Opioids Resistance in Chronic Pain Management

Luigi A Morrone, Damiana Scuteri, Laura Rombolà, Hirokazu Mizoguchi, Giacinto Bagetta, Luigi A Morrone, Damiana Scuteri, Laura Rombolà, Hirokazu Mizoguchi, Giacinto Bagetta

Abstract

Chronic pain management represents a serious healthcare problem worldwide. Chronic pain affects approximately 20% of the adult European population and is more frequent in women and older people. Unfortunately, its management in the community remains generally unsatisfactory and rarely under the control of currently available analgesics. Opioids have been used as analgesics for a long history and are among the most used drugs; however, while there is no debate over their short term use for pain management, limited evidence supports their efficacy of long-term treatment for chronic non-cancer pain. Therapy with opioids is hampered by inter-individual variability and serious side effects and some opioids often result ineffective in the treatment of chronic pain and their use is controversial. Accordingly, for a better control of chronic pain a deeper knowledge of the molecular mechanisms underlying resistance to opiates is mandatory.

Keywords: Chronic pain; opiate resistance; polymorphisms.

References

    1. Gupta S., Gupta M., Nath S., Hess G.M. Survey of European pain medicine practice. Pain Physician. 2012;15(6):E983–E994. [PMID: 23159983].
    1. Cherubino P., Sarzi-Puttini P., Zuccaro S.M., Labianca R. The management of chronic pain in important patient subgroups. Clin. Drug Investig. 2012;32(Suppl. 1):35–44. [. 2165/11630060-000000000-00000].
    1. Pasternak G.W. Molecular insights into mu opioid pharmacology: From the clinic to the bench. Clin. J. Pain. 2010;26(Suppl. 10):S3–S9. []. [PMID: 20026962].
    1. Pert C.B., Snyder S.H. Opiate receptor: demonstration in nervous tissue. Science. 1973;179(4077):1011–1014. [ 10.1126/science.179.4077.1011]. [PMID: 4687585].
    1. Hughes J., Smith T.W., Kosterlitz H.W., Fothergill L.A., Morgan B.A., Morris H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258(5536):577–580. []. [PMID: 1207728].
    1. Snyder S.H. Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology. 2004;47(Suppl. 1):274–285. []. [PMID: 15464143].
    1. Reinecke H., Sorgatz H. S3 guideline LONTS. Long-term administration of opioids for non-tumor pain. Schmerz. 2009;23(5):440–447. []. [PMID: 19730894].
    1. Kissin I. Long-term opioid treatment of chronic nonmalignant pain: unproven efficacy and neglected safety? J. Pain Res. 2013;6:513–529. []. [PMID: 23874119].
    1. Furlan A.D., Sandoval J.A., Mailis-Gagnon A., Tunks E. Opioids for chronic noncancer pain: a meta-analysis of effectiveness and side effects. CMAJ. 2006;174(11):1589–1594. []. [PMID: 16717269].
    1. Nicholson B. Responsible prescribing of opioids for the management of chronic pain. Drugs. 2003;63(1):17–32. [http://dx. ]. [PMID: 12487620].
    1. Vellucci R. Heterogeneity of chronic pain. Clin. Drug Investig. 2012;32(Suppl. 1):3–10. [].
    1. Treede R.D., Jensen T.S., Campbell J.N., Cruccu G., Dostrovsky J.O., Griffin J.W., Hansson P., Hughes R., Nurmikko T., Serra J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630–1635. [. 1212/01.wnl. 0000282763.29778.59]. [PMID: 18003941].
    1. Costigan M., Scholz J., Woolf C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 2009;32:1–32. [. neuro.051508.135531]. [PMID: 19400724].
    1. Trescot A.M., Helm S., Hansen H., Benyamin R., Glaser S.E., Adlaka R., Patel S., Manchikanti L. Opioids in the management of chronic non-cancer pain: an update of American Society of the Interventional Pain Physicians (ASIPP) Guidelines. Pain Physician. 2008;11(2) Suppl.:S5–S62. [PMID: 18443640].
    1. Egli M., Koob G.F., Edwards S. Alcohol dependence as a chronic pain disorder. Neurosci. Biobehav. Rev. 2012;36(10):2179–2192. []. [PMID: 22975446].
    1. Lebovits A.H., Lefkowitz M., McCarthy D., Simon R., Wilpon H., Jung R., Fried E. The prevalence and management of pain in patients with AIDS: a review of 134 cases. Clin. J. Pain. 1989;5(3):245–248. []. [PMID: 2520410].
    1. Liu B., Liu X., Tang S.J. Interactions of Opioids and HIV Infection in the Pathogenesis of Chronic Pain. Front. Microbiol. 2016;7:103. []. [PMID: 26903982].
    1. Svendsen K.B., Jensen T.S., Overvad K., Hansen H.J., Koch-Henriksen N., Bach F.W. Pain in patients with multiple sclerosis: a population-based study. Arch. Neurol. 2003;60(8):1089–1094. []. [PMID: 12925364].
    1. Potter L.E., Paylor J.W., Suh J.S., Tenorio G., Caliaperumal J., Colbourne F., Baker G., Winship I., Kerr B.J. Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J. Neuroinflammation. 2016;13(1):142. []. [PMID: 27282914].
    1. Arnér S., Meyerson B.A. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain. 1988;33(1):11–23. []. [PMID: 2454440].
    1. Courteix C., Bardin M., Chantelauze C., Lavarenne J., Eschalier A. Study of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics. Pain. 1994;57(2):153–160. [http://dx. ]. [PMID: 8090511].
    1. Field M.J., McCleary S., Hughes J., Singh L. Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain. 1999;80(1-2):391–398. [http://dx.doi. org/10.1016/S0304-3959(98)00239-5]. [PMID: 10204753].
    1. Kamei J., Ohhashi Y., Aoki T., Kawasima N., Kasuya Y. Streptozotocin-induced diabetes selectively alters the potency of analgesia produced by mu-opioid agonists, but not by delta- and kappa-opioid agonists. Brain Res. 1992;571(2):199–203. [http:// ]. [PMID: 1319265].
    1. Zurek J.R., Nadeson R., Goodchild C.S. Spinal and supraspinal components of opioid antinociception in streptozotocin induced diabetic neuropathy in rats. Pain. 2001;90(1-2):57–63. [http://dx. ]. [PMID: 11166970].
