9655. 10.1038/s41598-019-45976-5
    1. Genzer Y., Dadon M., Burg C., Chapnik N., Froy O. (2016). Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF). Mol. Cell. Endocrinol. 430, 49–55. 10.1016/j.mce.2016.04.015
    1. Hashimoto K. (2015). Brain-derived neurotrophic factor (BDNF) and its precursor proBDNF as diagnostic biomarkers for major depressive disorder and bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 265, 83–84. 10.1007/s00406-014-0557-x
    1. Henderson S. T., Morimoto B. H., Cummings J. L., Farlow M. R., Walker J. (2020). A placebo-controlled, parallel-group, randomized clinical trial of AC-1204 in mild-to-moderate Alzheimer's disease. J. Alzheimers Dis. 75, 547–557. 10.3233/JAD-191302
    1. Henderson S. T., Vogel J. L., Barr L. J., Garvin F., Jones J. J., Costantini L. C. (2009). Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond.) 6:31. 10.1186/1743-7075-6-31
    1. Hu E., Du H., Shang S., Zhang Y., Lu X. (2020). Beta-hydroxybutyrate enhances BDNF expression by increasing H3K4me3 and decreasing H2AK119ub in hippocampal neurons. Front. Neurosci. 14:591177. 10.3389/fnins.2020.591177
    1. Hu E., Du H., Zhu X., Wang L., Shang S., Wu X., et al. . (2018). Beta-hydroxybutyrate Promotes the expression of BDNF in hippocampal neurons under adequate glucose supply. Neuroscience 386, 315–325. 10.1016/j.neuroscience.2018.06.036
    1. Iughetti L., Lucaccioni L., Fugetto F., Predieri B., Berardi A., Ferrari F. (2018). Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides 72, 23–29. 10.1016/j.npep.2018.09.005
    1. Koo T. K., Li M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. 10.1016/j.jcm.2016.02.012
    1. Korley F. K., Diaz-Arrastia R., Wu A. H., Yue J. K., Manley G. T., Sair H. I., et al. . (2016). Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J. Neurotrauma 33, 215–225. 10.1089/neu.2015.3949
    1. Kossoff E., Cervenka M. (2020). ketogenic dietary therapy controversies for its second century. Epilepsy Curr. 20, 125–129. 10.1177/1535759719890337
    1. Krikorian R., Shidler M. D., Dangelo K., Couch S. C., Benoit S. C., Clegg D. J. (2012). Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33 425.e19–425.e27. 10.1016/j.neurobiolaging.2010.10.006
    1. Lee R., Kermani P., Teng K. K., Hempstead B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science (New York, NY) 294, 1945–1948. 10.1126/science.1065057
    1. Lima Giacobbo B., Doorduin J., Klein H. C., Dierckx R., Bromberg E., de Vries E. F. J. (2019). Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol. Neurobiol. 56, 3295–3312. 10.1007/s12035-018-1283-6
    1. Lu B., Pang P. T., Woo N. H. (2005). The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6, 603–614. 10.1038/nrn1726
    1. Marosi K., Kim S. W., Moehl K., Scheibye-Knudsen M., Cheng A. W., Cutler R., et al. . (2016). 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J. Neurochem. 139, 769–781. 10.1111/jnc.13868
    1. Mizoguchi Y., Yao H., Imamura Y., Hashimoto M., Monji A. (2020). Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: the Sefuri study. Sci. Rep. 10:16442. 10.1038/s41598-020-73576-1
    1. Mohorko N., Cernelic-Bizjak M., Poklar-Vatovec T., Grom G., Kenig S., Petelin A., et al. . (2019). Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr. Res. 62, 64–77. 10.1016/j.nutres.2018.11.007
    1. Molendijk M. L., Spinhoven P., Polak M., Bus B. A., Penninx B. W., Elzinga B. M. (2014). Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol. Psychiatry 19, 791–800. 10.1038/mp.2013.105
