Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications

Ginés Viscor, Joan R Torrella, Luisa Corral, Antoni Ricart, Casimiro Javierre, Teresa Pages, Josep L Ventura, Ginés Viscor, Joan R Torrella, Luisa Corral, Antoni Ricart, Casimiro Javierre, Teresa Pages, Josep L Ventura

Abstract

In recent years, the altitude acclimatization responses elicited by short-term intermittent exposure to hypoxia have been subject to renewed attention. The main goal of short-term intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic capacity of athletes or to accelerate the altitude acclimatization response in alpinists, since such programs induce an increase in erythrocyte mass. Several model programs of intermittent exposure to hypoxia have presented efficiency with respect to this goal, without any of the inconveniences or negative consequences associated with permanent stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia systems have seen a rapid rise in popularity among recreational and professional athletes, not only due to their unbeatable cost/efficiency ratio, but also because they help prevent common inconveniences associated with high-altitude stays such as social isolation, nutritional limitations, and other minor health and comfort-related annoyances. Today, intermittent exposure to hypobaric hypoxia is known to elicit other physiological response types in several organs and body systems. These responses range from alterations in the ventilatory pattern to modulation of the mitochondrial function. The central role played by hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia exposure is well known. Among these targets, several growth factors that upregulate the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit special attention. Applying intermittent hypobaric hypoxia to promote the action of some molecules, such as angiogenic factors, could improve repair and recovery in many tissue types. This article uses a comprehensive approach to examine data obtained in recent years. We consider evidence collected from different tissues, including myocardial capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent hypoxia exposure, and discuss the evidence that points to beneficial interventions in applied fields such as sport science. Short-term intermittent hypoxia may not only be useful for healthy people, but could also be considered a promising tool to be applied, with due caution, to some pathophysiological states.

Keywords: angiogenesis; bronchial asthma; cardioprotection; circulating stem cells; erythropoiesis; intermittent hypoxia; neuroprotection; regenerative medicine.

References

    1. Agadzhanyan N. A., Torshin V. I. (1986). Effect of adaptation to hypoxia on resistance of rats to the epileptogenic action of penicillin. Bull. Exp. Biol. Med. 102, 1669–1671. 10.1007/BF00840791
    1. Agani F. H., Puchowicz M., Chavez J. C., Pichiule P., LaManna J. (2002). Role of nitric oxide in the regulation of HIF-1α expression during hypoxia. Am. J. Physiol. Cell Physiol. 283, C178–C186. 10.1152/ajpcell.00381.2001
    1. Aleshin I. A., Kots I. I., Tverdokhlib V. P., Galiautdinov G. S., Vdovenko L. G., Zabirov M. R., et al. . (1993). [The nondrug treatment of hypertension patients by their adaptation to periodic hypoxia in a barochamber]. Ter. Arkh. 65, 23–29.
    1. Allegra L., Cogo A., Legnani D., Diano P. L., Fasano V., Negretto G. G. (1995). High altitude exposure reduces bronchial responsiveness to hypo-osmolar aerosol in lowland asthmatics. Eur. Respir. J. 8, 1842–1846. 10.1183/09031936.95.08111842
    1. Almendros I., Wang Y., Gozal D. (2014). The polymorphic and contradictory aspects of intermittent hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L129–L140. 10.1152/ajplung.00089.2014
    1. Álvarez-Herms J., Julià-Sánchez S., Corbi F., Pagès T., Viscor G. (2015a). A program of circuit resistance training under hypobaric hypoxia conditions improves the anaerobic performance of athletes. Sci. Sports 31, 78–87. 10.1016/j.scispo.2015.08.005
    1. Álvarez-Herms J., Julià-Sánchez S., Gatterer H., Blank C., Corbi F., Pagès T., et al. . (2016). Anaerobic training in hypoxia: A new approach to stimulate the rating of effort perception. Physiol. Behav. 163, 37–42. 10.1016/j.physbeh.2016.04.035
    1. Álvarez-Herms J., Julià-Sánchez S., Hamlin M., Viscor G. (2015b). Strength training under hypoxic conditions. Physiol. Rep. 3:e12227. 10.14814/phy2.12227
    1. Antezana A. M., Kacimi R., Le Trong J. L., Marchal M., Abousahl I., Dubray C., et al. . (1994). Adrenergic status of humans during prolonged exposure to the altitude of 6,542 m. J. Appl. Physiol. 76, 1055–1059. 10.1152/jappl.1994.76.3.1055
    1. Arcasoy M. O. (2008). The non-haematopoietic biological effects of erythropoietin. Br. J. Haematol. 141, 14–31. 10.1111/j.1365-2141.2008.07014.x
    1. Ascenzi P., di Masi A., Leboffe L., Fiocchetti M., Nuzzo M. T., Brunori M., et al. . (2016). Neuroglobin: From structure to function in health and disease. Mol. Aspects Med. 52, 1–48. 10.1016/j.mam.2016.10.004
    1. Asemu G., Neckár J., Szárszoi O., Papousek F., Ostádal B., Kolar F. (2000). Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol. Res. 49, 597–606. Available online at:
    1. Asemu G., Papousek F., Ostádal B., Kolár F. (1999). Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial K(ATP) channel. J. Mol. Cell. Cardiol. 31, 1821–1831. 10.1006/jmcc.1999.1013