    1. Chen S.R., Pan H.L. Hypersensitivity of spinothalamic tract neurons associated with diabetic neuropathic pain in rats. J. Neurophysiol. 2002;87(6):2726–2733. [PMID: 12037174].
    1. Zhang X., Bao L., Shi T.J., Ju G., Elde R., Hökfelt T. Down-regulation of mu-opioid receptors in rat and monkey dorsal root ganglion neurons and spinal cord after peripheral axotomy. Neuroscience. 1998;82(1):223–240. []. [PMID: 9483516].
    1. Porreca F., Tang Q.B., Bian D., Riedl M., Elde R., Lai J. Spinal opioid mu receptor expression in lumbar spinal cord of rats following nerve injury. Brain Res. 1998;795(1-2):197–203. [http:// ]. [PMID: 9622629].
    1. Chen S.R., Pan H.L. Antinociceptive effect of morphine, but not mu opioid receptor number, is attenuated in the spinal cord of diabetic rats. Anesthesiology. 2003;99(6):1409–1414. [http://dx. ]. [PMID: 14639157].
    1. Kohno T., Ji R.R., Ito N., Allchorne A.J., Befort K., Karchewski L.A., Woolf C.J. Peripheral axonal injury results in reduced mu opioid receptor pre- and post-synaptic action in the spinal cord. Pain. 2005;117(1-2):77–87. [. 1016/j.pain.2005.05.035]. [PMID: 16098668].
    1. Kamei J., Kasuya Y. The effects of diabetes on opioid-induced antinociception. In: Tseong L.F., editor. Pharmacology of Opioid Peptides. Harwood Academic Publishers; 1995. pp. 271–286.
    1. Kamei J., Kawashima N., Narita M., Suzuki T., Misawa M., Kasuya Y. Reduction in ATP-sensitive potassium channel-mediated antinociception in diabetic mice. Psychopharmacology (Berl.) 1994;113(3-4):318–321. [ BF02245203]. [PMID: 7862839].
    1. van Rijn R.M., Brissett D.I., Whistler J.L. Emergence of functional spinal delta opioid receptors after chronic ethanol exposure. Biol. Psychiatry. 2012;71(3):232–238. [. biopsych.2011.07.015]. [PMID: 21889123].
    1. Hull L.C., Gabra B.H., Bailey C.P., Henderson G., Dewey W.L. Reversal of morphine analgesic tolerance by ethanol in the mouse. J. Pharmacol. Exp. Ther. 2013;345(3):512–519. [http://dx. ]. [PMID: 23528610].
    1. Cadet P., Weeks B.S., Bilfinger T.V., Mantione K.J., Casares F., Stefano G.B. HIV gp120 and morphine alter mu opiate receptor expression in human vascular endothelium. Int. J. Mol. Med. 2001;8(2):165–169. [PMID: 11445868].
    1. Beltran J.A., Pallur A., Chang S.L. HIV-1 gp120 up-regulation of the mu opioid receptor in TPA-differentiated HL-60 cells. Int. Immunopharmacol. 2006;6(9):1459–1467. [. 1016/j.intimp.2006.04.018]. [PMID: 16846840].
    1. Dever S.M., Xu R., Fitting S., Knapp P.E., Hauser K.F. Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types. J. Neurovirol. 2012;18(3):181–190. [ s13365-012-0096-z]. [PMID: 22528479].
    1. Gironi M., Furlan R., Rovaris M., Comi G., Filippi M., Panerai A.E., Sacerdote P. Beta endorphin concentrations in PBMC of patients with different clinical phenotypes of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2003;74(4):495–497. [http://dx. ]. [PMID: 12640071].
    1. Lynch J.L., Alley J.F., Wellman L., Beitz A.J. Decreased spinal cord opioid receptor mRNA expression and antinociception in a Theilers murine encephalomyelitis virus model of multiple sclerosis. Brain Res. 2008;1191:180–191. [. brainres.2007.11.034]. [PMID: 18096140].
    1. Lampe A., Doering S., Rumpold G., Sölder E., Krismer M., Kantner-Rumplmair W., Schubert C., Söllner W. Chronic pain syndromes and their relation to childhood abuse and stressful life events. J. Psychosom. Res. 2003;54(4):361–367. [http://dx.doi. org/10.1016/S0022-3999(02)00399-9]. [PMID: 12670615].
    1. Fillingim R.B., Edwards R.R. Is self-reported childhood abuse history associated with pain perception among healthy young women and men? Clin. J. Pain. 2005;21(5):387–397. [http://dx. ]. [PMID: 16093744].
    1. Barreau F., Ferrier L., Fioramonti J., Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr. Res. 2007;62(3):240–245. []. [PMID: 17622962].
    1. Alexander J.K., DeVries A.C., Kigerl K.A., Dahlman J.M., Popovich P.G. Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav. Immun. 2009;23(6):851–860. [. 2009.04.001]. [PMID: 19361551].
    1. Low L.A., Schweinhardt P. Early life adversity as a risk factor for fibromyalgia in later life. 2012.
    1. Afari N., Ahumada S.M., Wright L.J., Mostoufi S., Golnari G., Reis V., Cuneo J.G. Psychological trauma and functional somatic syndromes: a systematic review and meta-analysis. Psychosom. Med. 2014;76(1):2–11. [. 0000000000000010]. [PMID: 24336429].
    1. Danese A., Pariante C.M., Caspi A., Taylor A., Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc. Natl. Acad. Sci. USA. 2007;104(4):1319–1324. []. [PMID: 17229839].
    1. Heim C., Newport D.J., Mletzko T., Miller A.H., Nemeroff C.B. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 2008;33(6):693–710. [. 03.008]. [PMID: 18602762].
    1. Burke N.N., Finn D.P., McGuire B.E., Roche M. 2016.
    1. Ploj K., Roman E., Nylander I. Long-term effects of short and long periods of maternal separation on brain opioid peptide levels in male Wistar rats. Neuropeptides. 2003;37(3):149–156. [http:// ]. [PMID: 12860112].
    1. Weaver I.C., Champagne F.A., Brown S.E., Dymov S., Sharma S., Meaney M.J., Szyf M. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 2005;25(47):11045–11054. [. 2005]. [PMID: 16306417].
    1. Tietjen G.E., Peterlin B.L. Childhood abuse and migraine: epidemiology, sex differences, and potential mechanisms. Headache. 2011;51(6):869–879. [. 01906.x]. [PMID: 21631473].
    1. Tietjen G.E. Childhood maltreatment and headache disorders. Curr. Pain Headache Rep. 2016;20(4):26. [ 10.1007/s11916-016-0554-z]. [PMID: 26936357].
