Educational games for brain health: revealing their unexplored potential through a neurocognitive approach

Patrick Fissler, Iris-Tatjana Kolassa, Claudia Schrader, Patrick Fissler, Iris-Tatjana Kolassa, Claudia Schrader

Abstract

Educational games link the motivational nature of games with learning of knowledge and skills. Here, we go beyond effects on these learning outcomes. We review two lines of evidence which indicate the currently unexplored potential of educational games to promote brain health: First, gaming with specific neurocognitive demands (e.g., executive control), and second, educational learning experiences (e.g., studying foreign languages) improve brain health markers. These markers include cognitive ability, brain function, and brain structure. As educational games allow the combination of specific neurocognitive demands with educational learning experiences, they seem to be optimally suited for promoting brain health. We propose a neurocognitive approach to reveal this unexplored potential of educational games in future research.

Keywords: brain function; brain health; brain structure; cognitive ability; education; educational games; gaming; serious games.

Figures

FIGURE 1
FIGURE 1
A neurocognitive approach to reveal the unexplored potential of educational games for brain health. In a two-step approach, a cognitive task analysis of educational games is followed by their validation through objective methods. This second step consists of a behavioral analysis to determine the association between game performance and neuropsychological test performance and/or a brain imaging approach to determine the recruited neuronal networks for task completion. Based on this approach, appropriate educational games can be selected to enable randomized controlled clinical trials that assess the efficacy of educational games to improve brain health markers including cognitive ability, brain function, and brain structure.