    1. Moran M. D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100, 403–405. 10.1034/j.1600-0706.2003.12010.x
    1. Müller H., Lindman A. S., Blomfeldt A., Seljeflot I., Pedersen J. I. (2003). A diet rich in coconut oil reduces diurnal postprandial variations in circulating tissue plasminogen activator antigen and fasting lipoprotein (a) compared with a diet rich in unsaturated fat in women. J. Nutr. 133, 3422–3427. 10.1093/jn/133.11.3422
    1. Nagpal R., Neth B. J., Wang S., Craft S., Yadav H. (2019). Modified mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine 47, 529–542. 10.1016/j.ebiom.2019.08.032
    1. Neth B. J., Mintz A., Whitlow C., Jung Y., Solingapuram Sai K., Register T. C., et al. . (2020). Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer's disease: a pilot study. Neurobiol. Aging 86, 54–63. 10.1016/j.neurobiolaging.2019.09.015
    1. Newman J. C., Verdin E. (2017). beta-hydroxybutyrate: a signaling metabolite. Annu. Rev. Nutr. 37, 51–76. 10.1146/annurev-nutr-071816-064916
    1. Nilsson J., Ekblom O., Ekblom M., Lebedev A., Tarassova O., Moberg M., et al. . (2020). Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci. Rep. 10:4395. 10.1038/s41598-020-60124-0
    1. Norgren J., Sindi S., Sandebring-Matton A., Kåreholt I., Akenine U., Nordin K., et al. . (2020a). Capillary blood tests may overestimate ketosis: triangulation between three different measures of β-hydroxybutyrate. Am. J. Physiol. Endocrinol. Metab. 318, E184–E188. 10.1152/ajpendo.00454.2019
    1. Norgren J., Sindi S., Sandebring-Matton A., Kareholt I., Daniilidou M., Akenine U., et al. . (2020b). Ketosis after intake of coconut oil and caprylic acid-with and without glucose: a cross-over study in healthy older adults. Front. Nutr. 7:40. 10.3389/fnut.2020.00040
    1. Ota M., Matsuo J., Ishida I., Takano H., Yokoi Y., Hori H., et al. . (2019). Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer's disease. Neurosci. Lett. 690, 232–236. 10.1016/j.neulet.2018.10.048
    1. Pan W., Banks W. A., Fasold M. B., Bluth J., Kastin A. J. (1998). Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37, 1553–1561. 10.1016/S0028-3908(98)00141-5
    1. Pang P. T., Teng H. K., Zaitsev E., Woo N. T., Sakata K., Zhen S., et al. . (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science (New York, NY) 306, 487–491. 10.1126/science.1100135
    1. Pardridge W. M. (2019). Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci. 11:373. 10.3389/fnagi.2019.00373
    1. Phillips M. C. L., Deprez L. M., Mortimer G. M. N., Murtagh D. K. J., McCoy S., Mylchreest R., et al. . (2021). Randomized crossover trial of a modified ketogenic diet in Alzheimer's disease. Alzheimers Res. Ther. 13:51. 10.1186/s13195-021-00783-x
    1. Poff A. M., Koutnik A. P., Egan B. (2020). Nutritional ketosis with ketogenic diets or exogenous ketones: features, convergence, and divergence. Curr. Sports Med. Rep. 19, 251–259. 10.1249/JSR.0000000000000732
    1. Polacchini A., Metelli G., Francavilla R., Baj G., Florean M., Mascaretti L. G., et al. . (2015). A method for reproducible measurements of serum BDNF: comparison of the performance of six commercial assays. Sci. Rep. 5:17989. 10.1038/srep17989
    1. Qin X. Y., Feng J. C., Cao C., Wu H. T., Loh Y. P., Cheng Y. (2016). Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: a systematic review and meta-analysis. JAMA Pediatr. 170, 1079–1086. 10.1001/jamapediatrics.2016.1626