    1. Schiavone S., Colaianna M., Curtis L. Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress. Curr. Pharm. Des. 2015;21(11):1404–1412. [http://dx.doi. org/10.2174/1381612821666150105143358]. [PMID: 25564385].
    1. Mhillaj E., Morgese M.G., Trabace L. Early life and oxidative stress in psychiatric disorders: what can we learn from animal models? Curr. Pharm. Des. 2015;21(11):1396–1403. [http://dx. ]. [PMID: 25564390].
    1. Pernambuco A.P., Schetino L.P., Carvalho L.S., Reis D.A. Involvement of Oxidative Stress and Nitric Oxide in Fibromyalgia Pathophysiology: A Relationship to be Elucidated. Fibrom. Open Access. 2016;1:105. [].
    1. Kolberg C., Horst A., Moraes M.S., Duarte F.C., Riffel A.P., Scheid T., Kolberg A., Partata W.A. Peripheral oxidative stress blood markers in patients with chronic back or neck pain treated with high-velocity, low-amplitude manipulation. J. Manipulative Physiol. Ther. 2015;38(2):119–129. [ j.jmpt.2014.11.003]. [PMID: 25487299].
    1. Inanır A., Sogut E., Ayan M., Inanır S. Evaluation of Pain Intensity and Oxidative Stress Levels in Patients with Inflammatory and Non-Inflammatory Back Pain. Eur. J. Gen. Med. (Los Angel.) 2013;10(4):185–190.
    1. Meeus M., Nijs J., Hermans L., Goubert D., Calders P. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets? Expert Opin. Ther. Targets. 2013;17(9):1081–1089. []. [PMID: 23834645].
    1. Raut A., Iglewski M., Ratka A. Differential effects of impaired mitochondrial energy production on the function of mu and delta opioid receptors in neuronal SK-N-SH cells. Neurosci. Lett. 2006;404(1-2):242–246. []. [PMID: 16808998].
    1. Raut A., Rao V.R., Ratka A. Changes in opioid receptor proteins during mitochondrial impairment in differentiated SK-N-SH cells. Neurosci. Lett. 2007;422(3):187–192. [ j.neulet.2007.06.015]. [PMID: 17611027].
    1. Wallace D.R., Dodson S.L., Nath A., Booze R.M. Delta opioid agonists attenuate TAT(172)-induced oxidative stress in SK-N-SH cells. Neurotoxicology. 2006;27(1):101–107. [ 10.1016/j.neuro.2005.07.008]. [PMID: 16168488].
    1. Yang Y., Xia X., Zhang Y., Wang Q., Li L., Luo G., Xia Y. delta-Opioid receptor activation attenuates oxidative injury in the ischemic rat brain. BMC Biol. 2009;7:55. [. 1186/1741-7007-7-55]. [PMID: 19709398].
    1. Chao D., He X., Yang Y., Bazzy-Asaad A., Lazarus L.H., Balboni G., Kim D.H., Xia Y. DOR activation inhibits anoxic/ ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp. Neurol. 2012;236(2):228–239. [ 10.1016/j.expneurol.2012.05.006]. [PMID: 22609332].
    1. He X., Sandhu H.K., Yang Y., Hua F., Belser N., Kim D.H., Xia Y. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell. Mol. Life Sci. 2013;70(13):2291–2303. []. [PMID: 23014992].
    1. Prommer E.E. Pharmacological Management of Cancer-Related Pain. Cancer Contr. 2015;22(4):412–425. [PMID: 26678968].
    1. Cheung C.W., Qiu Q., Choi S.W., Moore B., Goucke R., Irwin M. Chronic opioid therapy for chronic non-cancer pain: a review and comparison of treatment guidelines. Pain Physician. 2014;17(5):401–414. [PMID: 25247898].
    1. Morrone L.A., Rombolà L., Amantea D., Mizoguchi H., Corasaniti M.T. 2012. Contribution of Herbal Medicine to Human Health: A Brief History.
    1. Waldhoer M., Bartlett S.E., Whistler J.L. Opioid receptors. Annu. Rev. Biochem. 2004;73:953–990. [ annurev.biochem.73.011303.073940]. [PMID: 15189164].
    1. Snyder S.H., Pasternak G.W. Historical review: Opioid receptors. Trends Pharmacol. Sci. 2003;24(4):198–205. [ 10.1016/S0165-6147(03)00066-X]. [PMID: 12707007].
    1. Fukuda K., Kato S., Morikawa H., Shoda T., Mori K. Functional coupling of the delta-, mu-, and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem. 1996;67(3):1309–1316. [http:// ]. [PMID: 8752140].
    1. Gutstein H.B., Rubie E.A., Mansour A., Akil H., Woodgett J.R. Opioid effects on mitogen-activated protein kinase signaling cascades. Anesthesiology. 1997;87(5):1118–1126. [http://dx.doi. org/10.1097/00000542-199711000-00016]. [PMID: 9366464].
    1. Simon M.I., Strathmann M.P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991;252(5007):802–808. []. [PMID: 1902986].
    1. Law P.Y., Wong Y.H., Loh H.H. Molecular mechanisms and regulation of opioid receptor signaling. Annu. Rev. Pharmacol. Toxicol. 2000;40:389–430. [. pharmtox.40.1.389]. [PMID: 10836142].
    1. Dhawan B.N., Cesselin F., Raghubir R., Reisine T., Bradley P.B., Portoghese P.S., Hamon M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 1996;48(4):567–592. [PMID: 8981566].
    1. Hudspith M.J., Siddall P.J., Munglani R. Physiology of pain. In: Hemmings B., Hopkins P.M., editors. Foundations of Anesthesia, Basic sciences for clinical practice by H. Elsevier Mosby; 2006. pp. 267–285.
    1. Negri L., Melchiorri P., Lattanzi R. Pharmacology of amphibian opiate peptides. Peptides. 2000;21(11):1639–1647. [http://dx.doi. org/10.1016/S0196-9781(00)00295-3]. [PMID: 11090917].
    1. Yoshikawa M., Takahashi M., Yang S. Delta opioid peptides derived from plant proteins. Curr. Pharm. Des. 2003;9(16):1325–1330. []. [PMID: 12769740].
    1. Teschemacher H. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 2003;9(16):1331–1344. [http://dx. ]. [PMID: 12769741].
