The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players

Marissa L Bello, Alan J Walker, Bridget A McFadden, David J Sanders, Shawn M Arent, Marissa L Bello, Alan J Walker, Bridget A McFadden, David J Sanders, Shawn M Arent

Abstract

Background: Theacrine (1,3,7,9-tetramethyluric-acid) is a pure alkaloid with a similar structure to caffeine and acts comparably as an adenosine receptor antagonist. Early studies have shown non-habituating effects, including increases in energy and focus in response to Teacrine®, the compound containing pure theacrine. The purpose of this study was to determine and compare the effects of Teacrine® and caffeine on cognitive performance and time-to-exhaustion during a simulated soccer game in high-level male and female athletes.

Methods: Male and female soccer players (N = 24; MAge = 20.96 ± 2.05y, MMaleVO2max = 55.31 ± 3.39 mL/O2/kg, MFemaleVO2max = 50.97 ± 3.90 mL/O2/kg) completed a 90-min simulated treadmill soccer match over four randomized sessions (TeaCrine®, caffeine, TeaCrine® + caffeine, placebo). Cognitive testing at halftime and end-of-game including simple reaction time (SRT), choice RT (CRT), and cognitive-load RT with distraction questions (COGRT/COGRTWrong) was performed, with a run time-to-exhaustion (TTE) at 85% VO2max following end-of-game cognitive testing. Session times and pre-exercise nutrition were controlled. RM-MANOVAs with univariate follow-ups were conducted and significance was set at P < 0.05.

Results: TTE trended towards significance in TeaCrine® and TeaCrine® + caffeine conditions compared to placebo (P < 0.052). A condition main effect (P < 0.05) occurred with faster CRT in caffeine and TeaCrine® + caffeine compared to placebo. COGRTWrong showed a significant time main effect, with better accuracy at end-of-game compared to halftime (P < 0.05). A time x condition interaction in SRT (P < 0.05) showed placebo improved from halftime to end-of-game.

Conclusions: The 27-38% improvements in TTE reflect increased performance capacity that may have important implications for overtime scenarios. These findings suggest TeaCrine® favorably impacts endurance and the combination with caffeine provides greater benefits on cognitive function than either supplement independently.

Keywords: Caffeine; Cognitive function; Endurance; Soccer; Theacrine.

Conflict of interest statement

Ethics approval and consent to participate

All subjects read and signed an informed consent form and the study was approved by the Rutgers University Institutional Review Board.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Simulated game protocol
Fig. 2
Fig. 2
Running time-to-exhaustion (TTE)

