Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis

Lich Thi Nguyen, Ashish Ranjan Sharma, Chiranjib Chakraborty, Balaji Saibaba, Moo-Eob Ahn, Sang-Soo Lee, Lich Thi Nguyen, Ashish Ranjan Sharma, Chiranjib Chakraborty, Balaji Saibaba, Moo-Eob Ahn, Sang-Soo Lee

Abstract

Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.).

Keywords: biomarker; genetic marker; inflammatory marker; marker of joint metabolism; osteoarthritis (OA).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Model of pathologic progression of osteoarthritis (OA). OA is a slow, progressive disease. (A) Normal joint without any damages; (B) Early OA is always difficult to detect, characterized by cartilage degeneration and release of breakdown products into the synovial fluid environment; (C) Late OA is an obvious event, with cartilage loss (fibrillation and erosion of articular cartilage) and osteophyte formation. Damage of the subchondral bone, synovium and capsule may also occur (bone sclerosis, synovitis, and fibrosis, respectively).
Figure 2
Figure 2
Schematic diagram of cartilage-, bone- and synovium-derived markers in osteoarthritis. Articular cartilage, subchondral bone and synovium are the main sources of many osteoarthritis markers. Generation of these molecular markers is closely related to metabolism of bone, cartilage and synovium via activities of chondrocytes, osteoblasts, osteoclasts and synoviocytes. In addition, inflammatory markers, such as growth factors and cytokines, are derived from the activities of chondrocytes, macrophages and even osteoblasts and osteoclasts.

References

    1. Brandt K.D., Radin E.L., Dieppe P.A., van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis. 2006;65:1261–1264. doi: 10.1136/ard.2006.058347.
    1. Pap T., Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis—Two unequal siblings. Nat. Rev. Rheumatol. 2015;11:606–615. doi: 10.1038/nrrheum.2015.95.
    1. Lawrence R.C., Felson D.T., Helmick C.G., Arnold L.M., Choi H., Deyo R.A., Gabriel S., Hirsch R., Hochberg M.C., Hunder G.G., et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheumatol. 2008;58:26–35. doi: 10.1002/art.23176.
    1. Massart F., Reginster J.Y., Brandi M.L. Genetics of menopause-associated diseases. Maturitas. 2001;40:103–116. doi: 10.1016/S0378-5122(01)00283-3.
    1. Teichtahl A.J., Wang Y., Wluka A.E., Cicuttini F.M. Obesity and knee osteoarthritis: New insights provided by body composition studies. Obesity (Silver Spring) 2008;16:232–240. doi: 10.1038/oby.2007.30.
    1. Blom A.B., van Lent P.L., Libregts S., Holthuysen A.E., van der Kraan P.M., van Rooijen N., van den Berg W.B. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: Involvement of matrix metalloproteinase 3. Arthritis Rheum. 2007;56:147–157. doi: 10.1002/art.22337.
    1. Zhen G., Wen C., Jia X., Li Y., Crane J.L., Mears S.C., Askin F.B., Frassica F.J., Chang W., Yao J., et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 2013;19:704–712. doi: 10.1038/nm.3143.
    1. Favero M., Ramonda R., Goldring M.B., Goldring S.R., Punzi L. Early knee osteoarthritis. RMD Open. 2015;1:e000062. doi: 10.1136/rmdopen-2015-000062.
    1. Ramonda R., Favero M., Vio S., Lacognata C., Frallonardo P., Belluzzi E., Campana C., Lorenzin M., Ortolan A., Angelini F., et al. A recently developed MRI scoring system for hand osteoarthritis: Its application in a clinical setting. Clin. Rheumatol. 2016;35:2079–2086. doi: 10.1007/s10067-016-3303-0.
    1. Saarakkala S., Waris P., Waris V., Tarkiainen I., Karvanen E., Aarnio J., Koski J.M. Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage. Osteoarthr. Cartil. 2012;20:376–381. doi: 10.1016/j.joca.2012.01.016.
    1. Kobayashi T., Yoshihara Y., Yamada H., Fujikawa K. Procollagen IIc-peptide as a marker for assessing mechanical risk factors of knee osteoarthritis: Effect of obesity and varus alignment. Ann. Rheum. Dis. 2000;59:982–984. doi: 10.1136/ard.59.12.982.
    1. Rousseau J.C., Sandell L.J., Delmas P.D., Garnero P. Development and clinical application in arthritis of a new immunoassay for serum type IIa procollagen NH2 propeptide. Methods Mol. Med. 2004;101:25–37.
    1. Rousseau J.C., Zhu Y., Miossec P., Vignon E., Sandell L.J., Garnero P., Delmas P.D. Serum levels of type IIa procollagen amino terminal propeptide (PIIANP) are decreased in patients with knee osteoarthritis and rheumatoid arthritis. Osteoarthr. Cartil. 2004;12:440–447. doi: 10.1016/j.joca.2004.02.004.