    1. Davis M.P., Pasternak G.W. 2009. Opioid receptors and opioid pharmacodynamics.
    1. Grond S., Meuser T. Weak opioidsan educational substitute for morphine? Curr. Opin. Anaesthesiol. 1998;11(5):559–565. [http:// ]. [PMID: 17013274].
    1. Marinangeli F., Ciccozzi A., Leonardis M., Aloisio L., Mazzei A., Paladini A., Porzio G., Marchetti P., Varrassi G. Use of strong opioids in advanced cancer pain: a randomized trial. J. Pain Symptom Manage. 2004;27(5):409–416. [ 10.1016/j.jpainsymman.2003.10.006]. [PMID: 15120769].
    1. Park H.J., Moon D.E. Pharmacologic management of chronic pain. Korean J. Pain. 2010;23(2):99–108. [. 3344/kjp.2010.23.2.99]. [PMID: 20556211].
    1. Lewis K.S., Han N.H. Tramadol: a new centrally acting analgesic. Am. J. Health Syst. Pharm. 1997;54(6):643–652. [PMID: 9075493].
    1. Christoph T., Kögel B., Strassburger W., Schug S.A. Tramadol has a better potency ratio relative to morphine in neuropathic than in nociceptive pain models. Drugs R D. 2007;8(1):51–57. []. [PMID: 17249849].
    1. Raffa R.B., Buschmann H., Christoph T., Eichenbaum G., Englberger W., Flores C.M., Hertrampf T., Kögel B., Schiene K., Straßburger W., Terlinden R., Tzschentke T.M. Mechanistic and functional differentiation of tapentadol and tramadol. Expert Opin. Pharmacother. 2012;13(10):1437–1449. [ 10.1517/14656566.2012.696097]. [PMID: 22698264].
    1. Schiene K., De Vry J., Tzschentke T.M. Antinociceptive and antihyperalgesic effects of tapentadol in animal models of inflammatory pain. J. Pharmacol. Exp. Ther. 2011;339(2):537–544. []. [PMID: 21816956].
    1. Williams D.G., Patel A., Howard R.F. Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br. J. Anaesth. 2002;89(6):839–845. []. [PMID: 12453926].
    1. Smith H.S. Opioids and neuropathic pain. Pain Physician. 2012;15(3) Suppl.:ES93–ES110. [PMID: 22786465].
    1. Olkkola K.T., Hagelberg N.M. Oxycodone: new old drug. Curr. Opin. Anaesthesiol. 2009;22(4):459–462. [. 1097/ACO.0b013e32832bc818]. [PMID: 19369865].
    1. Davis M., Goforth H.W., Gamier P. Oxycodone combined with opioid receptor antagonists: efficacy and safety. Expert Opin. Drug Saf. 2013;12(3):389–402. [. 2013.783564]. [PMID: 23534906].
    1. Schafer M. Opioids in pain medicine. In: Patel B., editor. Guide to Pain Management in Low-Resource Settings by A. Kopf and N. Seattle, USA: IASP; 2010. pp. 39–45.
    1. Smith H. A comprehensive review of rapid-onset opioids for breakthrough pain. CNS Drugs. 2012;26(6):509–535. [http://dx. ]. [PMID: 22668247].
    1. Clotz M.A., Nahata M.C. Clinical uses of fentanyl, sufentanil, and alfentanil. Clin. Pharm. 1991;10(8):581–593. [PMID: 1834393].
    1. Chamorro C., Borrallo J.M., Romera M.A., Silva J.A.
    2. Balandín B. Anesthesia and analgesia protocol during therapeutic hypothermia after cardiac arrest: a systematic review. Anesth. Analg. 2010;110(5):1328–1335. [. 0b013e3181d8cacf]. [PMID: 20418296].
    1. Lynch M.E. The pharmacotherapy of chronic pain. Rheum. Dis. Clin. North Am. 2008;34(2):369–385. [ j.rdc.2008.04.001]. [PMID: 18638682].
    1. Leffler A., Frank G., Kistner K., Niedermirtl F., Koppert W., Reeh P.W., Nau C. Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial μ-opioid receptor agonist buprenorphine. Anesthesiology. 2012;116(6):1335–1346. [http:// ]. [PMID: 22504149].
    1. Horan P., Tallarida R.J., Haaseth R.C., Matsunaga T.O., Hruby V.J., Porreca F. Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: supra- and sub-additivity. Life Sci. 1992;50(20):1535–1541. [ 0024-3205(92)90144-E]. [PMID: 1315897].
    1. Gomes I., Gupta A., Filipovska J., Szeto H.H., Pintar J.E., Devi L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA. 2004;101(14):5135–5139. []. [PMID: 15044695].
    1. Costantino C.M., Gomes I., Stockton S.D., Lim M.P., Devi L.A. Opioid receptor heteromers in analgesia. Expert Rev. Mol. Med. 2012;14:e9. []. [PMID: 22490239].
    1. Yaksh T.L. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol. Scand. 1997;41(1 Pt 2):94–111. []. [PMID: 9061092].
    1. Dickenson A.H. Central acute pain mechanisms. Ann. Med. 1995;27(2):223–227. []. [PMID: 7632418].
    1. Moochhala S.M., Sawynok J. Hyperalgesia produced by intrathecal substance P and related peptides: desensitization and cross desensitization. Br. J. Pharmacol. 1984;82(2):381–388. []. [PMID: 6203593].
    1. Mantyh P.W., Rogers S.D., Honore P., Allen B.J., Ghilardi J.R., Li J., Daughters R.S., Lappi D.A., Wiley R.G., Simone D.A. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science. 1997;278(5336):275–279. []. [PMID: 9323204].
    1. Khasabov S.G., Rogers S.D., Ghilardi J.R., Peters C.M., Mantyh P.W., Simone D.A. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J. Neurosci. 2002;22(20):9086–9098. [PMID: 12388616].
    1. Endres-Becker J., Heppenstall P.A., Mousa S.A., Labuz D., Oksche A., Schäfer M., Stein C., Zöllner C. Mu-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain. Mol. Pharmacol. 2007;71(1):12–18. [ 10.1124/mol.106.026740]. [PMID: 17005903].
    1. Martin W.R. Pharmacology of opioids. Pharmacol. Rev. 1983;35(4):283–323. [PMID: 6144112].
    1. Sharp B., Yaksh T. Pain killers of the immune system. Nat. Med. 1997;3(8):831–832. []. [PMID: 9256267].
    1. Sacerdote P. Opioid-induced immunosuppression. Curr. Opin. Support. Palliat. Care. 2008;2(1):14–18. [ SPC.0b013e3282f5272e]. [PMID: 18685388].
