Rare loss-of-function mutations of PTGIR are enriched in fibromuscular dysplasia

Adrien Georges, Juliette Albuisson, Takiy Berrandou, Délia Dupré, Aurélien Lorthioir, Valentina D'Escamard, Antonio F Di Narzo, Daniella Kadian-Dodov, Jeffrey W Olin, Ewa Warchol-Celinska, Aleksander Prejbisz, Andrzej Januszewicz, Patrick Bruneval, Anna A Baranowska, Tom R Webb, Stephen E Hamby, Nilesh J Samani, David Adlam, Natalia Fendrikova-Mahlay, Stanley Hazen, Yu Wang, Min-Lee Yang, Kristina Hunker, Nicolas Combaret, Pascal Motreff, Antoine Chédid, Béatrice Fiquet, Pierre-François Plouin, Elie Mousseaux, Arshid Azarine, Laurence Amar, Michel Azizi, Heather L Gornik, Santhi K Ganesh, Jason C Kovacic, Xavier Jeunemaitre, Nabila Bouatia-Naji, Adrien Georges, Juliette Albuisson, Takiy Berrandou, Délia Dupré, Aurélien Lorthioir, Valentina D'Escamard, Antonio F Di Narzo, Daniella Kadian-Dodov, Jeffrey W Olin, Ewa Warchol-Celinska, Aleksander Prejbisz, Andrzej Januszewicz, Patrick Bruneval, Anna A Baranowska, Tom R Webb, Stephen E Hamby, Nilesh J Samani, David Adlam, Natalia Fendrikova-Mahlay, Stanley Hazen, Yu Wang, Min-Lee Yang, Kristina Hunker, Nicolas Combaret, Pascal Motreff, Antoine Chédid, Béatrice Fiquet, Pierre-François Plouin, Elie Mousseaux, Arshid Azarine, Laurence Amar, Michel Azizi, Heather L Gornik, Santhi K Ganesh, Jason C Kovacic, Xavier Jeunemaitre, Nabila Bouatia-Naji

Abstract

Aims: Fibromuscular dysplasia (FMD) and spontaneous coronary artery dissection (SCAD) are related, non-atherosclerotic arterial diseases mainly affecting middle-aged women. Little is known about their physiopathological mechanisms. We aimed to identify rare genetic causes to elucidate molecular mechanisms implicated in FMD and SCAD.

Methods and results: We analysed 29 exomes that included familial and sporadic FMD. We identified one rare loss-of-function variant (LoF) (frequencygnomAD = 0.000075) shared by two FMD sisters in the prostaglandin I2 receptor gene (PTGIR), a key player in vascular remodelling. Follow-up was conducted by targeted or Sanger sequencing (1071 FMD and 363 SCAD patients) or lookups in exome (264 FMD) or genome sequences (480 SCAD), all independent and unrelated. It revealed four additional LoF allele carriers, in addition to several rare missense variants, among FMD patients, and two LoF allele carriers among SCAD patients, including one carrying a rare splicing mutation (c.768 + 1C>G). We used burden test to test for enrichment in patients compared to gnomAD controls, which detected a putative enrichment in FMD (PTRAPD = 8 × 10-4), but not a significant enrichment (PTRAPD = 0.12) in SCAD. The biological effects of variants on human prostaclycin receptor (hIP) signalling and protein expression were characterized using transient overexpression in human cells. We confirmed the LoFs (Q163X and P17RfsX6) and one missense (L67P), identified in one FMD and one SCAD patient, to severely impair hIP function in vitro.

Conclusions: Our study shows that rare genetic mutations in PTGIR are enriched among FMD patients and found in SCAD patients, suggesting a role for prostacyclin signalling in non-atherosclerotic stenosis and dissection.

Keywords: Fibromuscular dysplasia; Prostacyclin signalling; Rare loss-of-function variants; Spontaneous coronary artery dissection.