    1. Sharif M., Kirwan J., Charni N., Sandell L.J., Whittles C., Garnero P. A 5-yr longitudinal study of type IIa collagen synthesis and total type ii collagen degradation in patients with knee osteoarthritis—Association with disease progression. Rheumatology. 2007;46:938–943. doi: 10.1093/rheumatology/kel409.
    1. Garnero P., Ayral X., Rousseau J.C., Christgau S., Sandell L.J., Dougados M., Delmas P.D. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum. 2002;46:2613–2624. doi: 10.1002/art.10576.
    1. Kraus V.B., Collins J.E., Hargrove D., Losina E., Nevitt M., Katz J.N., Wang S.X., Sandell L.J., Hoffmann S.C., Hunter D.J., et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: Data from the fnih oa biomarkers consortium. Ann. Rheum. Dis. 2017;76:186–195. doi: 10.1136/annrheumdis-2016-209252.
    1. Jung M., Christgau S., Lukoschek M., Henriksen D., Richter W. Increased urinary concentration of collagen type II c-telopeptide fragments in patients with osteoarthritis. Pathobiology. 2004;71:70–76. doi: 10.1159/000074419.
    1. Meulenbelt I., Kloppenburg M., Kroon H.M., Houwing-Duistermaat J.J., Garnero P., Hellio Le Graverand M.P., Degroot J., Slagboom P.E. Urinary CTX-II levels are associated with radiographic subtypes of osteoarthritis in hip, knee, hand, and facet joints in subject with familial osteoarthritis at multiple sites: The garp study. Ann. Rheum. Dis. 2006;65:360–365. doi: 10.1136/ard.2005.040642.
    1. Rotterud J.H., Reinholt F.P., Beckstrom K.J., Risberg M.A., Aroen A. Relationship between CTX-II and patient characteristics, patient-reported outcome, muscle strength, and rehabilitation in patients with a focal cartilage lesion of the knee: A prospective exploratory cohort study of 48 patients. BMC Musculoskelet. Disord. 2014;15:99. doi: 10.1186/1471-2474-15-99.
    1. Tanishi N., Yamagiwa H., Hayami T., Mera H., Koga Y., Omori G., Endo N. Usefulness of urinary CTX-II and NTX-I in evaluating radiological knee osteoarthritis : The matsudai knee osteoarthritis survey. J. Orthop. Sci. 2014;19:429–436. doi: 10.1007/s00776-014-0535-1.
    1. Gungen G.O., Ardic F., Findikoglu G., Rota S. Effect of mud compress therapy on cartilage destruction detected by ctx-ii in patients with knee osteoarthritis. J. Back Musculoskelet. Rehabil. 2016;29:429–438. doi: 10.3233/BMR-150629.
    1. Garnero P., Conrozier T., Christgau S., Mathieu P., Delmas P.D., Vignon E. Urinary type II collagen c-telopeptide levels are increased in patients with rapidly destructive hip osteoarthritis. Ann. Rheum. Dis. 2003;62:939–943. doi: 10.1136/ard.62.10.939.
    1. Lohmander L.S., Atley L.M., Pietka T.A., Eyre D.R. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum. 2003;48:3130–3139. doi: 10.1002/art.11326.
    1. Conrozier T., Poole A.R., Ferrand F., Mathieu P., Vincent F., Piperno M., Verret C., Ionescu M., Vignon E. Serum concentrations of type II collagen biomarkers (C2C, C1, 2C and CPII) suggest different pathophysiologies in patients with hip osteoarthritis. Clin. Exp. Rheumatol. 2008;26:430–435.
    1. Kumahashi N., Sward P., Larsson S., Lohmander L.S., Frobell R., Struglics A. Type II collagen C2C epitope in human synovial fluid and serum after knee injury—Associations with molecular and structural markers of injury. Osteoarthr. Cartil. 2015;23:1506–1512. doi: 10.1016/j.joca.2015.04.022.
    1. He G., Chen X., Zhang G., Lin H., Li R., Wu X. Detection of urine C2C and trace element level in patients with knee osteoarthritis. Cell Biochem. Biophys. 2014;70:475–479. doi: 10.1007/s12013-014-9943-2.
    1. Bay-Jensen A.C., Liu Q., Byrjalsen I., Li Y., Wang J., Pedersen C., Leeming D.J., Dam E.B., Zheng Q., Qvist P., et al. Enzyme-linked immunosorbent assay (elisas) for metalloproteinase derived type II collagen neoepitope, CIIM—Increased serum ciim in subjects with severe radiographic osteoarthritis. Clin. Biochem. 2011;44:423–429. doi: 10.1016/j.clinbiochem.2011.01.001.
    1. Charni N., Juillet F., Garnero P. Urinary type II collagen helical peptide (helix-II) as a new biochemical marker of cartilage degradation in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 2005;52:1081–1090. doi: 10.1002/art.20930.