    1. Rahmani F., Saghazadeh A., Rahmani M., Teixeira A. L., Rezaei N., Aghamollaii V., et al. . (2019). Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: a systematic review and meta-analysis. Brain Res. 1704, 127–136. 10.1016/j.brainres.2018.10.006
    1. Reger M. A., Henderson S. T., Hale C., Cholerton B., Baker L. D., Watson G. S., et al. . (2004). Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25, 311–314. 10.1016/S0197-4580(03)00087-3
    1. Reyes-Izquierdo T., Nemzer B., Shu C., Huynh L., Argumedo R., Keller R., et al. . (2013). Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br. J. Nutr. 110, 420–425. 10.1017/S0007114512005338
    1. Serra-Millàs M. (2016). Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World J. Psychiatry 6, 84–101. 10.5498/wjp.v6.i1.84
    1. Shimada H., Makizako H., Doi T., Yoshida D., Tsutsumimoto K., Anan Y., et al. . (2014). A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Front. Aging Neurosci. 6:69. 10.3389/fnagi.2014.00069
    1. Siuda J., Patalong-Ogiewa M., Zmuda W., Targosz-Gajniak M., Niewiadomska E., Matuszek I., et al. . (2017). Cognitive impairment and BDNF serum levels. Neurol. Neurochir. Pol. 51, 24–32. 10.1016/j.pjnns.2016.10.001
    1. Sleiman S. F., Henry J., Al-Haddad R., El Hayek L., Abou Haidar E., Stringer T., et al. . (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. eLife 5:e15092. 10.7554/eLife.15092
    1. Stafstrom C. E., Rho J. M. (2012). The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharmacol. 3:59. 10.3389/fphar.2012.00059
    1. Taylor M. K., Sullivan D. K., Mahnken J. D., Burns J. M., Swerdlow R. H. (2018). Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer's disease. Alzheimers Dement. (New York, NY) 4, 28–36. 10.1016/j.trci.2017.11.002
    1. Taylor M. K., Swerdlow R. H., Sullivan D. K. (2019). Dietary neuroketotherapeutics for Alzheimer's disease: an evidence update and the potential role for diet quality. Nutrients 11:1910. 10.3390/nu11081910
    1. Vandenberghe C., St-Pierre V., Pierotti T., Fortier M., Castellano C. A., Cunnane S. C. (2017). Tricaprylin alone increases plasma ketone response more than coconut oil or other medium-chain triglycerides: an acute crossover study in healthy adults. Curr. Dev. Nutr. 1:e000257. 10.3945/cdn.116.000257
    1. Volek J. S., Noakes T., Phinney S. D. (2015). Rethinking fat as a fuel for endurance exercise. Eur. J. Sport Sci. 15, 13–20. 10.1080/17461391.2014.959564
    1. Walsh J. J., Myette-Cote E., Little J. P. (2020). The effect of exogenous ketone monoester ingestion on plasma BDNF during an oral glucose tolerance test. Front. Physiol. 11:1094. 10.3389/fphys.2020.01094
    1. Wolak M. E., Fairbairn D. J., Paulsen Y. R. (2012). Guidelines for estimating repeatability. Methods Ecol. Evol. 3, 129–137. 10.1111/j.2041-210X.2011.00125.x
    1. Woo N. H., Teng H. K., Siao C. J., Chiaruttini C., Pang P. T., Milner T. A., et al. . (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci. 8, 1069–1077. 10.1038/nn1510
    1. Xie B., Zhou H., Liu W., Yu W., Liu Z., Jiang L., et al. . (2020). Evaluation of the diagnostic value of peripheral BDNF levels for Alzheimer's disease and mild cognitive impairment: results of a meta-analysis. Int. J. Neurosci. 130, 218–230. 10.1080/00207454.2019.1667794
    1. Yang B., Ren Q., Zhang J. C., Chen Q. X., Hashimoto K. (2017). Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis. Transl. Psychiatry 7:e1128. 10.1038/tp.2017.95

Source: PubMed

3
Abonnere