    1. Sacerdote P., Bianchi M., Gaspani L., Manfredi B., Maucione A., Terno G., Ammatuna M., Panerai A.E. The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients. Anesth. Analg. 2000;90(6):1411–1414. []. [PMID: 10825330].
    1. Nestler E.J., Berhow M.T., Brodkin E.S. Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol. Psychiatry. 1996;1(3):190–199. [PMID: 9118343].
    1. Mizoguchi H., Watanabe C., Yonezawa A., Sakurada S. New therapy for neuropathic pain. Int. Rev. Neurobiol. 2009;85:249–260. []. [PMID: 19607975].
    1. Bagetta G., Sakurada S. Understanding anomalous adaptation in chronic pain for successful development of disease modifying drugs. Curr. Opin. Pharmacol. 2012;12(1):1–3. [ 10.1016/j.coph.2011.11.002]. [PMID: 22172234].
    1. Hervera A., Negrete R., Leánez S., Martín-Campos J., Pol O. The role of nitric oxide in the local antiallodynic and anti- hyperalgesic effects and expression of delta-opioid and cannabinoid-2 receptors during neuropathic pain in mice. J. Pharmacol. Exp. Ther. 2010;334(3):887–896. [. 167585]. [PMID: 20498253].
    1. Smith H.S. Variations in opioid responsiveness. Pain Physician. 2008;11(2):237–248. [PMID: 18354715].
    1. Martini L., Whistler J.L. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr. Opin. Neurobiol. 2007;17(5):556–564. [http:// ]. [PMID: 18068348].
    1. Wong C.S., Hsu M.M., Chou Y.Y., Tao P.L., Tung C.S. Morphine tolerance increases [3H]MK-801 binding affinity and constitutive neuronal nitric oxide synthase expression in rat spinal cord. Br. J. Anaesth. 2000;85(4):587–591. [. 1093/bja/85.4.587]. [PMID: 11064618].
    1. Mao J., Sung B., Ji R.R., Lim G. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J. Neurosci. 2002;22(18):8312–8323. [PMID: 12223586].
    1. Gintzler A.R., Chakrabarti S. Opioid tolerance and the emergence of new opioid receptor-coupled signaling. Mol. Neurobiol. 2000;21(1-2):21–33. []. [PMID: 11327148].
    1. Whistler J.L., von Zastrow M. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc. Natl. Acad. Sci. USA. 1998;95(17):9914–9919. [ pnas.95.17.9914]. [PMID: 9707575].
    1. Bohn L.M., Lefkowitz R.J., Gainetdinov R.R., Peppel K., Caron M.G., Lin F.T. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286(5449):2495–2498. [http://dx.doi. org/10.1126/science.286.5449.2495]. [PMID: 10617462].
    1. Bian D., Nichols M.L., Ossipov M.H., Lai J., Porreca F. Characterization of the antiallodynic efficacy of morphine in a model of neuropathic pain in rats. Neuroreport. 1995;6(15):1981–1984. []. [PMID: 8580422].
    1. deGroot J.F., Coggeshall R.E., Carlton S.M. The reorganization of mu opioid receptors in the rat dorsal horn following peripheral axotomy. Neurosci. Lett. 1997;233(2-3):113–116. [http://dx. ]. [PMID: 9350845].
    1. Lee Y.W., Chaplan S.R., Yaksh T.L. Systemic and supraspinal, but not spinal, opiates suppress allodynia in a rat neuropathic pain model. Neurosci. Lett. 1995;199(2):111–114. [ 10.1016/0304-3940(95)12034-2]. [PMID: 8584236].
    1. Zurek J.R., Nadeson R., Goodchild C.S. Spinal and supraspinal components of opioid antinociception in streptozotocin induced diabetic neuropathy in rats. Pain. 2001;90(1-2):57–63. [http://dx. ]. [PMID: 11166970].
    1. Porreca F., Tang Q.B., Bian D., Riedl M., Elde R., Lai J. Spinal opioid mu receptor expression in lumbar spinal cord of rats following nerve injury. Brain Res. 1998;795(1-2):197–203. [http:// ]. [PMID: 9622629].
    1. Chen S.R., Sweigart K.L., Lakoski J.M., Pan H.L. Functional mu opioid receptors are reduced in the spinal cord dorsal horn of diabetic rats. Anesthesiology. 2002;97(6):1602–1608. [http://dx. ]. [PMID: 12459691].
    1. Chen S.R., Pan H.L. Antinociceptive effect of morphine, but not mu opioid receptor number, is attenuated in the spinal cord of diabetic rats. Anesthesiology. 2003;99(6):1409–1414. [http://dx. ]. [PMID: 14639157].
    1. Yajima Y., Narita M., Shimamura M., Narita M., Kubota C., Suzuki T. Differential involvement of spinal protein kinase C and protein kinase A in neuropathic and inflammatory pain in mice. Brain Res. 2003;992(2):288–293. [ j.brainres.2003.08.042]. [PMID: 14625068].
    1. Narita M., Oe K., Kato H., Shibasaki M., Narita M., Yajima Y., Yamazaki M., Suzuki T. Implication of spinal protein kinase C in the suppression of morphine-induced rewarding effect under a neuropathic pain-like state in mice. Neuroscience. 2004;125(3):545–551. []. [PMID: 15099668].
    1. Niikura K., Narita M., Butelman E.R., Kreek M.J., Suzuki T. Neuropathic and chronic pain stimuli downregulate central mu-opioid and dopaminergic transmission. Trends Pharmacol. Sci. 2010;31(7):299–305. [. 003]. [PMID: 20471111].
    1. Hoot M.R., Sim-Selley L.J., Selley D.E., Scoggins K.L., Dewey W.L. Chronic neuropathic pain in mice reduces μ-opioid receptor-mediated G-protein activity in the thalamus. Brain Res. 2011;1406:1–7. []. [PMID: 21762883].
    1. Sánchez-Blázquez P., Gómez-Serranillos P., Garzón J. Agonists determine the pattern of G-protein activation in mu-opioid receptor-mediated supraspinal analgesia. Brain Res. Bull. 2001;54(2):229–235. []. [PMID: 11275413].
    1. Jordan B.A., Devi L.A. G-protein-coupled receptor hetero- dimerization modulates receptor function. Nature. 1999;399(6737):697–700. []. [PMID: 10385123].