    1. Punzi L., Ramonda R., Deberg M., Frallonardo P., Campana C., Musacchio E., Henrotin Y. Coll2-1, Coll2-1NO2 and myeloperoxidase serum levels in erosive and non-erosive osteoarthritis of the hands. Osteoarthr. Cartil. 2012;20:557–561. doi: 10.1016/j.joca.2012.02.638.
    1. Hosseininia S., Weis M.A., Rai J., Kim L., Funk S., Dahlberg L.E., Eyre D.R. Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage. Osteoarthr. Cartil. 2016 doi: 10.1016/j.joca.2016.01.001.
    1. He Y., Siebuhr A.S., Brandt-Hansen N.U., Wang J., Su D., Zheng Q., Simonsen O., Petersen K.K., Arendt-Nielsen L., Eskehave T., et al. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. BMC Musculoskelet. Disord. 2014;15:309. doi: 10.1186/1471-2474-15-309.
    1. Lohmander L.S., Ionescu M., Jugessur H., Poole A.R. Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum. 1999;42:534–544. doi: 10.1002/1529-0131(199904)42:3<534::AID-ANR19>;2-J.
    1. Larsson S., Lohmander L.S., Struglics A. Synovial fluid level of aggrecan args fragments is a more sensitive marker of joint disease than glycosaminoglycan or aggrecan levels: A cross-sectional study. Arthritis Res. Ther. 2009;11:R92. doi: 10.1186/ar2735.
    1. Germaschewski F.M., Matheny C.J., Larkin J., Liu F., Thomas L.R., Saunders J.S., Sully K., Whittall C., Boyle Y., Peters G., et al. Quantitation of ARGS aggrecan fragments in synovial fluid, serum and urine from osteoarthritis patients. Osteoarthr. Cartil. 2014;22:690–697. doi: 10.1016/j.joca.2014.02.930.
    1. Fernandes F.A., Pucinelli M.L., da Silva N.P., Feldman D. Serum cartilage oligomeric matrix protein (COMP) levels in knee osteoarthritis in a Brazilian population: Clinical and radiological correlation. Scand. J. Rheumatol. 2007;36:211–215. doi: 10.1080/03009740601154186.
    1. Verma P., Dalal K. Serum cartilage oligomeric matrix protein (COMP) in knee osteoarthritis: A novel diagnostic and prognostic biomarker. J. Orthop. Res. 2013;31:999–1006. doi: 10.1002/jor.22324.
    1. Senolt L., Braun M., Olejarova M., Forejtova S., Gatterova J., Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann. Rheum. Dis. 2005;64:886–890. doi: 10.1136/ard.2004.029140.
    1. Pavelka K., Forejtova S., Olejarova M., Gatterova J., Senolt L., Spacek P., Braun M., Hulejova M., Stovickova J., Pavelkova A. Hyaluronic acid levels may have predictive value for the progression of knee osteoarthritis. Osteoarthr. Cartil. 2004;12:277–283. doi: 10.1016/j.joca.2004.01.001.
    1. Wang Y., Li D., Xu N., Tao W., Zhu R., Sun R., Fan W., Zhang P., Dong T., Yu L. Follistatin-like protein 1: A serum biochemical marker reflecting the severity of joint damage in patients with osteoarthritis. Arthritis Res. Ther. 2011;13:R193. doi: 10.1186/ar3522.
    1. Henrotin Y., Gharbi M., Mazzucchelli G., Dubuc J.E., De Pauw E., Deberg M. Fibulin 3 peptides Fib3-1 and Fib3-2 are potential biomarkers of osteoarthritis. Arthritis Rheum. 2012;64:2260–2267. doi: 10.1002/art.34392.
    1. Runhaar J., Sanchez C., Taralla S., Henrotin Y., Bierma-Zeinstra S.M. Fibulin-3 fragments are prognostic biomarkers of osteoarthritis incidence in overweight and obese women. Osteoarthr. Cartil. 2016;24:672–678. doi: 10.1016/j.joca.2015.10.013.
    1. Li H., Li L., Min J., Yang H., Xu X., Yuan Y., Wang D. Levels of metalloproteinase (MMP-3, MMP-9), NF-kappab ligand (RANKL), and nitric oxide (NO) in peripheral blood of osteoarthritis (OA) patients. Clin. Lab. 2012;58:755–762.
    1. Rubenhagen R., Schuttrumpf J.P., Sturmer K.M., Frosch K.H. Interleukin-7 levels in synovial fluid increase with age and MMP-1 levels decrease with progression of osteoarthritis. Acta Orthop. 2012;83:59–64. doi: 10.3109/17453674.2011.645195.
    1. Ozler K., Aktas E., Atay C., Yilmaz B., Arikan M., Gungor S. Serum and knee synovial fluid matrix metalloproteinase-13 and tumor necrosis factor-alpha levels in patients with late-stage osteoarthritis. Acta Orthop. Traumatol. Turc. 2016;50:356–361. doi: 10.1016/j.aott.2015.11.003.