    1. Bailey D. M., Davies B., Young I. S. (2001). Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin. Sci. 101, 465–475. 10.1042/cs1010465
    1. Bärtsch P., Swenson E. R. (2013). Clinical practice: acute high-altitude illnesses. N. Engl. J. Med. 368, 2294–2302. 10.1056/NEJMcp1214870
    1. Bärtsch P., Dehnert C., Friedmann-Bette B., Tadibi V. (2008). Intermittent hypoxia at rest for improvement of athletic performance. Scand. J. Med. Sci. Sports 18(Suppl. 1), 50–56. 10.1111/j.1600-0838.2008.00832.x
    1. Basualto-Alarcón C., Rodas G., Galilea P. A., Riera J., Pagés T., Ricart A., et al. (2012). Cardiorespiratory parameters during submaximal exercise under acute exposure to normobaric and hypobaric hypoxia. Apunt. Med. l'Esport 47, 65–72. 10.1016/j.apunts.2011.11.005
    1. Beidleman B. A., Fulco C. S., Staab J. E., Andrew S. P., Muza S. R. (2014). Cycling performance decrement is greater in hypobaric versus normobaric hypoxia. Extrem. Physiol. Med. 3:8. 10.1186/2046-7648-3-8
    1. Bhattarai D., Xu X., Lee K. (2017). Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): A “structure-activity relationship” perspective. Med. Res. Rev. 38, 1–39. 10.1002/med.21477
    1. Bonetti D. L., Hopkins W. G. (2009). Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 39, 107–127. 10.2165/00007256-200939020-00002
    1. Boos C. J., O'Hara J. P., Mellor A., Hodkinson P. D., Tsakirides C., Reeve N., et al. . (2016). A four-way comparison of cardiac function with normobaric normoxia, normobaric hypoxia, hypobaric hypoxia and genuine high altitude. PLoS ONE 11:e0152868. 10.1371/journal.pone.0152868
    1. Bouslama M., Adla-Biassette H., Ramanantsoa N., Bourgeois T., Bollen B., Brissaud O., et al. . (2015). Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity. Front. Physiol. 6:313. 10.3389/fphys.2015.00313
    1. Burger D., Xenocostas A., Feng Q. P. (2009). Molecular basis of cardioprotection by erythropoietin. Curr. Mol. Pharmacol. 2, 56–69. 10.2174/1874467210902010056
    1. Burmester T., Hankeln T. (2004). Neuroglobin: a respiratory protein of the nervous system. News Physiol. Sci. 19, 110–113. 10.1152/nips.01513.2003
    1. Burmester T., Weich B., Reinhardt S., Hankeln T. (2000). A vertebrate globin expressed in the brain. Nature 407, 520–523. 10.1038/35035093
    1. Burtscher M., Pachinger O., Ehrenbourg I., Günther M., Faulhaber M., Reinhard P., et al. . (2004). Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol. 96, 247–254. 10.1016/j.ijcard.2003.07.021
    1. Cabrera-Aguilera I., Rizo-Roca D., Marques E., Santocildes G., Pagès T., Viscor G, et al. . (in press). Additive effects of intermittent hypobaric hypoxia endurance training on body weight, food intake, oxygen consumption in rats. High Alt. Med. Biol. 10.1089/ham.2018.0013
    1. Cai Z., Manalo D. J., Wei G., Rodriguez E. R., Fox-Talbot K., Lu H., et al. . (2003). Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108, 79–85. 10.1161/01.CIR.0000078635.89229.8A
    1. Canouï-Poitrine F., Veerabudun K., Larmignat P., Letournel M., Bastuji-Garin S., Richalet J.-P. (2014). Risk prediction score for severe high altitude illness: a cohort study. PLoS ONE 9:e100642. 10.1371/journal.pone.0100642
    1. Casas H., Casas M., Ricart A., Rama R., Ibáñez J., Palacios L., et al. (2000). Efectiveness of three short intermittent hypobaric hypoxia protocols: hematological responses. J. Exerc. Physiol. 3, 38–45. Available online at:
    1. Casas M., Casas H., Pagés T., Rama R., Ricart A., Ventura J. L., et al. . (2000). Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviat. Space. Environ. Med. 71, 125–30.
    1. Chapman R. F., Stray-Gundersen J., Levine B. D. (1998). Individual variation in response to altitude training. J. Appl. Physiol. 85, 1448–1456. 10.1152/jappl.1998.85.4.1448
    1. Chateauvieux S., Grigorakaki C., Morceau F., Dicato M., Diederich M. (2011). Erythropoietin, erythropoiesis and beyond. Biochem. Pharmacol. 82, 1291–1303. 10.1016/j.bcp.2011.06.045
    1. Chávez J. C., Agani F., Pichiule P., LaManna J. C. (2000). Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J. Appl. Physiol. 89, 1937–1942. 10.1152/jappl.2000.89.5.1937
    1. Chavez J. C., LaManna J. C. (2002). Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J. Neurosci. 22, 8922–8931. 10.1523/JNEUROSCI.22-20-08922.2002
    1. Chiu J. T., Wells I., Novey H. S. (1981). Incidence of fungal precipitins in patients treated with beclomethasone dipropionate aerosol. Ann. Allergy 46, 137–9.
    1. Chouabe C., Ricci E., Amsellem J., Blaineau S., Dalmaz Y., Favier R., et al. . (2004). Effects of aging on the cardiac remodeling induced by chronic high-altitude hypoxia in rat. Am. J. Physiol. Heart Circ. Physiol. 287, H1246–H1253. 10.1152/ajpheart.00199.2004
    1. Christie P. E., Yntema J. L., Tagari P., Ysselstijn H., Ford-Hutchinson A. W., Lee T. H. (1995). Effect of altitude on urinary leukotriene (LT) E4 excretion and airway responsiveness to histamine in children with atopic asthma. Eur. Respir. J. 8, 357–363. 10.1183/09031936.95.08030357
    1. Cogo A., Basnyat B., Legnani D., Allegra L. (1997). Bronchial asthma and airway hyperresponsiveness at high altitude. Respiration. 64, 444–449. 10.1159/000196721
    1. Cogo A., Fischer R., Schoene R. (2004). Respiratory diseases and high altitude. High Alt. Med. Biol. 5, 435–444. 10.1089/ham.2004.5.435