    1. Bolan E.A., Pan Y.X., Pasternak G.W. Functional analysis of MOR-1 splice variants of the mouse mu opioid receptor gene Oprm. Synapse. 2004;51(1):11–18. [ syn.10277]. [PMID: 14579421].
    1. Zukin R.S., Eghbali M., Olive D., Unterwald E.M., Tempel A. Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors. Proc. Natl. Acad. Sci. USA. 1988;85(11):4061–4065. [http://dx. ]. [PMID: 2836869].
    1. Reisine T., Bell G.I. Molecular biology of opioid receptors. Trends Neurosci. 1993;16(12):506–510. [. 1016/0166-2236(93)90194-Q]. [PMID: 7509520].
    1. George S.R., Fan T., Xie Z., Tse R., Tam V., Varghese G. ODowd, B.F. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 2000;275(34):26128–26135. []. [PMID: 10842167].
    1. Rozenfeld R., Devi L.A. Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. FASEB J. 2007;21(10):2455–2465. []. [PMID: 17384143].
    1. Kabli N., Martin N., Fan T., Nguyen T., Hasbi A., Balboni G. ODowd, B.F.; George, S.R. Agonists at the δ-opioid receptor modify the binding of µ-receptor agonists to the µ-δ receptor hetero-oligomer. Br. J. Pharmacol. 2010;161(5):1122–1136. []. [PMID: 20977461].
    1. von Zastrow M. Role of endocytosis in signalling and regulation of G-protein-coupled receptors. Biochem. Soc. Trans. 2001;29(Pt 4):500–504. []. [PMID: 11498017].
    1. Sterne-Marr R., Benovic J.L. Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam. Horm. 1995;51:193–234. []. [PMID: 7483322].
    1. Rodríguez-Muñoz M., Sánchez-Blázquez P., Vicente-Sánchez A., Berrocoso E., Garzón J. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2012;37(2):338–349. []. [PMID: 21814188].
    1. Mayer D.J., Mao J., Price D.D. The association of neuropathic pain, morphine tolerance and dependence, and the translocation of protein kinase C. NIDA Res. Monogr. 1995;147:269–298. [PMID: 8742791].
    1. Mao J., Price D.D., Hayes R.L., Lu J., Mayer D.J. Differential roles of NMDA and non-NMDA receptor activation in induction and maintenance of thermal hyperalgesia in rats with painful peripheral mononeuropathy. Brain Res. 1992;598(1-2):271–278. []. [PMID: 1362520].
    1. Yajima Y., Narita M., Usui A., Kaneko C., Miyatake M., Narita M., Yamaguchi T., Tamaki H., Wachi H., Seyama Y., Suzuki T. Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice. J. Neurochem. 2005;93(3):584–594. [http://dx. ]. [PMID: 15836617].
    1. Sánchez-Blázquez P., Rodriguez-Muñoz M., Berrocoso E., Garzón J. The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. 2013.
    1. Meller S.T., Pechman P.S., Gebhart G.F., Maves T.J. Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience. 1992;50(1):7–10. [http:// ]. [PMID: 1407561].
    1. Ferreira S.H., Duarte I.D., Lorenzetti B.B. The molecular mechanism of action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide release. Eur. J. Pharmacol. 1991;201(1):121–122. [ 90333-L]. [PMID: 1665419].
    1. Hervera A., Leánez S., Negrete R., Pol O. The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2009;380(4):345–352. []. [PMID: 19636536].
    1. Leánez S., Hervera A., Pol O. Peripheral antinociceptive effects of mu- and delta-opioid receptor agonists in NOS2 and NOS1 knockout mice during chronic inflammatory pain. Eur. J. Pharmacol. 2009;602(1):41–49. [. 019]. [PMID: 19041302].
    1. Park S.W., Li J., Loh H.H., Wei L.N. A novel signaling pathway of nitric oxide on transcriptional regulation of mouse kappa opioid receptor gene. J. Neurosci. 2002;22(18):7941–7947. [PMID: 12223547].
    1. Pol O., Sasaki M., Jiménez N., Dawson V.L., Dawson T.M., Puig M.M. The involvement of nitric oxide in the enhanced expression of mu-opioid receptors during intestinal inflammation in mice. Br. J. Pharmacol. 2005;145(6):758–766. [ 10.1038/sj.bjp.0706227]. [PMID: 15852037].
    1. Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. Mu-opioid receptors transiently activate the Akt-nNOS pathway to produce sustained potentiation of PKC-mediated NMDAR-CaMKII signaling. PLoS One. 2010;5(6):e11278. [http://dx. ]. [PMID: 20585660].
    1. Vanderah T.W., Gardell L.R., Burgess S.E., Ibrahim M., Dogrul A., Zhong C.M., Zhang E.T., Malan T.P., Jr, Ossipov M.H., Lai J., Porreca F. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J. Neurosci. 2000;20(18):7074–7079. [PMID: 10995854].
    1. Goldstein A., Tachibana S., Lowney L.I., Hunkapiller M., Hood L. Dynorphin-(113), an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. USA. 1979;76(12):6666–6670. [ 10.1073/pnas.76.12.6666]. [PMID: 230519].
    1. Lai S.L., Gu Y., Huang L.Y. Dynorphin uses a non-opioid mechanism to potentiate N-methyl-D-aspartate currents in single rat periaqueductal gray neurons. Neurosci. Lett. 1998;247(2-3):115–118. []. [PMID: 9655606].
    1. Hahm E.T., Kim Y., Lee J.J., Cho Y.W. GABAergic synaptic response and its opioidergic modulation in periaqueductal gray neurons of rats with neuropathic pain. BMC Neurosci. 2011;12:41. []. [PMID: 21569381].
    1. Raghavendra V., Tanga F., Rutkowski M.D., DeLeo J.A. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain. 2003;104(3):655–664. []. [PMID: 12927638].
    1. Narita M., Suzuki M., Narita M., Yajima Y., Suzuki R., Shioda S., Suzuki T. Neuronal protein kinase C gamma-dependent proliferation and hypertrophy of spinal cord astrocytes following repeated in vivo administration of morphine. Eur. J. Neurosci. 2004;19(2):479–484. [. 03119.x]. [PMID: 14725643].
    1. Tawfik V.L., LaCroix-Fralish M.L., Nutile-McMenemy N., DeLeo J.A. Transcriptional and translational regulation of glial activation by morphine in a rodent model of neuropathic pain. J. Pharmacol. Exp. Ther. 2005;313(3):1239–1247. [http://dx.doi. org/10.1124/jpet.104.082420]. [PMID: 15743926].