    1. Li W., Du C., Wang H., Zhang C. Increased serum ADAMTS-4 in knee osteoarthritis: A potential indicator for the diagnosis of osteoarthritis in early stages. Genet. Mol. Res. 2014;13:9642–9649. doi: 10.4238/2014.November.14.9.
    1. Ishiguro N., Ito T., Ito H., Iwata H., Jugessur H., Ionescu M., Poole A.R. Relationship of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover: Analyses of synovial fluid from patients with osteoarthritis. Arthritis Rheum. 1999;42:129–136. doi: 10.1002/1529-0131(199901)42:1<129::AID-ANR16>;2-4.
    1. Kumm J., Tamm A., Lintrop M. Diagnostic and prognostic value of bone biomarkers in progressive knee osteoarthritis: A 6-year follow-up study in middle-aged subjects. Osteoarthr. Cartil. 2013;21:815–822. doi: 10.1016/j.joca.2013.03.008.
    1. Bettica P., Cline G., Hart D.J., Meyer J., Spector T.D. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: Longitudinal results from the chingford study. Arthritis Rheum. 2002;46:3178–3184. doi: 10.1002/art.10630.
    1. Huebner J.L., Bay-Jensen A.C., Huffman K.M., He Y., Leeming D.J., McDaniel G.E., Karsdal M.A., Kraus V.B. Alpha c-telopeptide of type I collagen is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis. Arthritis Rheumatol. 2014;66:2440–2449. doi: 10.1002/art.38739.
    1. Graverand M.P., Tron A.M., Ichou M., Dallard M.C., Richard M., Uebelhart D., Vignon E. Assessment of urinary hydroxypyridinium cross-links measurement in osteoarthritis. Br. J. Rheumatol. 1996;35:1091–1095. doi: 10.1093/rheumatology/35.11.1091.
    1. Sasaki E., Tsuda E., Yamamoto Y., Iwasaki K., Inoue R., Takahashi I., Sawada K., Fujita H., Umeda T., Nakaji S., et al. Serum hyaluronan levels increase with the total number of osteoarthritic joints and are strongly associated with the presence of knee and finger osteoarthritis. Int. Orthop. 2013;37:925–930. doi: 10.1007/s00264-013-1849-x.
    1. Filkova M., Senolt L., Braun M., Hulejova H., Pavelkova A., Sleglova O., Kupka K., Gatterova J., Pavelka K. Serum hyaluronic acid as a potential marker with a predictive value for further radiographic progression of hand osteoarthritis. Osteoarthr. Cartil. 2009;17:1615–1619. doi: 10.1016/j.joca.2009.06.002.
    1. Kaneko H., Ishijima M., Doi T., Futami I., Liu L., Sadatsuki R., Yusup A., Hada S., Kubota M., Kawasaki T., et al. Reference intervals of serum hyaluronic acid corresponding to the radiographic severity of knee osteoarthritis in women. BMC Musculoskelet. Disord. 2013;14:34. doi: 10.1186/1471-2474-14-34.
    1. Conrozier T., Carlier M.C., Mathieu P., Colson F., Debard A.L., Richard S., Favret H., Bienvenu J., Vignon E. Serum levels of YKL-40 and C reactive protein in patients with hip osteoarthritis and healthy subjects: A cross sectional study. Ann. Rheum. Dis. 2000;59:828–831. doi: 10.1136/ard.59.10.828.
    1. Vaananen T., Koskinen A., Paukkeri E.L., Hamalainen M., Moilanen T., Moilanen E., Vuolteenaho K. YKL-40 as a novel factor associated with inflammation and catabolic mechanisms in osteoarthritic joints. Mediat. Inflamm. 2014;2014:215140. doi: 10.1155/2014/215140.
    1. Guan J., Liu Z., Li F., Feng J.S., Wang H.J., Chu J.G., Song Y.Z., Xie L., Ding L.B. Increased synovial fluid YKL-40 levels are linked with symptomatic severity in knee osteoarthritis patients. Clin. Lab. 2015;61:991–997. doi: 10.7754/Clin.Lab.2015.150135.
    1. Jordan K.M., Syddall H.E., Garnero P., Gineyts E., Dennison E.M., Sayer A.A., Delmas P.D., Cooper C., Arden N.K. Urinary CTX-II and glucosyl-galactosyl-pyridinoline are associated with the presence and severity of radiographic knee osteoarthritis in men. Ann. Rheum. Dis. 2006;65:871–877. doi: 10.1136/ard.2005.042895.
    1. Garnero P., Piperno M., Gineyts E., Christgau S., Delmas P.D., Vignon E. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: Relations with disease activity and joint damage. Ann. Rheum. Dis. 2001;60:619–626. doi: 10.1136/ard.60.6.619.
