The importance of airway and lung microbiome in the critically ill

Ignacio Martin-Loeches, Robert Dickson, Antoni Torres, Håkan Hanberger, Jeffrey Lipman, Massimo Antonelli, Gennaro de Pascale, Fernando Bozza, Jean Louis Vincent, Srinivas Murthy, Michael Bauer, John Marshall, Catia Cilloniz, Lieuwe D Bos, Ignacio Martin-Loeches, Robert Dickson, Antoni Torres, Håkan Hanberger, Jeffrey Lipman, Massimo Antonelli, Gennaro de Pascale, Fernando Bozza, Jean Louis Vincent, Srinivas Murthy, Michael Bauer, John Marshall, Catia Cilloniz, Lieuwe D Bos

Abstract

During critical illness, there are a multitude of forces such as antibiotic use, mechanical ventilation, diet changes and inflammatory responses that could bring the microbiome out of balance. This so-called dysbiosis of the microbiome seems to be involved in immunological responses and may influence outcomes even in individuals who are not as vulnerable as a critically ill ICU population. It is therefore probable that dysbiosis of the microbiome is a consequence of critical illness and may, subsequently, shape an inadequate response to these circumstances.Bronchoscopic studies have revealed that the carina represents the densest site of bacterial DNA along healthy airways, with a tapering density with further bifurcations. This likely reflects the influence of micro-aspiration as the primary route of microbial immigration in healthy adults. Though bacterial DNA density grows extremely sparse at smaller airways, bacterial signal is still consistently detectable in bronchoalveolar lavage fluid, likely reflecting the fact that lavage via a wedged bronchoscope samples an enormous surface area of small airways and alveoli. The dogma of lung sterility also violated numerous observations that long predated culture-independent microbiology.The body's resident microbial consortia (gut and/or respiratory microbiota) affect normal host inflammatory and immune response mechanisms. Disruptions in these host-pathogen interactions have been associated with infection and altered innate immunity.In this narrative review, we will focus on the rationale and current evidence for a pathogenic role of the lung microbiome in the exacerbation of complications of critical illness, such as acute respiratory distress syndrome and ventilator-associated pneumonia.

Keywords: Infection; Microbiome; Pneumonia; Ventilator-associated pneumonia; Ventilator-associated tracheobronchitis.

Conflict of interest statement

No COIs to declare.

Figures

Fig. 1
Fig. 1
Algorithm of dysbiosis pathways in patients with pneumonia, ARDS and influence of mechanical ventilation. ARDS, acute respiratory distress syndrome
Fig. 2
Fig. 2
Island model for the development of lung injury based on sites of dysbiosis

