Lung Ultrasound Guided Fluid Management Protocol for the Critically Ill Patient: study protocol for a multi-centre randomized controlled trial

Daniel-Mihai Rusu, Ianis Siriopol, Ioana Grigoras, Mihaela Blaj, Adi-Ionut Ciumanghel, Dimitrie Siriopol, Ionut Nistor, Mihai Onofriescu, Gigel Sandu, Beatrice Cobzaru, Dragos Viorel Scripcariu, Olguta Diaconu, Adrian Constantin Covic, Daniel-Mihai Rusu, Ianis Siriopol, Ioana Grigoras, Mihaela Blaj, Adi-Ionut Ciumanghel, Dimitrie Siriopol, Ionut Nistor, Mihai Onofriescu, Gigel Sandu, Beatrice Cobzaru, Dragos Viorel Scripcariu, Olguta Diaconu, Adrian Constantin Covic

Abstract

Background: In routine intensive care unit (ICU) practice, fluids are often administered without a safety limit, which may lead to fluid overload and decreased survival. Recently, B-lines score (BLS) has been validated as a lung ultrasound (LUS) quantification of pulmonary congestion. This suggests that LUS may provide a safety threshold to conduct fluid therapy and to avoid overhydration. However, there is no randomized study to test the utility of LUS in guiding fluid management in ICU patients by using a pre-specified BLS cut-off value as a threshold for fluid removal.

Methods: LUS Guided Fluid Management Protocol for the Critically Ill Patient is a prospective, multi-centre, randomized controlled trial. Five hundred ICU patients will be randomly assigned in a 1:1 ratio, to protocolized LUS-based fluid management or usual care. The trial intervention will start on ICU admission and will consist in daily assessment of BLS and triggered evacuation of excessive fluids with loop diuretics (Furosemide) when BLS ≥ 15. If rebalancing volume status with diuretics fails, forced evacuation by ultrafiltration will be used. The main endpoint is death from all causes at 28 days from randomization. The secondary outcomes are presence and time-course evolution of organ dysfunctions, ICU- and hospital length of stay, all-cause mortality at 90 days, and health economics data.

Discussion: If study results will show that LUS guided fluid management protocol improves outcome in ICU patients, it will be the base for other studies to refine this protocol or track those categories of critically ill patients to whom it may bring maximum benefits.

Trial registration: ClinicalTrials.gov, NCT03393065 . Registered on 8 January 2018.

Keywords: B-lines score; Critically ill patient; Fluid management; Intensive care; Lung ultrasonography; Randomized controlled trial.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Research Ethics Committees of the Grigore T. Popa University of Medicine and Pharmacy (date 14 November 2017, number 26261) and by the Research Ethics Committees of the participating hospitals. All patients sign an informed consent.

Consent for publication

All authors consent for publication of the submitted version of this protocol article.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The schedule of study procedures (SPIRIT figure)
Fig. 2
Fig. 2
Algorithm of study protocol