References

    1. Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., et al. (2013). Video game training enhances cognitive control in older adults. Nature 501, 97–101. 10.1038/nature12486
    1. Bak T. H., Nissan J. J., Allerhand M. M., Deary I. J. (2014). Does bilingualism influence cognitive aging? Ann. Neurol. 75, 959–963. 10.1002/ana.24158
    1. Balbag M. A., Pedersen N. L., Gatz M. (2014). Playing a musical instrument as a protective factor against dementia and cognitive impairment: a population-based twin study. Int. J. Alzheimers Dis. 2014, 6. 10.1155/2014/836748
    1. Baniqued P. L., Lee H., Voss M. W., Basak C., Cosman J. D., Desouza S., et al. (2013). Selling points: what cognitive abilities are tapped by casual video games? Acta Psychol. 142, 74–86. 10.1016/j.actpsy.2012.11.009
    1. Barnes D. E., Yaffe K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828. 10.1016/S1474-4422(11)70072-2
    1. Basak C., Boot W. R., Voss M. W., Kramer A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol. Aging 23, 765–777. 10.1037/a0013494
    1. Bavelier D., Achtman R. L., Mani M., Föcker J. (2012). Neural bases of selective attention in action video game players. Vision Res. 61, 132–143. 10.1016/j.visres.2011.08.007
    1. Beale I. L., Kato P. M., Marin-Bowling V. M., Guthrie N., Cole S. W. (2007). Improvement in cancer-related knowledge following use of a psychoeducational video game for adolescents and young adults with cancer. J. Adolesc. Health 41, 263–270. 10.1016/j.jadohealth.2007.04.006
    1. Bisoglio J., Michaels T. I., Mervis J. E., Ashinoff B. K. (2014). Cognitive enhancement through action video game training: great expectations require greater evidence. Front. Psychol. 5:136. 10.3389/fpsyg.2014.00136
    1. Brayne C., Ince P. G., Keage H. a. D., Mckeith I. G., Matthews F. E., Polvikoski T., et al. (2010). Education, the brain and dementia: neuroprotection or compensation? Brain 133, 2210–2216. 10.1093/brain/awq185
    1. Caamaño-Isorna F., Corral M., Montes-Martínez A., Takkouche B. (2006). Education and dementia: a meta-analytic study. Neuroepidemiology 26, 226–232. 10.1159/000093378
    1. Carlson M., Erickson K., Kramer A., Voss M., Bolea N., Mielke M., et al. (2009). Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. J. Gerontol. Series A Biol. Sci. Med. Sci. 64, 1275–1282. 10.1093/gerona/glp117
    1. Chan M. Y., Haber S., Drew L. M., Park D. C. (2014). Training older adults to use tablet computers: does it enhance cognitive function? Gerontologist [Epub ahead of print].10.1093/geront/gnu057
    1. Cheng S.-T., Chow P. K., Song Y.-Q., Yu E., Chan A., Lee T., et al. (2013). Mental and physical activities delay cognitive decline in older persons with dementia. Am. J. Geriatr. Psychiatry 10, 1–13. 10.1016/j.jagp.2013.01.060
    1. Costa D. A., Cracchiolo J. R., Bachstetter A. D., Hughes T. F., Bales K. R., Paul S. M., et al. (2007). Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol. Aging 28, 831–844. 10.1016/j.neurobiolaging.2006.04.009
    1. Craik F., Bialystok E. (2006). Cognition through the lifespan: mechanisms of change. Trends Cogn. Sci. 10, 131–138. 10.1016/j.tics.2006.01.007
    1. Dahlin E., Neely A. S., Larsson A., Backman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512. 10.1126/science.1155466
    1. Dartigues J. F., Foubert-Samier A., Le Goff M., Viltard M., Amieva H., Orgogozo J. M., et al. (2013). Playing board games, cognitive decline and dementia: a French population-based cohort study. BMJ Open 3, e002998. 10.1136/bmjopen-2013-002998
    1. Draganski B., Gaser C., Kempermann G., Kuhn H. G., Winkler J., Buchel C., et al. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26, 6314–6317. 10.1523/JNEUROSCI.4628-05.2006
    1. Ekkekakis P. (2009). Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy. J. Sport Exerc. Psychol. 31, 505–553.
    1. Entertainment Software Association. (2014). Essential Facts About the Computer and Video Game Industry. Available at:
    1. Feng J., Spence I., Pratt J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 18, 850–855. 10.1111/j.1467-9280.2007.01990.x
    1. Fissler P., Küster O., Schlee W., Kolassa I. T. (2013). “Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change,” in Progress in Brain Research, eds Merzenich M. M., Nahum M., Van Vleet T. M. (Oxford: Elsevier; ), 403–434.
    1. Gates N. J., Valenzuela M. (2010). Cognitive exercise and its role in cognitive function in older adults. Curr. Psychiatry Rep. 12, 20–27. 10.1007/s11920-009-0085-y
    1. Green C., Bavelier D. (2012). Learning, attentional control, and action video games. Curr. Biol. 22, R197–R206. 10.1016/j.cub.2012.02.012
    1. Green C. S., Bavelier D. (2003). Action video game modifies visual selective attention. Nature 423, 534–537. 10.1038/nature01647
    1. Green C. S., Sugarman M. A., Medford K., Klobusicky E., Bavelier D. (2012). The effect of action video game experience on task-switching. Comput. Human Behav. 28, 984–994. 10.1016/j.chb.2011.12.020
    1. Jaeggi S. M., Studer-Luethi B., Buschkuehl M., Su Y. F., Jonides J., Perrig W. J. (2010). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence 38, 625–635. 10.1016/j.intell.2010.09.001
    1. Klusmann V., Evers A., Schwarzer R., Schlattmann P., Reischies F., Heuser I., et al. (2010). Complex mental and physical activity in older women and cognitive performance: a 6-month randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 65, 680–688. 10.1093/gerona/glq053
    1. Kühn S., Gallinat J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol. Psychiatry 19, 842–847. 10.1038/mp.2013.100