    1. Corral L., Conde L., Guillam,ó E., Blasi J., Juncadella M., Javierre C., et al. . (2014a). Circulating progenitor cells during exercise, muscle electro-stimulation and intermittent hypobaric hypoxia in patients with traumatic brain injury: a pilot study. NeuroRehabilitation 35, 763–769. 10.3233/NRE-141172
    1. Corral L., Javierre C., Blasi J., Viscor G., Ricart A., Ventura J. L. (2014b). Combined intermittent hypobaric hypoxia and muscle electro-stimulation: a method to increase circulating progenitor cell concentration? J. Transl. Med. 12:174. 10.1186/1479-5876-12-174
    1. Costa D. C., Alva N., Trigueros L., Gamez A., Carbonell T., Rama R. (2013). Intermittent hypobaric hypoxia induces neuroprotection in kainate-induced oxidative stress in rats. J. Mol. Neurosci. 50, 402–410. 10.1007/s12031-012-9945-8
    1. Dale E. A., Ben Mabrouk F., Mitchell G. S. (2014). Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology (Bethesda). 29, 39–48. 10.1152/physiol.00012.2013
    1. Debevec T., Mekljavic I. B. (2013). Short intermittent hypoxia for improvement of athletic performance: reality or a placebo? / Kratkotrajna intermitentna hipoksija za izboljsanje sportne sposobnosti: realnost ali placebo? Kinesiol. Slov. 19, 5–28. Available online at:
    1. Debevec T., Millet G. (2014). Discerning normobaric and hypobaric hypoxia: significance of exposure duration. J. Appl. Physiol. 116:1255. 10.1152/japplphysiol.00319.2013.5
    1. Dehnert C., Böhm A., Grigoriev I., Menold E., Bärtsch P. (2014). Sleeping in moderate hypoxia at home for prevention of acute mountain sickness (AMS): a placebo-controlled, randomized double-blind study. Wilderness Environ. Med. 25, 263–271. 10.1016/j.wem.2014.04.004
    1. DeNoon D. J. (2008). FDA panel asks: are asthma drugs safe? Medscape WebMD, December 10th. Available online at: [Accessed December 27, 2017]
    1. Di Prampero P. E., Piñera Limas F., Sassi G. (1970). Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth olympic games in Mexico. Ergonomics 13, 665–674. 10.1080/00140137008931192
    1. DiPasquale D. M. (2017). Moving the debate forward: are normobaric and hypobaric hypoxia interchangeable in the study of altitude? Curr. Sports Med. Rep. 16, 68–70. 10.1249/JSR.0000000000000337
    1. Dougherty B. J., Terada J., Springborn S. R., Vinit S., MacFarlane P. M., Mitchell G. S. (2017). Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms. Respir. Physiol. Neurobiol.. [Epub ahead of print]. 10.1016/j.resp.2017.05.004
    1. Droma Y., Kunii O., Yangzom Y., Shan M., Pingzo L., Song P. (2007). Prevalence and severity of asthma and allergies in schoolchildren in Lhasa, Tibet. Clin. Exp. Allergy 37, 1326–1333. 10.1111/j.1365-2222.2007.02781.x
    1. Eckardt K. U., Boutellier U., Kurtz A., Schopen M., Koller E. A., Bauer C. (1989). Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol. 66, 1785–1788. 10.1152/jappl.1989.66.4.1785
    1. Egrie J. C., Strickland T. W., Lane J., Aoki K., Cohen A. M., Smalling R., et al. . (1986). Characterization and biological effects of recombinant human erythropoietin. Immunobiology 172, 213–224. 10.1016/S0171-2985(86)80101-2
    1. Engst R., Vocks E. (2000). [High-mountain climate therapy for skin diseases and allergies - Mode of action, therapeutic results, and immunologic effects]. Rehabilitation 39, 215–222. 10.1055/s-2000-5897
    1. Esteva S., Panisello P., Torrella J. R., Pagés T., Viscor G. (2009). Blood rheology adjustments in rats after a program of intermittent exposure to hypobaric hypoxia. High Alt. Med. Biol. 10, 275–281. 10.1089/ham.2008.1086
    1. Fábián Z., Taylor C. T., Nguyen L. K. (2016). Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling. J. Mol. Med. (Berl). 94, 377–390. 10.1007/s00109-016-1383-6
    1. Fairfax A. J., David V., Douce G. (1999). Laryngeal aspergillosis following high dose inhaled fluticasone therapy for asthma. Thorax 54, 860–861. 10.1136/thx.54.9.860
    1. Faiss R., Girard O., Millet G. P. (2013). Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br. J. Sports Med. 47 (Suppl. 1), i45–i50. 10.1136/bjsports-2013-092741
    1. Feriche B., García-Ramos A., Calderón-Soto C., Drobnic F., Bonitch-Góngora J. G., Galilea P. A., et al. . (2014). Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia. PLoS ONE 9:e114072. 10.1371/journal.pone.0114072
    1. Filopoulos D., Cormack S. J., Whyte D. G. (2017). Normobaric hypoxia increases the growth hormone response to maximal resistance exercise in trained men. Eur. J. Sport Sci. 17, 821–829. 10.1080/17461391.2017.1317834
    1. Fulco C. S., Beidleman B. A., Muza S. R. (2013). Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc. Sport Sci. Rev. 41, 55–63. 10.1097/JES.0b013e31825eaa33
    1. Garvican-Lewis L. A., Sharpe K., Gore C. J. (2016). Time for a new metric for hypoxic dose? J. Appl. Physiol. 121, 352–355. 10.1152/japplphysiol.00579.2015
    1. Gatterer H., Haacke S., Burtscher M., Faulhaber M., Melmer A., Ebenbichler C., et al. . (2015). Normobaric Intermittent Hypoxia over 8 Months Does Not Reduce Body Weight and Metabolic Risk Factors-a Randomized, Single Blind, Placebo-Controlled Study in Normobaric Hypoxia and Normobaric Sham Hypoxia. Obes. Facts 8, 200–209. 10.1159/000431157
    1. Ge R. L., Chen Q. H., He L. G. (1994). [Characteristics of hypoxic ventilatory response in Tibetan living at moderate and high altitudes]. Zhonghua Jie He He Hu Xi Za Zhi 17, 364–6, 384.