    1. Mika J., Wawrzczak-Bargiela A., Osikowicz M., Makuch W., Przewlocka B. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav. Immun. 2009;23(1):75–84. [. 07.005]. [PMID: 18684397].
    1. Raghavendra V., Tanga F.Y., DeLeo J.A. Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology. 2004;29(2):327–334. [http://dx. ]. [PMID: 14532913].
    1. Narita M., Suzuki M., Narita M., Niikura K., Nakamura A., Miyatake M., Yajima Y., Suzuki T. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine. Neuroscience. 2006;138(2):609–619. [. 046]. [PMID: 16417975].
    1. Habibi-Asl B., Hassanzadeh K., Charkhpour M. Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth. Analg. 2009;109(3):936–942. []. [PMID: 19690270].
    1. Due M.R., Piekarz A.D., Wilson N., Feldman P., Ripsch M.S., Chavez S., Yin H., Khanna R., White F.A. Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J. Neuroinflammation. 2012;9:200. []. [PMID: 22898544].
    1. Hutchinson M.R., Coats B.D., Lewis S.S., Zhang Y., Sprunger D.B., Rezvani N., Baker E.M., Jekich B.M., Wieseler J.L., Somogyi A.A., Martin D., Poole S., Judd C.M., Maier S.F., Watkins L.R. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun. 2008;22(8):1178–1189. []. [PMID: 18599265].
    1. Hutchinson M.R., Zhang Y., Shridhar M., Evans J.H., Buchanan M.M., Zhao T.X., Slivka P.F., Coats B.D., Rezvani N., Wieseler J., Hughes T.S., Landgraf K.E., Chan S., Fong S., Phipps S., Falke J.J., Leinwand L.A., Maier S.F., Yin H., Rice K.C., Watkins L.R. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 2010;24(1):83–95. []. [PMID: 19679181].
    1. Fukagawa H., Koyama T., Kakuyama M., Fukuda K. Microglial activation involved in morphine tolerance is not mediated by toll-like receptor 4. J. Anesth. 2013;27(1):93–97. [ 10.1007/s00540-012-1469-4]. [PMID: 22926420].
    1. Johnston I.N., Milligan E.D., Wieseler-Frank J., Frank M.G., Zapata V., Campisi J., Langer S., Martin D., Green P., Fleshner M., Leinwand L., Maier S.F., Watkins L.R. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci. 2004;24(33):7353–7365. [http://dx.doi. org/10.1523/JNEUROSCI.1850-04.2004]. [PMID: 15317861].
    1. Tai Y.H., Wang Y.H., Wang J.J., Tao P.L., Tung C.S., Wong C.S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain. 2006;124(1-2):77–86. []. [PMID: 16697108].
    1. Reeve A.J., Patel S., Fox A., Walker K., Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyper- algesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain. 2000;4(3):247–257. [http://dx. ]. [PMID: 10985868].
    1. Sung C.S., Wen Z.H., Chang W.K., Chan K.H., Ho S.T., Tsai S.K., Chang Y.C., Wong C.S. Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. J. Neurochem. 2005;94(3):742–752. [http://dx.doi. org/10.1111/j.1471-4159.2005.03226.x]. [PMID: 16033422].
    1. Shavit Y., Wolf G., Goshen I., Livshits D., Yirmiya R. Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance. Pain. 2005;115(1-2):50–59. [ j.pain.2005.02.003]. [PMID: 15836969].
    1. Eichelbaum M., Evert B. Influence of pharmacogenetics on drug disposition and response. Clin. Exp. Pharmacol. Physiol. 1996;23(10-11):983–985. [. tb01154.x]. [PMID: 8911746].
    1. Caraco Y., Sheller J., Wood A.J. Impact of ethnic origin and quinidine coadministration on codeines disposition and phar- macodynamic effects. J. Pharmacol. Exp. Ther. 1999;290(1):413–422. [PMID: 10381807].
    1. Crews K.R., Gaedigk A., Dunnenberger H.M., Klein T.E., Shen D.D., Callaghan J.T., Kharasch E.D., Skaar T.C. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin. Pharmacol. Ther. 2012;91(2):321–326. []. [PMID: 22205192].
    1. Galley H.F., Mahdy A., Lowes D.A. Pharmacogenetics and anesthesiologists. Pharmacogenomics. 2005;6(8):849–856. []. [PMID: 16296947].
    1. Samer C.F., Daali Y., Wagner M., Hopfgartner G., Eap C.B., Rebsamen M.C., Rossier M.F., Hochstrasser D., Dayer P., Desmeules J.A. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br. J. Pharmacol. 2010;160(4):919–930. [. 00709.x]. [PMID: 20590588].
    1. Zanger U.M., Klein K., Saussele T., Blievernicht J., Hofmann M.H., Schwab M. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics. 2007;8(7):743–759. []. [PMID: 17638512].
    1. Wang S.C., Ho I.K., Tsou H.H., Tian J.N., Hsiao C.F., Chen C.H., Tan H.K., Lin L., Wu C.S., Su L.W., Huang C.L., Yang Y.H., Liu M.L., Lin K.M., Chen C.Y., Liu S.C., Wu H.Y., Chan H.W., Tsai M.H., Lin P.S., Liu Y.L. CYP2B6 poly- morphisms influence the plasma concentration and clearance of the methadone S-enantiomer. J. Clin. Psychopharmacol. 2011;31(4):463–469. []. [PMID: 21694616].
    1. Yuan R., Zhang X., Deng Q., Wu Y., Xiang G. Impact of CYP3A4*1G polymorphism on metabolism of fentanyl in Chinese patients undergoing lower abdominal surgery. Clin. Chim. Acta. 2011;412(9-10):755–760. [. 12.038]. [PMID: 21223952].
    1. Naito T., Takashina Y., Yamamoto K., Tashiro M., Ohnishi K., Kagawa Y., Kawakami J. CYP3A5*3 affects plasma disposition of noroxycodone and dose escalation in cancer patients receiving oxycodone. J. Clin. Pharmacol. 2011;51(11):1529–1538. []. [PMID: 21209234].
    1. Duguay Y., Báár C., Skorpen F., Guillemette C. A novel functional polymorphism in the uridine diphosphate-glucuronosyl- transferase 2B7 promoter with significant impact on promoter activity. Clin. Pharmacol. Ther. 2004;75(3):223–233. [http://dx. ]. [PMID: 15001974].