    1. Kühn S., Gleich T., Lorenz R. C., Lindenberger U., Gallinat J. (2013). Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol. Psychiatry 19, 265–271. 10.1038/mp.2013.120
    1. Kühn S., Lorenz R., Banaschewski T., Barker G. J., Büchel C., Conrod P. J., et al. (2014). Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS ONE 9:e91506. 10.1371/journal.pone.0091506
    1. Laamarti F., Eid M., El Saddik A. (2014). An overview of serious games. Int. J. Comput. Games Technol. 2014, 15 10.1155/2014/358152
    1. Lazarov O., Robinson J., Tang Y. P., Hairston I. S., Korade-Mirnics Z., Lee V. M. Y., et al. (2005). Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120, 701–713. 10.1016/j.cell.2005.01.015
    1. Li S., Jin M., Zhang D., Yang T., Koeglsperger T., Fu H., et al. (2013). Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 77, 929–941. 10.1016/j.neuron.2012.12.040
    1. Lövdén M., Bäckman L., Lindenberger U., Schaefer S., Schmiedek F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136, 659–676. 10.1037/a0020080
    1. Lucas K., Sherry J. L. (2004). Sex differences in video game play: a communication-based explanation. Commun. Res. 31, 499–523. 10.1177/0093650204267930
    1. Malone T. W. (1981). Toward a theory of intrinsically motivating instruction. Cogn. Sci. 5, 333–369. 10.1207/s15516709cog0504_2
    1. Mårtensson J., Lövdén M. (2011). Do intensive studies of a foreign language improve associative memory performance? Front. Psychol. 2:12. 10.3389/fpsyg.2011.00012
    1. McNab F., Varrone A., Farde L., Jucaite A., Bystritsky P., Forssberg H., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323, 800–802. 10.1126/science.1166102
    1. Michael D. R., Chen S. L. (2006). Serious Games: Games that Educate, Train, and Inform. Boston, MA: Thomson Course Technology.
    1. Militello L. G., Hutton R. J. (1998). Applied Cognitive Task Analysis (ACTA): a practitioner’s toolkit for understanding cognitive task demands. Ergonomics 41, 1618–1641. 10.1080/001401398186108
    1. Miyake A., Friedman N. P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Curr. Dir. Psychol. Sci. 21, 8–14. 10.1177/0963721411429458
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex. Cogn. Psychol. 41, 49–100. 10.1006/cogp.1999.0734
    1. Moher D., Hopewell S., Schulz K. F., Montori V., Gøtzsche P. C., Devereaux P. J., et al. (2010). CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340, c869. 10.1136/bmj.c869
    1. Park D. C., Lodi-Smith J., Drew L., Haber S., Hebrank A., Bischof G. N., et al. (2014). The impact of sustained engagement on cognitive function in older adults: the synapse project. Psychol. Sci. 25, 103–112. 10.1177/0956797613499592
    1. Powers K., Brooks P., Aldrich N., Palladino M., Alfieri L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychon. Bull. Rev. 20, 1055–1079. 10.3758/s13423-013-0418-z
    1. Robertson E. M. (2009). From creation to consolidation: a novel framework for memory processing. PLoS Biol. 7:e1000019. 10.1371/journal.pbio.1000019
    1. Rode C., Robson R., Purviance A., Geary D. C., Mayr U. (2014). Is working memory training effective? A study in a school setting. PLoS ONE 9:e104796. 10.1371/journal.pone.0104796
    1. Sehgal M., Song C., Ehlers V. L., Moyer J. R. Jr. (2013). Learning to learn—Intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiol. Learn. Mem. 105, 186–199. 10.1016/j.nlm.2013.07.008
    1. Shors T. J. (2014). The adult brain makes new neurons, and effortful learning keeps them alive. Curr. Dir. Psychol. Sci. 23, 311–318. 10.1177/0963721414540167
    1. Shute V. J., Ventura M., Ke F. (2015). The power of play: the effects of Portal 2 and Lumosity on cognitive and noncognitive skills. Comput. Educ. 80, 58–67. 10.1016/j.compedu.2014.08.013
    1. Squire L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231. 10.1037/0033-295X.99.2.195
    1. Strobach T., Frensch P. A., Schubert T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychol. 140, 13–24. 10.1016/j.actpsy.2012.02.001
    1. Sweetser P., Wyeth P. (2005). GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. 3, 3 10.1145/1077246.1077253
    1. Valenzuela M. J., Sachdev P. (2006). Brain reserve and cognitive decline: a non-parametric systematic review. Psychol. Med. 36, 1065–1073. 10.1017/S0033291706007744
    1. Verghese J., Lipton R., Katz M., Hall C., Derby C., Kuslansky G., et al. (2003). Leisure activities and the risk of dementia in the elderly. N. Engl. J. Med. 348, 2508–2516. 10.1056/NEJMoa022252
    1. Voss M. W., Prakash R. S., Erickson K. I., Boot W. R., Basak C., Neider M. B., et al. (2012). Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. Neuroimage 59, 138–148. 10.1016/j.neuroimage.2011.03.052
    1. Wartella E. (2015). Educational apps: what we do and do not know. Psychol. Sci. Public Interest 16, 1–2. 10.1177/1529100615578662
    1. Woollett K., Maguire E. A. (2011). Acquiring the knowledge of London’s layout drives structural brain changes. Curr. Biol. 21, 2109–2114. 10.1016/j.cub.2011.11.018
    1. Wouters P., Van Nimwegen C., Van Oostendorp H., Van Der Spek E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. J. Educ. Psychol. 105, 249–265. 10.1037/a0031311
    1. Yasuno F., Kazui H., Morita N., Kajimoto K., Ihara M., Taguchi A., et al. (2014). Low amyloid-β deposition correlates with high education in cognitively normal older adults: a pilot study. Int. J. Geriatr. Psychiatry. 10.1002/gps.4235 [Epub ahead of print].
    1. Young M. F., Slota S., Cutter A. B., Jalette G., Mullin G., Lai B., et al. (2012). Our princess is in another castle: a review of trends in serious gaming for education. Rev. Edu. Res. 82, 61–89. 10.3102/0034654312436980

Source: PubMed

3
Abonnere