    1. Ge R., Witkowski S., Zhang Y., Alfrey C., Sivieri M., Karlsen T., et al. . (2002). Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J. Appl. Physiol. 92, 2361–2367. 10.1152/japplphysiol.00684.2001
    1. Girard O. (2012). Comments on point:counterpoint: hypobaric hypoxia induces / does not induce different responses from normobaric hypoxia - Reduced air resistance with terrestrial altitude alters run sprint performance. J. Appl. Physiol. (Bethesda, MD 1985) 112:1788. 10.1152/japplphysiol.00356.2012
    1. Gore C. J., Rodríguez F. A., Truijens M. J., Townsend N. E., Stray-Gundersen J., Levine B. D. (2006). Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m). J. Appl. Physiol. 101, 1386–1393. 10.1152/japplphysiol.00342.2006
    1. Gourgoulianis K. I., Brelas N., Hatziparasides G., Papayianni M., Molyvdas P. A. (2001). The influence of altitude in bronchial asthma. Arch. Med. Res. 32, 429–431. 10.1016/S0188-4409(01)00302-2
    1. Hamlin M. J., Lizamore C. A., Hopkins W. G. (2018). The effect of natural or simulated altitude training on high-intensity intermittent running performance in team-sport athletes: a meta-analysis. Sports Med. 48, 431–446. 10.1007/s40279-017-0809-9
    1. Harrison C. C., Fleming J. M., Giles L. C. (2002). Does interval hypoxic training affect the lung function of asthmatic athletes. New Zeal. J. Sport. Med. 30, 64–67. Available online at:
    1. Haskell W. L., Lee I.-M., Pate R. R., Powell K. E., Blair S. N., Franklin B. A., et al. . (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1423–1434. 10.1161/CIRCULATIONAHA.107.185649
    1. Haufe S., Wiesner S., Engeli S., Luft F. C., Jordan J. (2008). Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med. Sci. Sports Exerc. 40, 1939–1944. 10.1249/MSS.0b013e31817f1988
    1. Hauser A., Schmitt L., Troesch S., Saugy J. J., Cejuela-Anta R., Faiss R., et al. . (2016). Similar hemoglobin mass response in hypobaric and normobaric hypoxia in athletes. Med. Sci. Sports Exerc. 48, 734–741. 10.1249/MSS.0000000000000808
    1. Heuschmann P., Hoffmann U., Piepoli M. F., Verschuren M., Halcox J., Reviewers D., et al. . (2010). Secondary prevention through cardiac rehabilitation : physical activity counselling and exercise training Key components of the position paper from the Cardiac rehabilitation section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur Heart J. 31, 1967–1976. 10.1093/eurheartj/ehq236
    1. Hirota K., Semenza G. L. (2006). Regulation of angiogenesis by hypoxia-inducible factor 1. Crit. Rev. Oncol. Hematol. 59, 15–26. 10.1016/j.critrevonc.2005.12.003
    1. Hornbein T. F. (2001). The high-altitude brain. J. Exp. Biol. 204, 3129–3132. Available online at:
    1. Ibáñez J., Casas H., Casas M., Rama R., Ricart A., Ventura J. L., et al. (2000). L'exposition intermittente à l'hypoxie en caisson hypobarique: effets physiologiques et applications. Médecine du Sport 74, 32–34
    1. Jia Y., Suzuki N., Yamamoto M., Gassmann M., Noguchi C. T. (2012). Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage. FASEB J. 26, 2847–2858. 10.1096/fj.11-196618
    1. Julian C. G., Gore C. J., Wilber R. L., Daniels J. T., Fredericson M., Stray-Gundersen J., et al. . (2004). Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J. Appl. Physiol. 96, 1800–1807. 10.1016/j.obhdp.2010.11.002
    1. Karagiannidis C., Hense G., Rueckert B., Mantel P. Y., Ichters B., Blaser K., et al. . (2006). High-altitude climate therapy reduces local airway inflammation and modulates lymphocyte activation. Scand. J. Immunol. 63, 304–310. 10.1111/j.1365-3083.2006.01739.x
    1. Karlsen T., Resaland G. K., Ri-Li G., Sivieri M., Witowski S., Yates R., et al. (2001). Epo response to 24 hrs of artificial hypobaric hypoxia predicts epo response to natural altitude. Med. Sci. Sport. Exerc. 33:S98 Available online at:
    1. Kenney W. L., Wilmore J. H., Costill D. L., Wilmore J. H. (2012). Physiology of Sport and Exercise. 5th Edn. Champaign IL: Human Kinetics
    1. Khodaee M., Grothe H. L., Seyfert J. H., VanBaak K. (2016). Athletes at high altitude. Sports Health 8, 126–132. 10.1177/1941738116630948
    1. Kiechl-Kohlendorfer U., Horak E., Mueller W., Strobl R., Haberland C., Fink F. M., et al. . (2007). Living at high altitude and risk of hospitalisation for atopic asthma in children: results from a large prospective birth-cohort study. Arch. Dis. Child. 92, 339–342. 10.1136/adc.2006.106278
    1. Kon M., Ohiwa N., Honda A., Matsubayashi T., Ikeda T., Akimoto T., et al. . (2014). Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep. 2, 1–13. 10.14814/phy2.12033
    1. Korcarz C. E., Peppard P. E., Young T. B., Chapman C. B., Hla K. M., Barnet J. H., et al. . (2016). Effects of obstructive sleep apnea and obesity on cardiac remodeling: the wisconsin sleep cohort study. Sleep 39, 1187–1195. 10.5665/sleep.5828
    1. Koyasu S., Kobayashi M., Goto Y., Hiraoka M., Harada H. (2017). Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 109, 560–571. 10.1111/cas.13483
    1. Kushwah N., Jain V., Deep S., Prasad D., Singh S. B., Khan N. (2016). Neuroprotective role of intermittent hypobaric hypoxia in unpredictable chronic mild stress induced depression in rats. PLoS ONE 11:e0149309. 10.1371/journal.pone.0149309
    1. Kusunose K., Phelan D., Seicean S., Seicean A., Collier P., Boden K. A., et al. . (2016). Relation of echocardiographic characteristics of the right-sided heart with incident heart failure and mortality in patients with sleep-disordered breathing and preserved left ventricular ejection fraction. Am. J. Cardiol. 118, 1268–1273. 10.1016/j.amjcard.2016.07.024
    1. Leone R. J., Lalande S. (2017). Intermittent hypoxia as a means to improve aerobic capacity in type 2 diabetes. Med. Hypotheses 100, 59–63. 10.1016/j.mehy.2017.01.010
    1. Levett D. Z., Radford E. J., Menassa D. A., Graber E. F., Morash A. J., Hoppeler H., et al. . (2012). Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J. 26, 1431–1441. 10.1096/fj.11-197772
    1. Levine B. D., Stray-Gundersen J. (1997). “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J. Appl. Physiol. 83, 102–112. 10.1152/jappl.1997.83.1.102
    1. Li X., Zhao H., Wu Y., Zhang S., Zhao X., Zhang Y., et al. . (2014). Up-regulation of hypoxia-inducible factor-1alpha enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats. Acta Biochim Biophys Sin 46, 112–118. 10.1093/abbs/gmt132
    1. Lieberman P., Protopapas A., Reed E., Youngs J. W., Kanki B. G. (1994). Cognitive defects at altitude. Nature 372:325. 10.1038/372325a0