    1. Aigner T., Zhu Y., Chansky H.H., Matsen F.A., 3rd, Maloney W.J., Sandell L.J. Reexpression of type IIa procollagen by adult articular chondrocytes in osteoarthritic cartilage. Arthritis Rheum. 1999;42:1443–1450. doi: 10.1002/1529-0131(199907)42:7<1443::AID-ANR18>;2-A.
    1. Clutter S.D., Wilson D.C., Marinov A.D., Hirsch R. Follistatin-like protein 1 promotes arthritis by up-regulating IFN-gamma. J. Immunol. 2009;182:234–239. doi: 10.4049/jimmunol.182.1.234.
    1. Malfait A.M., Liu R.Q., Ijiri K., Komiya S., Tortorella M.D. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J. Biol. Chem. 2002;277:22201–22208. doi: 10.1074/jbc.M200431200.
    1. Neuhold L.A., Killar L., Zhao W., Sung M.L., Warner L., Kulik J., Turner J., Wu W., Billinghurst C., Meijers T., et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Investig. 2001;107:35–44. doi: 10.1172/JCI10564.
    1. Murphy G., Nagase H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: Destruction or repair? Nat. Clin. Pract. Rheumatol. 2008;4:128–135. doi: 10.1038/ncprheum0727.
    1. Yang P.J., Temenoff J.S. Engineering orthopedic tissue interfaces. Tissue Eng. Part B Rev. 2009;15:127–141. doi: 10.1089/ten.teb.2008.0371.
    1. Blair-Levy J.M., Watts C.E., Fiorentino N.M., Dimitriadis E.K., Marini J.C., Lipsky P.E. A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum. 2008;58:1096–1106. doi: 10.1002/art.23277.
    1. Ivaska K.K., Hentunen T.A., Vaaraniemi J., Ylipahkala H., Pettersson K., Vaananen H.K. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J. Biol. Chem. 2004;279:18361–18369. doi: 10.1074/jbc.M314324200.
    1. Hui A.Y., McCarty W.J., Masuda K., Firestein G.S., Sah R.L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012;4:15–37. doi: 10.1002/wsbm.157.
    1. Johansen J.S., Olee T., Price P.A., Hashimoto S., Ochs R.L., Lotz M. Regulation of YKL-40 production by human articular chondrocytes. Arthritis Rheum. 2001;44:826–837. doi: 10.1002/1529-0131(200104)44:4<826::AID-ANR139>;2-U.
    1. Hakala B.E., White C., Recklies A.D. Human cartilage GP-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J. Biol. Chem. 1993;268:25803–25810.
    1. De Ceuninck F., Gaufillier S., Bonnaud A., Sabatini M., Lesur C., Pastoureau P. YKL-40 (cartilage GP-39) induces proliferative events in cultured chondrocytes and synoviocytes and increases glycosaminoglycan synthesis in chondrocytes. Biochem. Biophys. Res. Commun. 2001;285:926–931. doi: 10.1006/bbrc.2001.5253.
    1. Gineyts E., Garnero P., Delmas P.D. Urinary excretion of glucosyl-galactosyl pyridinoline: A specific biochemical marker of synovium degradation. Rheumatology. 2001;40:315–323. doi: 10.1093/rheumatology/40.3.315.
    1. Pelletier J.P., Martel-Pelletier J., Abramson S.B. Osteoarthritis, an inflammatory disease: Potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–1247. doi: 10.1002/1529-0131(200106)44:6<1237::AID-ART214>;2-F.
    1. Benito M.J., Veale D.J., FitzGerald O., van den Berg W.B., Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 2005;64:1263–1267. doi: 10.1136/ard.2004.025270.
    1. Myers S.L., Brandt K.D., Ehlich J.W., Braunstein E.M., Shelbourne K.D., Heck D.A., Kalasinski L.A. Synovial inflammation in patients with early osteoarthritis of the knee. J. Rheumatol. 1990;17:1662–1669.
    1. Hennerbichler A., Moutos F.T., Hennerbichler D., Weinberg J.B., Guilak F. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthr. Cartil. 2007;15:1053–1060. doi: 10.1016/j.joca.2007.03.003.
    1. Inoue H., Hiraoka K., Hoshino T., Okamoto M., Iwanaga T., Zenmyo M., Shoda T., Aizawa H., Nagata K. High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone. 2008;42:1102–1110. doi: 10.1016/j.bone.2008.01.031.
    1. Attur M., Statnikov A., Samuels J., Li Z., Alekseyenko A.V., Greenberg J.D., Krasnokutsky S., Rybak L., Lu Q.A., Todd J., et al. Plasma levels of interleukin-1 receptor antagonist (IL-1Ra) predict radiographic progression of symptomatic knee osteoarthritis. Osteoarthr. Cartil. 2015;23:1915–1924. doi: 10.1016/j.joca.2015.08.006.
    1. Stannus O., Jones G., Cicuttini F., Parameswaran V., Quinn S., Burgess J., Ding C. Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr. Cartil. 2010;18:1441–1447. doi: 10.1016/j.joca.2010.08.016.