References

    1. Salahuddin N, Sammani M, Hamdan A, Joseph M, Al-Nemary Y, Alquaiz R, et al. Fluid overload is an independent risk factor for acute kidney injury in critically ill patients: results of a cohort study. BMC Nephrol. 2017;18:45. doi: 10.1186/s12882-017-0460-6.
    1. Brotfain E, Koyfman L, Toledano R, Borer A, Fucs L, Galante O, et al. Positive fluid balance as a major predictor of clinical outcome of patients with sepsis/septic shock after ICU discharge. Am J Emerg Med. 2016;34:2122–2126. doi: 10.1016/j.ajem.2016.07.058.
    1. Wang N, Jiang L, Zhu B, Wen Y, Xi XM. Fluid balance and mortality in critically ill patients with acute kidney injury: A multicenter prospective epidemiological study. Crit Care. 2015;19:371. doi: 10.1186/s13054-015-1085-4.
    1. Child DL, Cao Z, Seiberlich LE, Brown H, Greenberg J, Swanson A, et al. The costs of fluid overload in the adult intensive care unit: Is a small-volume infusion model a proactive solution? Clinicoecon Outcomes Res. 2014;7:1–8. doi: 10.2147/CEOR.S72776.
    1. RENAL Replacement Therapy Study Investigators. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial*. Crit Care Med. 2012;40:1753–1760. doi: 10.1097/CCM.0b013e318246b9c6.
    1. Neyra JA, Li X, Canepa-Escaro F, Adams-Huet B, Toto RD, Yee J, et al. Cumulative fluid balance and mortality in septic patients with or without acute kidney injury and chronic kidney disease. Crit Care Med. 2016;44:1891–1900. doi: 10.1097/CCM.0000000000001835.
    1. Acheampong A, Vincent J-L. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251. doi: 10.1186/s13054-015-0970-1.
    1. de Oliveira FSV, Freitas FGR, Ferreira EM, de Castro I, Bafi AT, de Azevedo LCP, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe sepsis and septic shock. J Crit Care. 2015;30:97–101. doi: 10.1016/J.JCRC.2014.09.002.
    1. Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, et al. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care. 2013;17:R14. doi: 10.1186/cc12484.
    1. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality*. Crit Care Med. 2011;39:259–265. doi: 10.1097/CCM.0b013e3181feeb15.
    1. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: Results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med. 2015;41:1529–1537. doi: 10.1007/s00134-015-3850-x.
    1. Jones SL, Mårtensson J, Glassford NJ, Eastwood GM, Bellomo R. Loop diuretic therapy in the critically ill: A survey. Crit Care Resusc. 2015;17:223–226.
    1. Covic A, Siriopol D, Voroneanu L. Use of lung ultrasound for the assessment of volume status in CKD. Am J Kidney Dis. 2018;71:412–422. doi: 10.1053/j.ajkd.2017.10.009.
    1. Donadio C, Bozzoli L, Colombini E, Pisanu G, Ricchiuti G, Picano E, et al. Effective and timely evaluation of pulmonary congestion: Qualitative comparison between lung ultrasound and thoracic bioelectrical impedance in maintenance hemodialysis patients. Medicine (Baltimore) 2015;94:e473. doi: 10.1097/MD.0000000000000473.
    1. Basso F, Milan Manani S, Cruz DN, Teixeira C, Brendolan A, Nalesso F, et al. Comparison and reproducibility of techniques for fluid status assessment in chronic hemodialysis patients. Cardiorenal Med. 2013;3:104–112. doi: 10.1159/000351008.
    1. Zoccali C, Torino C, Tripepi R, Tripepi G, D’Arrigo G, Postorino M, et al. Pulmonary congestion predicts cardiac events and mortality in ESRD. J Am Soc Nephrol. 2013;24:639–646. doi: 10.1681/ASN.2012100990.
    1. Panuccio V, Enia G, Tripepi R, Torino C, Garozzo M, Battaglia GG, et al. Chest ultrasound and hidden lung congestion in peritoneal dialysis patients. Nephrol Dial Transplant. 2012;27:3601–3605. doi: 10.1093/ndt/gfs116.
    1. Noble VE, Murray AF, Capp R, Sylvia-Reardon MH, Steele DJR, Liteplo A. Ultrasound assessment for extravascular lung water in patients undergoing hemodialysis: Time course for resolution. Chest. 2009;135:1433–1439. doi: 10.1378/chest.08-1811.
    1. Platz E, Merz AA, Jhund PS, Vazir A, Campbell R, McMurray JJ. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: a systematic review. Eur J Heart Fail. 2017;19:1154–1163. doi: 10.1002/ejhf.839.