    1. Lippl F. J., Neubauer S., Schipfer S., Lichter N., Tufman A., Otto B., et al. . (2010). Hypobaric hypoxia causes body weight reduction in obese subjects. Obesity 18, 675–681. 10.1038/oby.2009.509
    1. Lizamore C. A., Hamlin M. J. (2017). The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. High Alt. Med. Biol. 18, 305–321. 10.1089/ham.2017.0050
    1. London G. M., Zins B., Pannier B., Naret C., Berthelot J. M., Jacquot C., et al. . (1989). Vascular changes in hemodialysis patients in response to recombinant human erythropoietin. Kidney Int. 36, 878–882. 10.1038/ki.1989.274
    1. Lundby C., Calbet J. A. L., Sander M., Van Hall G., Mazzeo R. S., Stray-Gundersen J., et al. . (2007). Exercise economy does not change after acclimatization to moderate to very high altitude. Scand. J. Med. Sci. Sport. 17, 281–291. 10.1111/j.1600-0838.2006.00530.x
    1. Magalhães J., Falcão-Pires I., Gonçalves I. O., Lumini-Oliveira J., Marques-Aleixo I., Dos Passos E., et al. . (2013). Synergistic impact of endurance training and intermittent hypobaric hypoxia on cardiac function and mitochondrial energetic and signaling. Int. J. Cardiol. 168, 5363–5371. 10.1016/j.ijcard.2013.08.001
    1. Magalhães J., Gonçalves I. O., Lumini-Oliveira J., Marques-Aleixo I., Passos E., Rocha-Rodrigues S., et al. . (2014). Modulation of cardiac mitochondrial permeability transition and apoptotic signaling by endurance training and intermittent hypobaric hypoxia. Int. J. Cardiol. 173, 40–45. 10.1016/j.ijcard.2014.02.011
    1. Manimmanakorn A., Manimmanakorn N., Taylor R., Draper N., Billaut F., Shearman J. P., et al. . (2013). Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur. J. Appl. Physiol. 113, 1767–1774. 10.1007/s00421-013-2605-z
    1. Marquez J. L., Rubinstein S., Fattor J. A., Shah O., Hoffman A. R., Friedlander A. L. (2013). Cyclic hypobaric hypoxia improves markers of glucose metabolism in middle-aged men. High Alt. Med. Biol. 14, 263–272. 10.1089/ham.2012.1057
    1. Marticorena E. A. (1993). Montañismo médico: Rehabilitación de pacientes coronarios con by-pass. Rev. Peru. Cardiol. 19, 25–29.
    1. Marticorena E. A., Marticorena J. A., Gutierrez I., Rodríguez V., Fernández-Dávila L., Oyola L., et al. (2001). Factor relajante del endotelio (ON) en rehabilitación coronaria con cámara hipobárica. Rev. Peru. Cardiol. 27, 148–149. Avavilable online at:
    1. Mateika J. H., El-Chami M., Shaheen D., Ivers B. (2015). Intermittent hypoxia: a low-risk research tool with therapeutic value in humans: Fig. 1. J. Appl. Physiol. 118, 520–532. 10.1152/japplphysiol.00564.2014
    1. Meehan R. T. (1987). Immune suppression at high altitude. Ann. Emerg. Med. 16, 974–979. 10.1016/S0196-0644(87)80743-6
    1. Meehan R., Duncan U., Neale L., Taylor G., Muchmore H., Scott N., et al. . (1988). Operation Everest II: alterations in the immune system at high altitudes. J. Clin. Immunol. 8, 397–406. 10.1007/BF00917156
    1. Milledge J. S. (2003). Altitude deterioration, in Health and Height (Barcelona: Publicacions Universitat de Barcelona; ), 173–180. Available online at:
    1. Millet G. P., Debevec T., Brocherie F., Malatesta D., Girard O. (2016). Therapeutic use of exercising in hypoxia : promises and limitations. Front. Physiol. 7:224. 10.3389/fphys.2016.00224
    1. Millet G. P., Faiss R., Pialoux V. (2012). Point: Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. J. Appl. Physiol. 112, 1783–1784. 10.1152/japplphysiol.00067.2012
    1. Millet G. P., Faiss R., Pialoux V. (2013). Evidence for differences between hypobaric and normobaric hypoxia is conclusive. Exerc. Sport Sci. Rev. 41:133. 10.1097/JES.0b013e318271a5e1
    1. Najean Y., Moynot A., Deschryver F., Zins B., Naret C., Jacquot C., et al. . (1989). Kinetics of erythropoiesis in dialysis patients receiving recombinant erythropoietin treatment. Nephrol. Dial. Transplant 4, 350–355. 10.1093/oxfordjournals.ndt.a091889
    1. Navarrete-Opazo A., Alcayaga J., Sepúlveda O., Rojas E., Astudillo C. (2017a). Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, triple-blind, placebo-controlled clinical trial. J. Neurotrauma 34, 1803–1812. 10.1089/neu.2016.4478
    1. Navarrete-Opazo A., Mitchell G. S. (2014). Therapeutic potential of intermittent hypoxia: a matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1181–R1197. 10.1152/ajpregu.00208.2014
    1. Navarrete-Opazo A., Dougherty B. J., Mitchell G. S. (2017b). Enhanced recovery of breathing capacity from combined adenosine 2A receptor inhibition and daily acute intermittent hypoxia after chronic cervical spinal injury. Exp. Neurol. 287, 93–101. 10.1016/j.expneurol.2016.03.026
    1. Navarrete-Opazo A., Vinit S., Dougherty B. J., Mitchell G. S. (2015). Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury. Exp. Neurol. 266, 1–10. 10.1016/j.expneurol.2015.02.007
    1. Nelson M. E., Rejeski W. J., Blair S. N., Duncan P. W., Judge J. O., King A. C., et al. . (2007). Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1435–1445. 10.1249/mss.0b013e3180616aa2
    1. Netzer N. C., Chytra R., Küpper T. (2008). Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath. 12, 129–134. 10.1007/s11325-007-0149-3
    1. Noguchi C. T., Asavaritikrai P., Teng R., Jia Y. (2007). Role of erythropoietin in the brain. 64, 159–171 10.1016/j.critrevonc.2007.03.001
    1. Nummela A., Rusko H. (2000). Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J. Sports Sci. 18, 411–419. 10.1080/02640410050074340
    1. Núñez-Espinosa C., Douziech A., Ríos-Kristjánsson J. G., Rizo D., Torrella J. R., Pagès T., et al. . (2014). Effect of intermittent hypoxia and exercise on blood rheology and oxygen transport in trained rats. Respir. Physiol. Neurobiol. 192, 112–117. 10.1016/j.resp.2013.12.011
    1. Ohta A. A., Diwanji R., Kini R., Subramanian M., Ohta A. A., Sitkovsky M. (2011). In vivo T cell activation in lymphoid tissues is inhibited in the oxygen-poor microenvironment. Front. Immunol. 2:27. 10.3389/fimmu.2011.00027
    1. Oliver S. J., Macdonald J. H., Harper Smith A. D., Lawley J. S., Gallagher C. a, Di Felice U., et al. . (2013). High altitude impairs in vivo immunity in humans. High Alt. Med. Biol. 14, 144–149. 10.1089/ham.2012.1070
    1. Ostadal B., Kolar F. (2007). Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir. Physiol. Neurobiol. 158, 224–236. 10.1016/j.resp.2007.03.005
    1. Ostádal B., Kolár F., Pelouch V., Bass A., Samánek M., Procházka J. (1989). The effect of chronic hypoxia on the developing cardiopulmonary system. Biomed. Biochim. Acta 48, S58–62.