    1. Penninx B.W., Abbas H., Ambrosius W., Nicklas B.J., Davis C., Messier S.P., Pahor M. Inflammatory markers and physical function among older adults with knee osteoarthritis. J. Rheumatol. 2004;31:2027–2031.
    1. Stannus O.P., Jones G., Quinn S.J., Cicuttini F.M., Dore D., Ding C. The association between leptin, interleukin-6, and hip radiographic osteoarthritis in older people: A cross-sectional study. Arthritis Res. Ther. 2010;12:R95. doi: 10.1186/ar3022.
    1. Shimura Y., Kurosawa H., Sugawara Y., Tsuchiya M., Sawa M., Kaneko H., Futami I., Liu L., Sadatsuki R., Hada S., et al. The factors associated with pain severity in patients with knee osteoarthritis vary according to the radiographic disease severity: A cross-sectional study. Osteoarthr. Cartil. 2013;21:1179–1184. doi: 10.1016/j.joca.2013.05.014.
    1. Livshits G., Zhai G., Hart D.J., Kato B.S., Wang H., Williams F.M., Spector T.D. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford study. Arthritis Rheum. 2009;60:2037–2045. doi: 10.1002/art.24598.
    1. Sun J.M., Sun L.Z., Liu J., Su B.H., Shi L. Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Dis. Markers. 2013;35:203–206. doi: 10.1155/2013/176278.
    1. Wang Y., Xu D., Long L., Deng X., Tao R., Huang G. Correlation between plasma, synovial fluid and articular cartilage interleukin-18 with radiographic severity in 33 patients with osteoarthritis of the knee. Clin. Exp. Med. 2014;14:297–304. doi: 10.1007/s10238-013-0251-8.
    1. Mabey T., Honsawek S., Tanavalee A., Yuktanandana P., Wilairatana V., Poovorawan Y. Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers. 2016;21:639–644. doi: 10.3109/1354750X.2016.1171907.
    1. Zhao X.Y., Yang Z.B., Zhang Z.J., Zhang Z.Q., Kang Y., Huang G.X., Wang S.W., Huang H., Liao W.M. CCL3 serves as a potential plasma biomarker in knee degeneration (osteoarthritis) Osteoarthr. Cartil. 2015;23:1405–1411. doi: 10.1016/j.joca.2015.04.002.
    1. Pierzchala A.W., Kusz D.J., Hajduk G. CXCL8 and CCL5 expression in synovial fluid and blood serum in patients with osteoarthritis of the knee. Arch. Immunol. Ther. Exp. 2011;59:151–155. doi: 10.1007/s00005-011-0115-4.
    1. Saetan N., Honsawek S., Tanavalee A., Yuktanandana P., Meknavin S., Ngarmukos S., Tanpowpong T., Parkpian V. Relationship of plasma and synovial fluid vascular endothelial growth factor with radiographic severity in primary knee osteoarthritis. Int. Orthop. 2014;38:1099–1104. doi: 10.1007/s00264-013-2192-y.
    1. Attur M., Krasnokutsky S., Statnikov A., Samuels J., Li Z., Friese O., Hellio Le Graverand-Gastineau M.P., Rybak L., Kraus V.B., Jordan J.M., et al. Low-grade inflammation in symptomatic knee osteoarthritis: Prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis Rheumatol. 2015;67:2905–2915. doi: 10.1002/art.39279.
    1. Sanchez-Ramirez D.C., van der Leeden M., van der Esch M., Gerritsen M., Roorda L.D., Verschueren S., van Dieen J., Dekker J., Lems W.F. Association of serum C-reactive protein and erythrocyte sedimentation rate with muscle strength in patients with knee osteoarthritis. Rheumatology. 2013;52:727–732. doi: 10.1093/rheumatology/kes366.
    1. Stannus O.P., Jones G., Blizzard L., Cicuttini F.M., Ding C. Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: A prospective cohort study. Ann. Rheum. Dis. 2013;72:535–540. doi: 10.1136/annrheumdis-2011-201047.
    1. Arendt-Nielsen L., Eskehave T.N., Egsgaard L.L., Petersen K.K., Graven-Nielsen T., Hoeck H.C., Simonsen O., Siebuhr A.S., Karsdal M., Bay-Jensen A.C. Association between experimental pain biomarkers and serologic markers in patients with different degrees of painful knee osteoarthritis. Arthritis Rheumatol. 2014;66:3317–3326. doi: 10.1002/art.38856.
    1. Punzi L., Ramonda R., Oliviero F., Sfriso P., Mussap M., Plebani M., Podswiadek M., Todesco S. Value of C reactive protein in the assessment of erosive osteoarthritis of the hand. Ann. Rheum. Dis. 2005;64:955–957. doi: 10.1136/ard.2004.029892.