References

    1. Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How can we define “optimal microbiota?”: a comparative review of structure and functions of microbiota of animals, fish, and plants in agriculture. Front Nutr. 2018;5 Available from: . Accessed 15 June 2020.
    1. Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nat Rev Microbiol. 2020:1–18 Available from: . [cited 2020 Jun 4].
    1. Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489:250–256.
    1. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024-33. 10.1111/cmi.12308. Epub 2014 Jun 2.
    1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
    1. Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet. 2012;13:151–170.
    1. Moeller AH, Ochman H. Factors that drive variation among gut microbial communities. Gut Microbes. 2013;4:403–408.
    1. Biteen JS, Blainey PC, Cardon ZG, Chun M, Church GM, Dorrestein PC, et al. Tools for the microbiome: nano and beyond. ACS Nano. 2016;10:6–37.
    1. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176:649–662.e20.
    1. McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, et al. Extreme dysbiosis of the microbiome in critical illness. Green Tringe S, editor. mSphere. 2016;1. Available from: . Accessed 15 June 2020.
    1. Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut microbiome composition. Nat Med. 2018;24:1495–1496.
    1. Cotran RS, Kumar V, Collins T, Robbins SL. Robbins pathologic basis of disease. Philadelphia: Saunders; 1999. p. 1425.
    1. Horikoshi K, Grant WD. Extremophiles. Microbial Life in Extreme Environments. New York: Wiley-Liss; 1998.
    1. Pasteur L. Expériences relatives aux générations dites spontanées. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences D: Sciences Naturelles L. 1860. pp. 303–307.
    1. Dürck H. Studien über die Aetiologie und Histologie der Pneumonie im Kindesalter und der Pneumonie im Allgemeinen. Centr Bakt. 1898;1:574.
    1. Quinn LH, Meyer OO. The relationship of sinusitis and bronchiectasis. Arch Otolaryngol. 1929;10:152–165.
    1. Hasleton PS. The internal surface area of the adult human lung. J Anat. 1972;112:391–400.
    1. Helander HF, Fändriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol. 2014;49:681–689.
    1. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms MDPI AG. Microorganisms. 2019;7(1):14. 10.3390/microorganisms7010014.
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
    1. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504.
    1. Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, et al. Application of a neutral community model to assess structuring of the human lung microbiome. MBio. 2015;6 Available from: . Accessed 15 June 2020.
    1. Segal LN, Clemente JC, Tsay J-CJ, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031.
    1. Dickson RP, Erb-Downward JR, Falkowski NR, Hunter EM, Ashley SL, Huffnagle GB. The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am J Respir Crit Care Med. 2018;198:497–508.
    1. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384:691–702.
    1. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015;6:e00037.
    1. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc, 12. 2015:821–30 Available from: . Accessed 15 June 2020.
    1. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacterial topography of the healthy human lower respiratory tract. MBio. 2017;8 Available from: . Accessed 15 June 2020.
    1. Tanner MA, Goebel BM, Dojka MA, Pace NR. Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol. 1998;64:3110–3113.
    1. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
    1. Dickson RP. The lung microbiome and ARDS. It is time to broaden the model. Am J Respir Crit Care Med. 2018;197:549–551.
    1. Kitsios GD, Morowitz MJ, Dickson RP, Huffnagle GB, McVerry BJ, Morris A. Dysbiosis in the intensive care unit: microbiome science coming to the bedside. J Crit Care. 2017;38:84–91.
    1. Navas-Molina JA, Peralta-Sánchez JM, González A, McMurdie PJ, Vázquez-Baeza Y, Xu Z, et al. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 2013;531:371–444.
    1. Zhang Y, Ji P, Wang J, Zhao F. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res. 2016;44:e99.
    1. Barfod KK, Roggenbuck M, Hansen LH, Schjørring S, Larsen ST, Sørensen SJ, et al. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 2013;13:303.
    1. Ren Y, Su H, She Y, Dai C, Xie D, Narrandes S, et al. Whole genome sequencing revealed microbiome in lung adenocarcinomas presented as ground-glass nodules. Transl Lung Cancer Res. 2019;8:235–246.
    1. Fox GE, Magrum LJ, Balch WE, Wolfe RS, Woese CR. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A. 1977;74:4537–4541.
    1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979;43:260–296.
    1. Langelier C, Kalantar KL, Moazed F, Wilson MR, Crawford ED, Deiss T, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci. 2018;115:E12353–E12362.
    1. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28:595–599.
    1. Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, et al. Attomolar DNA detection with chiral nanorod assemblies. Nat Commun. 2013;4:2689.
    1. Lee J, Zhou M, Zhu H, Nidetz R, Kurabayashi K, Fan X. Fully automated portable comprehensive 2-dimensional gas chromatography device. Anal Chem. 2016;88:10266–10274.