© The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Flowchart illustrating the genetic approach undertaken in this study. FMD, fibromuscular dysplasia; LoF, loss-of-function; SCAD, spontaneous coronary artery dissection.
Figure 2
Figure 2
Analysis of cAMP synthesis in response to iloprost in HEK293 cells overexpressing WT or mutant prostacyclin receptors. (A and B) Concentration of cAMP in HEK293 cells overexpressing WT prostacyclin receptor (hIP), mutant hIP (A: P17RfsX6 or Q163X, B: A2T, L67P, M107V, or R137C) or transfected with mock plasmid (pcDNA-FLAG-HA). Error bars represent the standard deviation of three technical replicates. (C) Measurement of 50% response concentration to iloprost (EC50) in HEK293 cells overexpressing WT or mutant hIP. N represents the number of independent experiments. Error bars represent the standard error of the mean. Student’s t-test P-value (bilateral test with homoscedastic variance) ***P < 10−3. cAMP, cyclic adenosine monophosphate; WT, wild-type.
Figure 3
Figure 3
Evaluation of the expression and localization of the prostacyclin receptor mutated proteins. (A) WT and mutant protein expression. SDS-PAGE/western blot assay on whole cells extracts of HEK293 cells overexpressing WT or mutant prostacyclin receptor (hIP) included a FLAG-HA N-terminal tag and the transfection control (mCherry). Proteins (hIP, mCherry, and β-actin) were detected using specific primary antibodies. We found that hIP is detected as a mix of bands and higher molecular weight smear due to its extensive post-translational modification. Full size blots are presented in Supplementary material online, Figure S7. (B) Protein quantification. We performed five independent experiments (hIP-A2T and M107V were assayed in four experiments), and the average is shown with standard error of the mean as error bars. We indicate Student’s t-test P-value (paired test) when P < 0.05 as *. (C) Immunofluorescence visualization of HEK293 cells overexpressing wild-type or L67P hIP. Protein localization was assayed using hIP specific antibody (purple signal). Fixed cells were incubated with Alexa488-conjugated WGA (green signal), and with 4′,6-diamidino-2-phenylindole (DAPI) (blue signal). Images were taken with a 100× objective on a Zeiss ApoTome system. hIP, human prostacyclin receptor; WGA; Wheat Germ Agglutinin; WT, wild-type.