    1. Saberi Hosnijeh F., Siebuhr A.S., Uitterlinden A.G., Oei E.H., Hofman A., Karsdal M.A., Bierma-Zeinstra S.M., Bay-Jensen A.C., van Meurs J.B. Association between biomarkers of tissue inflammation and progression of osteoarthritis: Evidence from the Rotterdam study cohort. Arthritis Res. Ther. 2016;18:81. doi: 10.1186/s13075-016-0976-3.
    1. Koskinen A., Juslin S., Nieminen R., Moilanen T., Vuolteenaho K., Moilanen E. Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res. Ther. 2011;13:R184. doi: 10.1186/ar3512.
    1. Oliviero F., Sfriso P., Baldo G., Dayer J.M., Giunco S., Scanu A., Bernardi D., Ramonda R., Plebani M., Punzi L. Apolipoprotein A-I and cholesterol in synovial fluid of patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Clin. Exp. Rheumatol. 2009;27:79–83.
    1. Li L., Jiang B.E. Serum and synovial fluid chemokine ligand 2/monocyte chemoattractant protein 1 concentrations correlates with symptomatic severity in patients with knee osteoarthritis. Ann. Clin. Biochem. 2015;52:276–282. doi: 10.1177/0004563214545117.
    1. Guerne P.A., Carson D.A., Lotz M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immunol. 1990;144:499–505.
    1. Lotz M., Terkeltaub R., Villiger P.M. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. J. Immunol. 1992;148:466–473.
    1. Daheshia M., Yao J.Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 2008;35:2306–2312. doi: 10.3899/jrheum.080346.
    1. Kunisch E., Kinne R.W., Alsalameh R.J., Alsalameh S. Pro-inflammatory IL-1beta and/or TNF-alpha up-regulate matrix metalloproteases-1 and -3 mRNA in chondrocyte subpopulations potentially pathogenic in osteoarthritis: In situ hybridization studies on a single cell level. Int. J. Rheum. Dis. 2016;19:557–566. doi: 10.1111/1756-185X.12431.
    1. Poree B., Kypriotou M., Chadjichristos C., Beauchef G., Renard E., Legendre F., Melin M., Gueret S., Hartmann D.J., Mallein-Gerin F., et al. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J. Biol. Chem. 2008;283:4850–4865. doi: 10.1074/jbc.M706387200.
    1. Murata M., Yudoh K., Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage: How the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthr. Cartil. 2008;16:279–286. doi: 10.1016/j.joca.2007.09.003.
    1. Heinrich P.C., Castell J.V., Andus T. Interleukin-6 and the acute phase response. Biochem. J. 1990;265:621–636. doi: 10.1042/bj2650621.
    1. Vigushin D.M., Pepys M.B., Hawkins P.N. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J. Clin. Investig. 1993;91:1351–1357. doi: 10.1172/JCI116336.
    1. Oliviero F., Ramonda R., Punzi L. New horizons in osteoarthritis. Swiss Med. Wkly. 2010;140:w13098. doi: 10.4414/smw.2010.13098.
    1. Belluzzi E., El Hadi H., Granzotto M., Rossato M., Ramonda R., Macchi V., de Caro R., Vettor R., Favero M. Systemic and local adipose tissue in knee osteoarthritis. J. Cell. Physiol. 2016 doi: 10.1002/jcp.25716.
    1. Tong K.M., Chen C.P., Huang K.C., Shieh D.C., Cheng H.C., Tzeng C.Y., Chen K.H., Chiu Y.C., Tang C.H. Adiponectin increases MMP-3 expression in human chondrocytes through Adipor1 signaling pathway. J. Cell. Biochem. 2011;112:1431–1440. doi: 10.1002/jcb.23059.
    1. Koskinen A., Vuolteenaho K., Nieminen R., Moilanen T., Moilanen E. Leptin enhances MMP-1, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from oa patients. Clin. Exp. Rheumatol. 2011;29:57–64.
    1. De Boer T.N., van Spil W.E., Huisman A.M., Polak A.A., Bijlsma J.W., Lafeber F.P., Mastbergen S.C. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr. Cartil. 2012;20:846–853. doi: 10.1016/j.joca.2012.05.002.
    1. Xu Y.K., Ke Y., Wang B., Lin J.H. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biol. Res. 2015;48:64. doi: 10.1186/s40659-015-0057-0.
    1. Al-Mughales J., Blyth T.H., Hunter J.A., Wilkinson P.C. The chemoattractant activity of rheumatoid synovial fluid for human lymphocytes is due to multiple cytokines. Clin. Exp. Immunol. 1996;106:230–236. doi: 10.1046/j.1365-2249.1996.d01-836.x.
    1. Yuan G.H., Masuko-Hongo K., Sakata M., Tsuruha J., Onuma H., Nakamura H., Aoki H., Kato T., Nishioka K. The role of C-C chemokines and their receptors in osteoarthritis. Arthritis Rheum. 2001;44:1056–1070. doi: 10.1002/1529-0131(200105)44:5<1056::AID-ANR186>;2-U.