    1. van Oort PMP, Nijsen T, Weda H, Knobel H, Dark P, Felton T, et al. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study. BMC Pulm Med. 2017;17:1.
    1. Kyo M, Nishioka K, Nakaya T, Kida Y, Tanabe Y, Ohshimo S, et al. Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome. Respir Res. 2019;20:246.
    1. Dickson RP, Schultz MJ, van der Poll T, Schouten LR, Falkowski NR, Luth JE, et al. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med. 2020; Available from: . Accessed 15 June 2020.
    1. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019;20:1279–1290.
    1. Mandell LA, Niederman MS. Aspiration pneumonia. Longo DL, editor. N. Engl. J. Med. Massachussetts Medical Society; 2019. p. 651–63. Available from: . [cited 2020 Jun 4].
    1. Zakharkina T, Martin-Loeches I, Matamoros S, Povoa P, Torres A, Kastelijn JB, et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax. 2017;72(9):803-10. 10.1136/thoraxjnl-2016-209158. Epub 2017 Jan 18.
    1. Emonet S, Lazarevic V, Leemann Refondini C, Gaïa N, Leo S, Girard M, et al. Identification of respiratory microbiota markers in ventilator-associated pneumonia. Intensive Care Med. 2019;45(8):1082-92. 10.1007/s00134-019-05660-8. Epub 2019 Jun 17.
    1. Madan JC, Salari RC, Saxena D, Davidson L, O’Toole GA, Moore JH, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child - Fetal Neonatal Ed. 2012;97:F456–F462.
    1. Otani S, Chihade DB, Coopersmith CM. Critical illness and the role of the microbiome. Acute Med Surg. 2019;6:91–94.
    1. Souza DG, Vieira AT, Soares AC, Pinho V, Nicoli JR, Vieira LQ, et al. The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J Immunol. 2004;173:4137–4146.
    1. Hranjec T, Rosenberger LH, Swenson B, Metzger R, Flohr TR, Politano AD, et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis. 2012;12:774–780.
    1. Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J Biol Med. 2018;91:143–149.
    1. Frisbee AL, Petri WA. Considering the immune system during fecal microbiota transplantation for Clostridioides difficile infection. Trends Mol Med. 2020;26(5):496-507. 10.1016/j.molmed.2020.01.009. Epub 2020 Feb 17.
    1. Tavoukjian V. Faecal microbiota transplantation for the decolonization of antibiotic-resistant bacteria in the gut: a systematic review and meta-analysis. J Hosp Infect. 2019;102(2):174-88. 10.1016/j.jhin.2019.03.010. Epub 2019 Mar 26.
    1. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med. 2016;43:59–68.
    1. Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med. 2017;45:337–347.
    1. Johnstone J, Heels-Ansdell D, Thabane L, Meade M, Marshall J, Lauzier F, et al. Evaluating probiotics for the prevention of ventilator-associated pneumonia: a randomised placebo-controlled multicentre trial protocol and statistical analysis plan for PROSPECT. BMJ Open. 2019;9:e025228.
    1. Freedberg DE, Zhou MJ, Cohen ME, Annavajhala MK, Khan S, Moscoso DI, et al. Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection. Intensive Care Med. 2018;44:1203–1211.
    1. Iapichino G, Callegari ML, Marzorati S, Cigada M, Corbella D, Ferrari S, et al. Impact of antibiotics on the gut microbiota of critically ill patients. J Med Microbiol. 2008;57:1007–1014.
    1. Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1:16113.
    1. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8:52.
    1. van Ruissen MCE, Bos LD, Dickson RP, Dondorp AM, Schultsz C, Schultz MJ. Manipulation of the microbiome in critical illness-probiotics as a preventive measure against ventilator-associated pneumonia. Intensive Care Med Exp. 2019;7:37.
    1. Weng H, Li J-G, Mao Z, Feng Y, Wang C-Y, Ren X-Q, et al. Probiotics for preventing ventilator-associated pneumonia in mechanically ventilated patients: a meta-analysis with trial sequential analysis. Front Pharmacol. 2017;8:717.
    1. Morrow LE, Wischmeyer P. Blurred lines: dysbiosis and probiotics in the ICU. Chest. 2017;151:492–499.
    1. Buelow E, Gonzalez TB, Versluis D, Oostdijk EAN, Ogilvie LA, van Mourik MSM, et al. Effects of selective digestive decontamination (SDD) on the gut resistome. J Antimicrob Chemother. 2014;69:2215–2223.
    1. Wittekamp BH, Plantinga NL, Cooper BS, Lopez-Contreras J, Coll P, Mancebo J, et al. Decontamination strategies and bloodstream infections with antibiotic-resistant microorganisms in ventilated patients: a randomized clinical trial. JAMA. 2018;320:2087–2098.
    1. de Smet AMGA, Kluytmans JAJW, Cooper BS, Mascini EM, Benus RFJ, van der Werf TS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360:20–31.
    1. Goldstein EJC, Tyrrell KL, Citron DM. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 2015;60(Suppl 2):S98–107.
    1. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.
    1. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502:96–99.
    1. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–858.
    1. Segal LN, Clemente JC, Wu BG, Wikoff WR, Gao Z, Li Y, et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax. 2017;72:13 LP–13 22.
    1. Lax S, Gilbert JA. Hospital-associated microbiota and implications for nosocomial infections. Trends Mol Med. 2015;21:427–432.
    1. Kaul R, Burt JA, Cork L, Dedier H, Garcia M, Kennedy C, et al. Investigation of a multiyear multiple critical care unit outbreak due to relatively drug-sensitive Acinetobacter baumannii: risk factors and attributable mortality. J Infect Dis. 1996;174:1279–1287.

Source: PubMed

3
Abonnere