References

    1. MacIntosh BR, Wright BM. Caffeine ingestion and performance of a 1,500-metre wwim. Can J Appl Physiol. 1995;20(2):168–177. doi: 10.1139/h95-012.
    1. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(2):175–184. doi: 10.1007/s40279-014-0257-8.
    1. Chaouloff F, Laude D, Merino D, Serrurrier B, Guezennec Y, Elghozi JL. Amphetamine and α-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacology. 1987;26(8):1099–1106. doi: 10.1016/0028-3908(87)90254-1.
    1. Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807. doi: 10.2165/00007256-200131110-00002.
    1. Meeusen R, Roelands B, Spriet LL. Caffeine, exercise and the brain. Nestle Nutr Inst Workshop Ser. 2013;76:1–12. doi: 10.1159/000350223.
    1. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci. 2014;15(2):2024–2052. doi: 10.3390/ijms15022024.
    1. Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, et al. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry. 2015;5:e549. doi: 10.1038/tp.2015.46.
    1. Casiglia E, Bongiovi S, Paleari CD, Petucco S, Boni M, Colangeli G, et al. Haemodynamic effects of coffee and caffeine in normal volunteers: a placebo-controlled clinical study. J Intern Med. 1991;229(6):501–504. doi: 10.1111/j.1365-2796.1991.tb00385.x.
    1. Daniels JW, Mole PA, Shaffrath JD, Stebbins CL. Effects of caffeine on blood pressure, heart rate, and forearm blood flor during dynamic leg exercise. J Appl Physiol. 1998;85:154–159. doi: 10.1152/jappl.1998.85.1.154.
    1. Geethavani G, Rameswarudu M, Rameshwari RR. Effect of caffeine on heart rate and blood pressure. Int J Sci Res Publ. 2014;4(2):234.
    1. Brunye TT, Mahoney CR, Lieberman HR, Taylor HA. Caffeine modulates attention network function. Brain Cogn. 2010;72(2):181–188. doi: 10.1016/j.bandc.2009.07.013.
    1. Lorist Monicque, Snel Jan, Tieges Zoë. Nutrition, Brain and Behavior. 2004. Coffee, Caffeine, and Cognitive Performance.
    1. Jordan JB, Korgaokar A, Farley RS, Coons JM, Caputo JL. Caffeine supplementation and reactive agility in elite youth soccer players. Pediatr Exerc Sci. 2014;26(2):168–176. doi: 10.1123/pes.2013-0134.
    1. Doyle TP, Lutz RS, Pellegrino JK, Sanders DJ, Arent SM. The effects of caffeine on arousal, response time, accuracy, and performance in division I collegiate fencers. J Strength Cond Res. 2016;30(11):3228–3235. doi: 10.1519/JSC.0000000000001602.
    1. Butts NK, Crowell D. Effect of caffeine ingestion on cardiorespiratory endurance in men and women. Res Q Exercise Sports. 1985;56(4):301–305. doi: 10.1080/02701367.1985.10605333.
    1. Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Macrides TA, et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol. 2002;93(3):990–999. doi: 10.1152/japplphysiol.00249.2002.
    1. Pasman WJ, van Baak MA, Jeukendrup AE, de Haan A. The effect of different dosages of caffeine on endurance performance. Int J Sports Med. 1995;16(4):225–230. doi: 10.1055/s-2007-972996.
    1. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15(11):11. doi: 10.1186/s12970-018-0216-0.
    1. Hahn CJ, Jagim AR, Camic CL, Andre MJ. Acute effects of a caffeine-containing supplement on anaerobic power and subjective measurements of fatigue in recreationally active men. J Strength Cond Res. 2018;32(4):1029–1035. doi: 10.1519/JSC.0000000000002442.
    1. Goods PSR, Landers G, Fulton S. Caffeine ingestion improves repeated freestyle sprints in elite male swimmers. J Sports Sci and Med. 2017;16(1):93–98.
    1. Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exericse. Int J Sport Nutr Ex Metabolism. 2008;18:412–429. doi: 10.1123/ijsnem.18.4.412.
    1. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repitition maximum muscular strength. Eur J Appl Physiol. 2009;102:127–132. doi: 10.1007/s00421-007-0557-x.
    1. Lara B, Gonzalez-Millan C, Salinero JJ, Abian-Vicen J, Areces F, Barbero-Alvarez JC, et al. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids. 2014;46(5):1385–1392. doi: 10.1007/s00726-014-1709-z.
    1. Del Coso J, Munoz-Fernandez VE, Munoz G, Fernandez-Elias VE, Ortega JF, Hamouti N, et al. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS One. 2012;7(2):e31380. doi: 10.1371/journal.pone.0031380.
    1. Franks AM, Schmidt JM, McCain KR, Fraer M. Comparison of the effects of energy drink versus caffeine supplementation on indices of 24-hour ambulatory blood pressure. Ann Pharmacother. 2012;46(2):192–199. doi: 10.1345/aph.1Q555.
    1. Conway KJ, Orr R, Stannard SR. Effect of a divided caffeine dose on endurance cycling performance, postexercise urinary caffeine concentration, and plasma paraxanthine. J Appl Physiol. 2003;94(4):1557–1562. doi: 10.1152/japplphysiol.00911.2002.
    1. He H, Ma D, Crone LB, Butawan M, Meibohm B, Bloomer RJ, et al. Assessment of the drug-drug interaction potential between theacrine and caffeine in humans. J Caffeine Res. 2017;7(3):95–102. doi: 10.1089/jcr.2017.0006.
    1. Taylor L, Mumford P, Roberts M, Hayward S, Mullins J, Urbina S, et al. Safety of TeaCrine(R), a non-habituating, naturally-occurring purine alkaloid over eight weeks of continuous use. J Int Soc Sports Nutr. 2016;13:2. doi: 10.1186/s12970-016-0113-3.
    1. Ziegenfuss TN, Habowski SM, Sandrock JE, Kedia AW, Kerksick CM, Lopez HL. A two-part approach to examine the effects of theacrine (TeaCrine(R)) supplementation on oxygen consumption, hemodynamic responses, and subjective measures of cognitive and psychometric parameters. J Diet Suppl. 2016:1–15.