    1. Ramonda R., Lorenzin M., Modesti V., Campana C., Ortolan A., Frallonardo P., Punzi L. Serological markers of erosive hand osteoarthritis. Eur. J. Intern. Med. 2013;24:11–15. doi: 10.1016/j.ejim.2012.10.002.
    1. Akhtar N., Rasheed Z., Ramamurthy S., Anbazhagan A.N., Voss F.R., Haqqi T.M. Microrna-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62:1361–1371. doi: 10.1002/art.27329.
    1. Wu C., Tian B., Qu X., Liu F., Tang T., Qin A., Zhu Z., Dai K. MicroRNAs play a role in chondrogenesis and osteoarthritis (review) Int. J. Mol. Med. 2014;34:13–23. doi: 10.3892/ijmm.2014.1743.
    1. Nugent M. Micrornas: Exploring new horizons in osteoarthritis. Osteoarthr. Cartil. 2016;24:573–580. doi: 10.1016/j.joca.2015.10.018.
    1. Jones S.W., Watkins G., Le Good N., Roberts S., Murphy C.L., Brockbank S.M., Needham M.R., Read S.J., Newham P. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr. Cartil. 2009;17:464–472. doi: 10.1016/j.joca.2008.09.012.
    1. Miyaki S., Sato T., Inoue A., Otsuki S., Ito Y., Yokoyama S., Kato Y., Takemoto F., Nakasa T., Yamashita S., et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24:1173–1185. doi: 10.1101/gad.1915510.
    1. Matsukawa T., Sakai T., Yonezawa T., Hiraiwa H., Hamada T., Nakashima M., Ono Y., Ishizuka S., Nakahara H., Lotz M.K., et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res. Ther. 2013;15:R28. doi: 10.1186/ar4164.
    1. Li X., Kroin J.S., Kc R., Gibson G., Chen D., Corbett G.T., Pahan K., Fayyaz S., Kim J.S., van Wijnen A.J., et al. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints. J. Bone Miner. Res. 2013;28:2512–2522. doi: 10.1002/jbmr.2002.
    1. Murata K., Yoshitomi H., Tanida S., Ishikawa M., Nishitani K., Ito H., Nakamura T. Plasma and synovial fluid micrornas as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 2010;12:R86. doi: 10.1186/ar3013.
    1. Borgonio Cuadra V.M., Gonzalez-Huerta N.C., Romero-Cordoba S., Hidalgo-Miranda A., Miranda-Duarte A. Altered expression of circulating microrna in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS ONE. 2014;9:e97690. doi: 10.1371/journal.pone.0097690.
    1. Beyer C., Zampetaki A., Lin N.Y., Kleyer A., Perricone C., Iagnocco A., Distler A., Langley S.R., Gelse K., Sesselmann S., et al. Signature of circulating microRNAs in osteoarthritis. Ann. Rheum. Dis. 2015;74:e18. doi: 10.1136/annrheumdis-2013-204698.
    1. Zhang L., Yang M., Marks P., White L.M., Hurtig M., Mi Q.S., Divine G., Gibson G. Serum non-coding RNAs as biomarkers for osteoarthritis progression after Acl injury. Osteoarthr. Cartil. 2012;20:1631–1637. doi: 10.1016/j.joca.2012.08.016.
    1. Pattrick M., Manhire A., Ward A.M., Doherty M. HLA-a, b antigens and alpha 1-antitrypsin phenotypes in nodal generalised osteoarthritis and erosive osteoarthritis. Ann. Rheum. Dis. 1989;48:470–475. doi: 10.1136/ard.48.6.470.
    1. Moos V., Menard J., Sieper J., Sparmann M., Müller B. Association of HLA-DRB1*02 with osteoarthritis in a cohort of 106 patients. Rheumatology. 2002;41:666–669. doi: 10.1093/rheumatology/41.6.666.
    1. Riyazi N., Spee J., Huizinga T.W., Schreuder G.M., de Vries R.R., Dekker F.W., Kloppenburg M. HLA class II is associated with distal interphalangeal osteoarthritis. Ann. Rheum. Dis. 2003;62:227–230. doi: 10.1136/ard.62.3.227.
    1. Ramonda R., Musacchio E., Campana C., Frigato M., Frallonardo P., Barbieri V., Piccoli A., Valvason C., Bronte V., Zanovello P., et al. Immunogenetic aspects of erosive osteoarthritis of the hand in patients from northern Italy. Scand. J. Rheumatol. 2011;40:139–144. doi: 10.3109/03009742.2010.507216.
    1. Stern A.G., de Carvalho M.R., Buck G.A., Adler R.A., Rao T.P., Disler D., Moxley G., Network I.-N. Association of erosive hand osteoarthritis with a single nucleotide polymorphism on the gene encoding interleukin-1 beta. Osteoarthr. Cartil. 2003;11:394–402. doi: 10.1016/S1063-4584(03)00054-2.

Source: PubMed

3
Abonnere