    1. Panisello P., Torrella J. R., Esteva S., Pagés T., Viscor G. (2008). Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia. Eur. J. Appl. Physiol. 103, 203–213. 10.1007/s00421-008-0691-0
    1. Panisello P., Torrella J. R., Pagés T., Viscor G. (2007). Capillary supply and fiber morphometry in rat myocardium after intermittent exposure to hypobaric hypoxia. High Alt. Med. Biol. 8, 322–330. 10.1089/ham.2007.1030
    1. Ramos-Campo D. J., Martínez-Sánchez F., Esteban-García P., Rubio-Arias J. A., Clemente-Suarez V. J., Jiménez-Díaz J. F. (2015). The effects of intermittent hypoxia training on hematological and aerobic performance in triathletes. Acta Physiol. Hung. 102, 409–418. 10.1556/036.102.2015.4.8
    1. Ramos-Campo D. J., Scott B. R., Alcaraz P. E., Rubio-Arias J. A. (2018). The efficacy of resistance training in hypoxia to enhance strength and muscle growth: a systematic review and meta-analysis. Eur. J. Sport Sci. 18, 92–103. 10.1080/17461391.2017.1388850
    1. Rathat C., Richalet J. P., Herry J. P., Larmignat P. (1992). Detection of high-risk subjects for high altitude diseases. Int. J. Sports Med. 13 (Suppl. 1), S76–S78. 10.1055/s-2007-1024602
    1. Rey S., Semenza G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 86, 236–242. 10.1093/cvr/cvq045
    1. Reynafarje B. D., Marticorena E. (2002). Bioenergetics of the heart at high altitude: environmental hypoxia imposes profound transformations on the myocardial process of ATP synthesis. J. Bioenerg. Biomembr. 34, 407–412. 10.1023/A:1022597523483
    1. Ricart A., Casas H., Casas M., Pagés T., Palacios L., Rama R., et al. . (2000). Acclimatization near home? Early respiratory changes after short-term intermittent exposure to simulated altitude. Wilderness Environ. Med. 11, 84–88. 10.1580/1080-6032(2000)011[0084:ANHERC];2
    1. Richalet J. P., Bittel J., Herry J. P., Savourey G., Le Trong J. L., Auvert J. F., et al. . (1992). Use of a hypobaric chamber for pre-acclimatization before climbing Mount Everest. Int. J. Sports Med. 13 (Suppl. 1), S216–S220. 10.1055/s-2007-1024644
    1. Richalet J. P., Souberbielle J. C., Antezana A. M., Déchaux M., Le Trong J. L., Bienvenu A., et al. . (1994). Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am. J. Physiol. 266, R756–R764. 10.1152/ajpregu.1994.266.3.R756
    1. Richalet J.-P., Gore C. J. (2008). Live and/or sleep high:train low, using normobaric hypoxia. Scand. J. Med. Sci. Sports 18 (Suppl. 1), 29–37. 10.1111/j.1600-0838.2008.00830.x
    1. Richalet J.-P., Lhuissier F. J. (2015). Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt. Med. Biol. 16:117–124. 10.1089/ham.2015.0030
    1. Rizo-Roca D., Bonet J. B., Inal B., Ríos-Kristjánsson J. G., Pagès T., Viscor G., et al. (2018). Contractile activity is necessary to trigger intermittent hypobaric hypoxia-induced fibre size and vascular adaptations in skeletal muscle. Front. Physiol. 9:481 10.3389/FPHYS.2018.00481
    1. Rizo-Roca D., Ríos-Kristjánsson J. G., Núñez-Espinosa C., Santos-Alves E., Gonçalves I. O., Magalhães J., et al. . (2017a). Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats. J. Appl. Physiol. 122, 580–592. 10.1152/japplphysiol.00501.2016
    1. Rizo-Roca D., Ríos-Kristjánsson J. G., Núñez-Espinosa C., Santos-Alves E., Magalhães J., Ascensão A., et al. . (2017b). Modulation of mitochondrial biomarkers by intermittent hypobaric hypoxia and aerobic exercise after eccentric exercise in trained rats. Appl. Physiol. Nutr. Metab. 42, 683–693. 10.1139/apnm-2016-0526
    1. Rodríguez F. A., Casas H., Casas M., Pagés T., Rama R., Ricart A., et al. . (1999). Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med. Sci. Sports Exerc. 31, 264–268. 10.1097/00005768-199902000-00010
    1. Rodríguez F. A., Iglesias X., Feriche B., Calderón-Soto C., Chaverri D., Wachsmuth N. B., et al. . (2015). Altitude Training in Elite Swimmers for Sea Level Performance (Altitude Project). Med. Sci. Sports Exerc. 47, 1965–1978. 10.1249/MSS.0000000000000626
    1. Rodríguez F. A., Truijens M. J., Townsend N. E., Gore C. J., Levine B. D., Truijens M. J., et al. . (2007). Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J. Appl. Physiol. 103, 1523–1535. 10.1152/japplphysiol.01320.2006
    1. Rodríguez F. A., Ventura J. L., Casas M., Casas H., Pagés T., Rama R., et al. . (2000). Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur. J. Appl. Physiol. 82, 170–177. 10.1007/s004210050669
    1. Ross H. H., Sandhu M. S., Cheung T. F., Fitzpatrick G. M., Sher W. J., Tiemeier A. J., et al. . (2012). In vivo intermittent hypoxia elicits enhanced expansion and neuronal differentiation in cultured neural progenitors. Exp. Neurol. 235, 238–245. 10.1016/j.expneurol.2012.01.027
    1. Salpeter S. R., Buckley N. S., Ormiston T. M., Salpeter E. E. (2006). Meta-analysis: effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann. Intern. Med. 144, 904–912. 10.7326/0003-4819-144-12-200606200-00126
    1. Sanchez A. M. J., Borrani F. (2018). Effects of intermittent hypoxic training performed at high hypoxia level on exercise performance in highly trained runners. J. Sports Sci. 36, 2045–2052. 10.1080/02640414.2018.1434747