    1. Snyder CJ. Acute effects of theacrine supplementation on muscular strength and muscular endurance. 2016.
    1. Kuhman DJ, Joyner KJ, Bloomer RJ. Cognitive performance and mood following ingestion of a theacrine-containing dietary supplement, caffeine, or placebo by young men and women. Nutrients. 2015;7(11):9618–9632. doi: 10.3390/nu7115484.
    1. Feduccia AA, Wang Y, Simms JA, Yi HY, Li R, Bjeldanes L, et al. Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: involvement of adenosine and dopamine receptors. Pharmacol Biochem Behav. 2012;102(2):241–248. doi: 10.1016/j.pbb.2012.04.014.
    1. Vestberg T, Gustafson R, Maurex L, Ingvar M, Petrovic P. Executive functions predict the success of top-soccer players. PLoS One. 2012;7(4):e34731. doi: 10.1371/journal.pone.0034731.
    1. Verburgh L, Scherder EJ, van Lange PA, Oosterlaan J. Executive functioning in highly talented soccer players. PLoS One. 2014;9(3):e91254. doi: 10.1371/journal.pone.0091254.
    1. Pesce C, Tessitore A, Casella R, Pirritano M, Capranica L. Focusing of visual attention at rest and during physical exercise in soccer players. J Sports Sci. 2007;25(11):1259–1270. doi: 10.1080/02640410601040085.
    1. Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer. Sports Med. 2005;35(6):501–536. doi: 10.2165/00007256-200535060-00004.
    1. Bangsbo J. Energy demands in competitive soccer. J Sports Sci. 1994;12:S5–S12. doi: 10.1080/02640414.1994.12059272.
    1. Drust B, Reilly T, Cable NT. Physiological responses to laboratory-based soccer-specific intermittent and continuous exercise. J Sports Sci. 2000;18(11):885–892. doi: 10.1080/026404100750017814.
    1. Vestberg T, Reinebo G, Maurex L, Ingvar M, Petrovic P. Core executive functions are associated with success in young elite soccer players. PLoS One. 2017;12(2):e0170845. doi: 10.1371/journal.pone.0170845.
    1. Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006;16(1):17–42. doi: 10.1007/s11065-006-9002-x.
    1. Zwierko T, Lesiakowski P. Visuomotor processing after progressively increased physical exercise. Centr Euro J Sport Sci Med. 2014;5(1):27–34.
    1. Sudo M, Komiyama T, Aoyagi R, Nagamatsu T, Higaki Y, Ando S. Executive function after exhaustive exercise. Eur J Appl Physiol. 2017;117(10):2029–2038. doi: 10.1007/s00421-017-3692-z.
    1. Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321–327. doi: 10.1080/02640419608727717.
    1. Borg GA. Psychophysical bases of percieved exertion. Med Sci Sports Exerc. 1982;14(5):377-81. doi: 10.1249/00005768-198205000-00012.
    1. Nieman DC, Austin MD, Dew D, Utter AC. Validity of COSMED's quark CPET mixing chamber system in evaluating energy metabolism during aerobic exercise in healthy male adults. Res Sports Med. 2013;21(2):136–145. doi: 10.1080/15438627.2012.757227.
    1. Wells AJ, Hoffman JR, Beyer KS, Jajtner AR, Gonzalez AM, Townsend JR, et al. Reliability of the Dynavision D2 for assessing reaction time performance. J Sports Sci Med. 2014;13:145–150.
    1. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519–528. doi: 10.1080/0264041031000071182.
    1. Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, Bessman SC, et al. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med. 2015;7(305):305ra146. doi: 10.1126/scitranslmed.aac5125.
    1. Brisswalter J, Collardeau M, Rene A. Effects of acute physical exercise characteristics on cognitive performance. Sports Med. 2002;32(9):555–556. doi: 10.2165/00007256-200232090-00002.
    1. Tomporowski PD, Ellis NR. Effects of exercise on cognitive process: a review. Psychol Bull. 1986;99(3):338–346. doi: 10.1037/0033-2909.99.3.338.
    1. Fine BJ, Kobrick JL, Lieberman HR, Marlowe B, Riley RH, Tharion WJ. Effects of caffeine on diphenydramine on visual vigilance. Psychopharmacology. 1994;114:233–238. doi: 10.1007/BF02244842.
    1. Jenkins NT, Trilk JL, Singhal A, O'Connor PJ, Cureton KJ. Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab. 2008;18(3):328–342. doi: 10.1123/ijsnem.18.3.328.
    1. Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–1578. doi: 10.1249/MSS.0000000000001596.
    1. Doherty M, Smith PM. Effects of caffeine ingestion on rating of percieved exertion during and after exercise: a meta-analysis. Scand J Med Sci Spor. 2005;15(2):69–78. doi: 10.1111/j.1600-0838.2005.00445.x.
    1. Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155–158.
    1. Hargreaves M, Kiens B, Richter EA. Effect of increased plasma free fatty acids concentrations on muscle metabolism in exercising men. J Appl Physiol. 1991;70:194–201. doi: 10.1152/jappl.1991.70.1.194.
    1. Aslan A, Acikada C, Guvenc A, Goren H, Hazir T, Ozkara A. Metabolic demands of match performance in young soccer players. J Sports Sci Med. 2012;11(1):170–179.
    1. Bendiksen M, Bischoff R, Randers MB, Mohr M, Rollo I, Suetta C, et al. The Copenhagen soccer test: physiological response and fatigue development. Med Sci Sports Exerc. 2012;44(8):1595–1603. doi: 10.1249/MSS.0b013e31824cc23b.
    1. Brownstein CG, Dent JP, Parker P, Hicks KM, Howatson G, Goodall S, et al. Etiology and recovery of neuromuscular fatigue following competitive soccer match-play. Front Physiol. 2017;8:831. doi: 10.3389/fphys.2017.00831.

Source: PubMed

3
Abonnere