References

    1. Gornik HL, Persu A, Adlam D, Aparicio LS, Azizi M, Boulanger M, Bruno RM, de Leeuw P, Fendrikova-Mahlay N, Froehlich J, Ganesh SK, Gray BH, Jamison C, Januszewicz A, Jeunemaitre X, Kadian-Dodov D, Kim ES, Kovacic JC, Mace P, Morganti A, Sharma A, Southerland AM, Touze E, van der Niepen P, Wang J, Weinberg I, Wilson S, Olin JW, Plouin PF.. First international consensus on the diagnosis and management of fibromuscular dysplasia. Vasc Med 2019;24:164–189.
    1. Olin JW, Froehlich J, Gu X, Bacharach JM, Eagle K, Gray BH, Jaff MR, Kim ES, Mace P, Matsumoto AH, McBane RD, Kline-Rogers E, White CJ, Gornik HL.. The United States Registry for fibromuscular dysplasia: results in the first 447 patients. Circulation 2012;125:3182–3190.
    1. Stanley JC, Gewertz BL, Bove EL, Sottiurai V, Fry WJ.. Arterial fibrodysplasia. Histopathologic character and current etiologic concepts. Arch Surg 1975;110:561–566.
    1. Luscher TF, Lie JT, Stanson AW, Houser OW, Hollier LH, Sheps SG.. Arterial fibromuscular dysplasia. Mayo Clin Proc 1987;62:931–952.
    1. Di Monaco S, Georges A, Lengele JP, Vikkula M, Persu A.. Genomics of fibromuscular dysplasia. Int J Mol Sci 2018;19:1526.
    1. Miller DJ, Marin H, Aho T, Schultz L, Katramados A, Mitsias P.. Fibromuscular dysplasia unraveled: the pulsation-induced microtrauma and reactive hyperplasia theory. Med Hypotheses 2014;83:21–24.
    1. Sottiurai V, Fry WJ, Stanley JC.. Ultrastructural characteristics of experimental arterial medial fibroplasia induced by vasa vasorum occlusion. J Surg Res 1978;24:167–177.
    1. Hayes SN, Kim ESH, Saw J, Adlam D, Arslanian-Engoren C, Economy KE, Ganesh SK, Gulati R, Lindsay ME, Mieres JH, Naderi S, Shah S, Thaler DE, Tweet MS, Wood MJ.. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation 2018;137:e523–e557.
    1. Adlam D, Alfonso F, Maas A, Vrints C; Writing Committee. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J 2018;39:3353–3368.
    1. Olin JW, Di Narzo AF, d’Escamard V, Kadian-Dodov D, Cheng H, Georges A, King A, Thomas A, Barwari T, Michelis KC, Bouchareb R, Bander E, Anyanwu A, Stelzer P, Filsoufi F, Florman S, Civelek M, Debette S, Jeunemaitre X, Lm Bjorkegren J, Mayr M, Bouatia-Naji N, Hao K, Kovacic JC.. A plasma proteogenomic signature for fibromuscular dysplasia. Cardiovasc Res 2020;116:63–77.
    1. Kiando SR, Tucker NR, Castro-Vega LJ, Katz A, D’Escamard V, Treard C, Fraher D, Albuisson J, Kadian-Dodov D, Ye Z, Austin E, Yang ML, Hunker K, Barlassina C, Cusi D, Galan P, Empana JP, Jouven X, Gimenez-Roqueplo AP, Bruneval P, Hyun Kim ES, Olin JW, Gornik HL, Azizi M, Plouin PF, Ellinor PT, Kullo IJ, Milan DJ, Ganesh SK, Boutouyrie P, Kovacic JC, Jeunemaitre X, Bouatia-Naji N.. PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLoS Genet 2016;12:e1006367.
    1. Adlam D, Olson TM, Combaret N, Kovacic JC, Iismaa SE, Al-Hussaini A, O'Byrne MM, Bouajila S, Georges A, Mishra K, Braund PS, d’Escamard V, Huang S, Margaritis M, Nelson CP, de Andrade M, Kadian-Dodov D, Welch CA, Mazurkiewicz S, Jeunemaitre X, Wong CMY, Giannoulatou E, Sweeting M, Muller D, Wood A, McGrath-Cadell L, Fatkin D, Dunwoodie SL, Harvey R, Holloway C, Empana J-P, Jouven X, Olin JW, Gulati R, Tweet MS, Hayes SN, Samani NJ, Graham RM, Motreff P, Bouatia-Naji N.. Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection. J Am Coll Cardiol 2019;73:58–66.
    1. Marian AJ. Molecular genetic studies of complex phenotypes. Transl Res 2012;159:64–79.
    1. Dobrowolski P, Januszewicz M, Klisiewicz A, Prejbisz A, Warchoł-Celińska E, Michałowska I, Florczak E, Kożuch K, Hanus K, Aniszczuk-Hybiak A, Witowicz H, Witkowski A, Kądziela J, Kabat M, Madej K, Nazarewski S, Tykarski A, Stryczyński Ł, Szczerbo-Trojanowska M, Światłowski Ł, Kosiński P, Widecka K, Januszewicz A, Hoffman P.. Echocardiographic assessment of left ventricular morphology and function in patients with fibromuscular dysplasia: the ARCADIA-POL study. J Hypertens 2018;36:1318–1325.
    1. Kiando SR, Barlassina C, Cusi D, Galan P, Lathrop M, Plouin PF, Jeunemaitre X, Bouatia-Naji N.. Exome sequencing in seven families and gene-based association studies indicate genetic heterogeneity and suggest possible candidates for fibromuscular dysplasia. J Hypertens 2015;33:1802–1810; discussion 1810.
    1. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DG. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv2019:531210.
    1. Guo MH, Plummer L, Chan YM, Hirschhorn JN, Lippincott MF.. Burden testing of rare variants identified through exome sequencing via publicly available control data. Am J Hum Genet 2018;103:522–534.
    1. Meynert AM, Ansari M, FitzPatrick DR, Taylor MS.. Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 2014;15:247.
    1. Huang da W, Sherman BT, Lempicki RA.. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.
    1. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV.. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–D613.
    1. Tranchevent LC, Ardeshirdavani A, ElShal S, Alcaide D, Aerts J, Auboeuf D, Moreau Y.. Candidate gene prioritization with Endeavour. Nucleic Acids Res 2016;44:W117–W121.
    1. Majed BH, Khalil RA.. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012;64:540–582.
    1. Turley TN, Theis JL, Sundsbak RS, Evans JM, O’Byrne MM, Gulati R, Tweet MS, Hayes SN, Olson TM.. Rare missense variants in TLN1 are associated with familial and sporadic spontaneous coronary artery dissection. Circ Genom Precis Med 2019;12:e002437.
    1. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, Emdin CA, Bick AG, Morrison AC, Brody JA, Gupta N, Nomura A, Kessler T, Duga S, Bis JC, van Duijn CM, Cupples LA, Psaty B, Rader DJ, Danesh J, Schunkert H, McPherson R, Farrall M, Watkins H, Lander E, Wilson JG, Correa A, Boerwinkle E, Merlini PA, Ardissino D, Saleheen D, Gabriel S, Kathiresan S.. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol 2016;67:2578–2589.
    1. Arehart E, Stitham J, Asselbergs FW, Douville K, MacKenzie T, Fetalvero KM, Gleim S, Kasza Z, Rao Y, Martel L, Segel S, Robb J, Kaplan A, Simons M, Powell RJ, Moore JH, Rimm EB, Martin KA, Hwa J.. Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation: potential implications for cyclooxygenase-2 inhibition. Circ Res 2008;102:986–993.
    1. Stitham J, Arehart E, Elderon L, Gleim SR, Douville K, Kasza Z, Fetalvero K, MacKenzie T, Robb J, Martin KA, Hwa J.. Comprehensive biochemical analysis of rare prostacyclin receptor variants: study of association of signaling with coronary artery obstruction. J Biol Chem 2011;286:7060–7069.
    1. Insel PA, Murray F, Yokoyama U, Romano S, Yun H, Brown L, Snead A, Lu D, Aroonsakool N.. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol 2012;166:447–456.

Source: PubMed

3
Abonnere