    1. Darbari D.S., van Schaik R.H., Capparelli E.V., Rana S., McCarter R., van den Anker J. UGT2B7 promoter variant -840G>A contributes to the variability in hepatic clearance of morphine in patients with sickle cell disease. Am. J. Hematol. 2008;83(3):200–202. []. [PMID: 17724700].
    1. Somogyi A.A., Barratt D.T., Coller J.K. Pharmacogenetics of opioids. Clin. Pharmacol. Ther. 2007;81(3):429–444. [http://dx. ]. [PMID: 17339873].
    1. Thompson S.J., Koszdin K., Bernards C.M. Opiate-induced analgesia is increased and prolonged in mice lacking P-glyco- protein. Anesthesiology. 2000;92(5):1392–1399. [http://dx.doi. org/10.1097/00000542-200005000-00030]. [PMID: 10781286].
    1. Drewe J., Ball H.A., Beglinger C., Peng B., Kemmler A., Schächinger H., Haefeli W.E. Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br. J. Clin. Pharmacol. 2000;50(3):237–246. [http://dx. ]. [PMID: 10971308].
    1. Kharasch E.D., Hoffer C., Whittington D. The effect of quinidine, used as a probe for the involvement of P-glycoprotein, on the intestinal absorption and pharmacodynamics of methadone. Br. J. Clin. Pharmacol. 2004;57(5):600–610. [a].
    1. Kharasch E.D., Hoffer C., Altuntas T.G., Whittington D. Quinidine as a probe for the role of p-glycoprotein in the intestinal absorption and clinical effects of fentanyl. J. Clin. Pharmacol. 2004;44(3):224–233. [b].
    1. Ameyaw M.M., Regateiro F., Li T., Liu X., Tariq M., Mobarek A., Thornton N., Folayan G.O., Githanga J., Indalo A., Ofori-Adjei D., Price-Evans D.A., McLeod H.L. MDR1 phar- macogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics. 2001;11(3):217–221. []. [PMID: 11337937].
    1. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther. 2006;112(2):457–473. [. 2006.04.009]. [PMID: 16766035].
    1. Johne A., Köpke K., Gerloff T., Mai I., Rietbrock S., Meisel C., Hoffmeyer S., Kerb R., Fromm M.F., Brinkmann U., Eichelbaum M., Brockmöller J., Cascorbi I., Roots I. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glyco- protein MDR1 gene. Clin. Pharmacol. Ther. 2002;72(5):584–594. []. [PMID: 12426522].
    1. Argoff C.E. Clinical implications of opioid pharmacogenetics. Clin. J. Pain. 2010;26(Suppl. 10):S16–S20. [. 1097/AJP.0b013e3181c49e11]. [PMID: 20026961].
    1. Levran O., Awolesi O., Linzy S., Adelson M., Kreek M.J. Haplotype block structure of the genomic region of the mu opioid receptor gene. J. Hum. Genet. 2011;56(2):147–155. [http://dx.doi. org/10.1038/jhg.2010.150]. [PMID: 21160491].
    1. Lopez Soto E.J., Raingo J. A118G Mu Opioid Receptor polymorphism increases inhibitory effects on CaV2.2 channels. Neurosci. Lett. 2012;523(2):190–194. [ j.neulet.2012.06.074]. [PMID: 22796651].
    1. Menon S., Lea R.A., Roy B., Hanna M., Wee S., Haupt L.M., Griffiths L.R. The human μ-opioid receptor gene polymorphism (A118G) is associated with head pain severity in a clinical cohort of female migraine with aura patients. J. Headache Pain. 2012;13(7):513–519. []. [PMID: 22752568].
    1. Olsen M.B., Jacobsen L.M., Schistad E.I., Pedersen L.M., Rygh L.J., Røe C., Gjerstad J. Pain intensity the first year after lumbar disc herniation is associated with the A118G polymorphism in the opioid receptor mu 1 gene: evidence of a sex and genotype interaction. J. Neurosci. 2012;32(29):9831–9834. [http://dx.doi. org/10.1523/JNEUROSCI.1742-12.2012]. [PMID: 22815498].
    1. Kim H., Mittal D.P., Iadarola M.J., Dionne R.A. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J. Med. Genet. 2006;43(8):e40. [ 10.1136/jmg.2005.036079]. [PMID: 16882734].
    1. Rakvåg T.T., Klepstad P., Baar C., Kvam T.M., Dale O., Kaasa S., Krokan H.E., Skorpen F. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain. 2005;116(1-2):73–78. []. [PMID: 15927391].
    1. Tammimäki A., Männistö P.T. Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet. Genomics. 2012;22(9):673–691. []. [PMID: 22722321].
    1. Reyes-Gibby C.C., El Osta B., Spitz M.R., Parsons H., Kurzrock R., Wu X., Shete S., Bruera E. The influence of tumor necrosis factor-alpha -308 G/A and IL-6 -174 G/C on pain and analgesia response in lung cancer patients receiving supportive care. Cancer Epidemiol. Biomarkers Prev. 2008;17(11):3262–3267. []. [PMID: 18990769].
    1. Bessler H., Shavit Y., Mayburd E., Smirnov G., Beilin B. Postoperative pain, morphine consumption, and genetic polymorphism of IL-1beta and IL-1 receptor antagonist. Neurosci. Lett. 2006;404(1-2):154–158. [. 2006.05.030]. [PMID: 16777324].
    1. Berliocchi L., Russo R., Tassorelli C., Morrone L.A., Bagetta G., Corasaniti M.T. Death in pain: peripheral nerve injury and spinal neurodegenerative mechanisms. Curr. Opin. Pharmacol. 2012;12(1):49–54. []. [PMID: 22088890].
    1. Ji R.R., Kohno T., Moore K.A., Woolf C.J. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705. [ j.tins.2003.09.017]. [PMID: 14624855].
    1. Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. [. 018]. [PMID: 18191218].
    1. Berliocchi L., Russo R., Maiarù M., Levato A., Bagetta G., Corasaniti M.T. Autophagy impairment in a mouse model of neuropathic pain. Mol. Pain. 2011;7:83. [. 1186/1744-8069-7-83]. [PMID: 22023914].
    1. Shi G., Shi J., Liu K., Liu N., Wang Y., Fu Z., Ding J., Jia L., Yuan W. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia. 2013;61(4):504–512. []. [PMID: 23361941].

Source: PubMed

3
Abonnere