    1. Saugy J. J., Schmitt L., Hauser A., Constantin G., Cejuela R., Faiss R., et al. . (2016). Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia. Front. Physiol. 7:138. 10.3389/fphys.2016.00138
    1. Savourey G., Launay J.-C., Besnard Y., Guinet A., Travers S. (2003). Normo- and hypobaric hypoxia: are there any physiological differences? Eur. J. Appl. Physiol. 89, 122–126. 10.1007/s00421-002-0789-8
    1. Schommer K., Wiesegart N., Menold E., Haas U., Lahr K., Buhl H., et al. . (2010). Training in normobaric hypoxia and its effects on acute mountain sickness after rapid ascent to 4559 m. High Alt. Med. Biol. 11, 19–25. 10.1089/ham.2009.1019
    1. Schultze-Werninghaus G. (2006). Should asthma management include sojourns at high altitude? Chem. Immunol. Allergy 91, 16–29. 10.1159/000090227
    1. Schultze-Werninghaus G. (2008). [Effects of high altitude on bronchial asthma]. Pneumologie 62, 170–176. 10.1055/s-2007-1016442
    1. Serebrovska T. V., Portnychenko A. G., Drevytska T. I., Portnichenko V. I., Xi L., Egorov E., et al. . (2017). Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp. Biol. Med. (Maywood). 242, 1542–1552. 10.1177/1535370217723578
    1. Serebrovska T. V., Serebrovska Z. O., Egorov E. (2016). Fitness and therapeutic potential of intermittent hypoxia training: a matter of dose. Fiziol. Zh. 62, 78–91. Available online at:
    1. Serebrovskaya T. V., Manukhina E. B., Smith M. L., Downey H. F., Mallet R. T. (2008). Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp. Biol. Med. (Maywood). 233, 627–650. 10.3181/0710-MR-267
    1. Serebrovskaya T. V., Swanson R. J., Kolesnikova E. E. (2003). Intermittent hypoxia: mechanisms of action and some applications to bronchial asthma treatment. J. Physiol. Pharmacol. 54 (Suppl. 1), 35–41. 10.318/0710-MR
    1. Serebrovskaya T. V. (2002). Intermittent hypoxia research in the former Soviet Union and the Commonwealth of Independent States: history and review of the concept and selected applications. High Alt. Med. Biol. 3, 205–221. 10.1089/15270290260131939
    1. Simon H. U., Grotzer M., Nikolaizik W. H., Blaser K., Schöni M. H. (1994). High altitude climate therapy reduces peripheral blood T lymphocyte activation, eosinophilia, and bronchial obstruction in children with house-dust mite allergic asthma. Pediatr. Pulmonol. 17, 304–311. 10.1002/ppul.1950170507
    1. Singh I., Chohan I. S., Lal M., Khanna P. K., Srivastava M. C., Nanda R. B., et al. . (1977). Effects of high altitude stay on the incidence of common diseases in man. Int. J. Biometeorol. 21, 93–122. 10.1007/BF01553705
    1. Steiner C. (2009). [Atopic dermatitis and psoriasis: what is the benefit of in-patient high altitude climate therapy?]. Praxis (Bern. 1994). 98, 1373–1376. 10.1024/1661-8157.98.23.1373
    1. Stray-Gundersen J., Levine B. D. (1999). “Living high and training low” can improve sea level performance in endurance athletes. 33, 150–151. 10.1136/bjsm.33.3.150
    1. Stray-Gundersen J., Chapman R. F., Levine B. D. (2001). “Living high-training low” altitude training improves sea level performance in male and female elite runners. J. Appl. Physiol. 91, 1113–1120. 10.1152/jappl.2001.91.3.1113
    1. Streeter K. A., Sunshine M. D., Patel S., Gonzalez-Rothi E. J., Reier P. J., Baekey D. M., et al. . (2017). Intermittent hypoxia enhances functional connectivity of midcervical spinal interneurons. J. Neurosci. 37, 8349–8362. 10.1523/JNEUROSCI.0992-17.2017
    1. Sy D. Q., Thanh Binh M. H., Quoc N. T., Hung N. V., Quynh Nhu D. T., Bao N. Q., et al. . (2007). Prevalence of asthma and asthma-like symptoms in Dalat Highlands, Vietnam. Singapore Med. J. 48, 294–303. Available online at:
    1. Thanigaimani S., McLennan E., Linz D., Mahajan R., Agbaedeng T. A., Lee G., et al. . (2017). Progression and reversibility of stretch induced atrial remodeling: characterization and clinical implications. Prog. Biophys. Mol. Biol. 130, 376–386. 10.1016/j.pbiomolbio.2017.07.010
    1. Tin'kov A. N., Aksenov V. A. (2002). Effects of intermittent hypobaric hypoxia on blood lipid concentrations in male coronary heart disease patients. High Alt. Med. Biol. 3, 277–282. 10.1089/152702902320604250
    1. Truijens M. J., Rodríguez F. A., Townsend N. E., Stray-Gundersen J., Gore C. J., Levine B. D. (2008). The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J. Appl. Physiol. 104, 328–337. 10.1152/japplphysiol.01324.2006
    1. Trumbower R. D., Hayes H. B., Mitchell G. S., Wolf S. L., Stahl V. A. (2017). Effects of acute intermittent hypoxia on hand use after spinal cord trauma: a preliminary study. Neurology 89, 1904–1907. 10.1212/WNL.0000000000004596
    1. Tsai Y.-W., Yang Y.-R., Sun S. H., Liang K.-C., Wang R.-Y. (2013). Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J. Cereb. Blood Flow Metab. 33, 764–773. 10.1038/jcbfm.2013.15
    1. Turban K., Spengler L. (1906). Resultate der Asthmabehandlung im Hochgebirge. Jahresbericht der Schweiz Balneol. Gesellschaft 2:72.
    1. Valle M., del P., García-Godos F., Woolcott O. O., Marticorena J. M., Rodríguez V., et al. . (2006). Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia. J. Nucl. Cardiol. 13, 69–74. 10.1016/j.nuclcard.2005.11.008
    1. van der Woude H. J., Winter T. H., Aalbers R. (2001). Decreased bronchodilating effect of salbutamol in relieving methacholine induced moderate to severe bronchoconstriction during high dose treatment with long acting beta2 agonists. Thorax 56, 529–535. 10.1136/thorax.56.7.529
    1. van Velzen E., van den Bos J. W., Benckhuijsen J. A., van Essel T., de Bruijn R., Aalbers R. (1996). Effect of allergen avoidance at high altitude on direct and indirect bronchial hyperresponsiveness and markers of inflammation in children with allergic asthma. Thorax 51, 582–584. 10.1136/thx.51.6.582
    1. Virués-Ortega J., Garrido E., Javierre C., Kloezeman K. C. (2006). Human behaviour and development under high-altitude conditions. Dev. Sci. 9, 400–410. 10.1111/j.1467-7687.2006.00505.x
    1. Viscor G., Javierre C., Pagès T., Ventura J.-L., Ricart A., Martin-Henao G., et al. . (2009). Combined intermittent hypoxia and surface muscle electrostimulation as a method to increase peripheral blood progenitor cell concentration. J. Transl. Med. 7:91. 10.1186/1479-5876-7-91
    1. Viscor G., Ricart A., Pagès T., Corral L., Javierre C. F., Ventura J. L. (2014). Intermittent hypoxia for obstructive sleep apnea? High Alt. Med. Biol. 15, 520–521. 10.1089/ham.2014.1060
    1. Vocks E., Schuh A., Liebich C., Topperzer U., Ring J. (1999). High altitude stay and plasma cortisol level in psoriasis. Phys. Medizin Rehabil. Kurortmedizin 9, 197–201. 10.1055/s-2008-1061805
    1. Wang G. L., Semenza G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci.U.S.A. 90, 4304–4308. 10.1073/pnas.90.9.4304
    1. Ward M. (1954). High altitude deterioration. Proc. R. Soc. London. Ser. B Biol. Sci. 143, 40–42. 10.2307/83018
    1. West J. B., Schoene R. B., Luks A. M., Milledge J. S. (2013). High Altitude Medicine and Physiology. 5th Edn. Boca Raton, FL: CRC Press/Taylor & Francis Group
    1. Wiesner S., Haufe S., Engeli S., Mutschler H., Haas U., Luft F. C., et al. . (2010). Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity 18, 116–120. 10.1038/oby.2009.193
    1. Wilber R. L. (2004). Altitude training and Athletic Performance. Champaign, IL: Human Kinetics.
    1. Wilber R. L., Stray-Gundersen J., Levine B. D. (2007). Effect of hypoxic “dose” on physiological responses and sea-level performance. Med. Sci. Sports Exerc. 39, 1590–1599. 10.1249/mss.0b013e3180de49bd
    1. Wille M., Gatterer H., Mairer K., Philippe M., Schwarzenbacher H., Faulhaber M., et al. . (2012). Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scand. J. Med. Sci. Sport. 22, 79–85. 10.1111/j.1600-0838.2012.01499.x
    1. Wu Q., Yu K. X., Ma Q. S., Liu Y. N. (2015). Effects of intermittent hypobaric hypoxia preconditioning on the expression of neuroglobin and Bcl-2 in the rat hippocampal CA1 area following ischemia-reperfusion. Genet. Mol. Res. 14, 10799–10807. 10.4238/2015.September.9.18
    1. Xi L., Serebrovskaya T. V. (eds) (2012). Intermittent Hypoxia and Human Diseases. London: Springer.
    1. Xing B., Chen H., Zhang M., Zhao D., Jiang R., Liu X., et al. . (2008). Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39, 2362–2369. 10.1161/STROKEAHA.107.507939
    1. Xu Q., Wang S., Jiang X., Zhao Y., Gao M., Zhang Y., et al. . (2007). Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro. Clin. Exp. Pharmacol. Physiol. 34, 624–631. 10.1111/j.1440-1681.2007.04619.x
    1. Yangzong Nafstad P., Madsen C., Bjertness E. (2006). Childhood asthma under the north face of Mount Everest. J. Asthma 43, 393–398. 10.1080/02770900600710326
    1. Zhang H., Li Q., Li Z., Mei Y., Guo Y. (2008). The protection of Bcl-2 overexpression on rat cortical neuronal injury caused by analogous ischemia/reperfusion in vitro. Neurosci. Res. 62, 140–146. 10.1016/j.neures.2008.07.002
    1. Zhang K., Zhao T., Huang X., Wu L., Wu K., Zhu L., et al. . (2014a). Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia. Neurobiol. Dis. 64, 66–78. 10.1016/j.nbd.2013.12.010
    1. Zhang S., Guo Z., Yang S., Ma H., Fu C., Wang S., et al. . (2016a). Chronic intermittent hybobaric hypoxia protects against cerebral ischemia via modulation of mitoKATP. Neurosci. Lett. 635, 8–16. 10.1016/j.neulet.2016.10.025
    1. Zhang Y., Wang L., Dey S., Alnaeeli M., Suresh S., Rogers H., et al. . (2014b). Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci. 15, 10296–10333. 10.3390/ijms150610296
    1. Zhang Z., Yan J., Shi H. (2016b). Role of hypoxia Inducible Factor 1 in hyperglycemia-exacerbated blood-brain barrier disruption in ischemic stroke. Neurobiol. Dis. 95, 82–92. 10.1016/j.nbd.2016.07.012
    1. Zhou S., Yi T., Liu R., Bian C., Qi X., He X., et al. . (2012). Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol. Cell. Proteomics 11:M112.017988. 10.1074/mcp.M112.017988
    1. Zhu L., Zhao T., Li H., Zhao H., Wu L.-Y., Ding A., et al. . (2005). Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res. 1055, 1–6. 10.1016/j.brainres.2005.04.075
    1. Zimna A., Kurpisz M. (2015). Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res. Int. 2015:549412. 10.1155/2015/549412

Source: PubMed

3
Abonnere