    1. Anile A, Russo J, Castiglione G, Volpicelli G. A simplified lung ultrasound approach to detect increased extravascular lung water in critically ill patients. Crit Ultrasound J. 2017;9:13. doi: 10.1186/s13089-017-0068-x.
    1. Zhao Z, Jiang L, Xi X, Jiang Q, Zhu B, Wang M, et al. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med. 2015;15:98. doi: 10.1186/s12890-015-0091-2.
    1. Enghard P, Rademacher S, Nee J, Hasper D, Engert U, Jörres A, et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care. 2015;19:36. doi: 10.1186/s13054-015-0756-5.
    1. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, et al. “Ultrasound comet-tail images”: a marker of pulmonary edema. Chest. 2005;127:1690–1695. doi: 10.1378/chest.127.5.1690.
    1. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134:117–125. doi: 10.1378/chest.07-2800.
    1. Lichtenstein D. Fluid administration limited by lung sonography: The place of lung ultrasound in assessment of acute circulatory failure (the FALLS-protocol) Expert Rev Respir Med. 2012;6:155–162. doi: 10.1586/ers.12.13.
    1. Lichtenstein DA. How can the use of lung ultrasound in cardiac arrest make ultrasound a holistic discipline. The example of the SESAME-protocol. Med Ultrason. 2014;16:252–255. doi: 10.11152/mu.2013.2066.163.dal1.
    1. Pingitore A, Garbella E, Piaggi P, Menicucci D, Frassi F, Lionetti V, et al. Early subclinical increase in pulmonary water content in athletes performing sustained heavy exercise at sea level: ultrasound lung comet-tail evidence. Am J Physiol Heart Circ Physiol. 2011;301:H2161–H2167. doi: 10.1152/ajpheart.00388.2011.
    1. Gargani L, Lionetti V, Di Cristofano C, Bevilacqua G, Recchia FA, Picano E. Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit Care Med. 2007;35:2769–2774. doi: 10.1097/01.CCM.0000287525.03140.3F.
    1. Dietrich CF, Mathis G, Blaivas M, Volpicelli G, Seibel A, Wastl D, et al. Lung B-line artefacts and their use. J Thorac Dis. 2016;8:1356–1365. doi: 10.21037/jtd.2016.04.55.
    1. Shyamsundar M, Attwood B, Keating L, Walden AP. Clinical review: The role of ultrasound in estimating extra-vascular lung water. Crit Care. 2013;17:237. doi: 10.1186/cc12710.
    1. Jambrik Z, Gargani L, Adamicza Á, Kaszaki J, Varga A, Forster T, et al. B-lines quantify the lung water content: A lung ultrasound versus lung gravimetry study in acute lung injury. Ultrasound Med Biol. 2010;36:2004–2010. doi: 10.1016/j.ultrasmedbio.2010.09.003.
    1. Soldati G, Copetti R, Sher S. Sonographic interstitial syndrome: the sound of lung water. J Ultrasound Med. 2009;28:163–174. doi: 10.7863/jum.2009.28.2.163.
    1. Volpicelli G, Caramello V, Cardinale L, Mussa A, Bar F, Frascisco MF. Bedside ultrasound of the lung for the monitoring of acute decompensated heart failure. Am J Emerg Med. 2008;26:585–591. doi: 10.1016/j.ajem.2007.09.014.
    1. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: A clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19:356–363. doi: 10.1016/j.echo.2005.05.019.
    1. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93:1265–1270. doi: 10.1016/j.amjcard.2004.02.012.
    1. Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156:1640–1646. doi: 10.1164/ajrccm.156.5.96-07096.
    1. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38:577–591. doi: 10.1007/s00134-012-2513-4.
    1. Picano E, Pellikka PA. Ultrasound of extravascular lung water: A new standard for pulmonary congestion. Eur Heart J. 2016;37:2097–2104. doi: 10.1093/eurheartj/ehw164.
    1. Siriopol D, Hogas S, Voroneanu L, Onofriescu M, Apetrii M, Oleniuc M, et al. Predicting mortality in haemodialysis patients: A comparison between lung ultrasonography, bioimpedance data and echocardiography parameters. Nephrol Dial Transplant. 2013;28:2851–2859. doi: 10.1093/ndt/gft260.
    1. Platz E, Lewis EF, Uno H, Peck J, Pivetta E, Merz AA, et al. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients. Eur Heart J. 2016;37:1244–1251. doi: 10.1093/eurheartj/ehv745.
    1. Cogliati C, Casazza G, Ceriani E, Torzillo D, Furlotti S, Bossi I, et al. Lung ultrasound and short-term prognosis in heart failure patients. Int J Cardiol. 2016;218:104–108. doi: 10.1016/j.ijcard.2016.05.010.
    1. Coiro S, Porot G, Rossignol P, Ambrosio G, Carluccio E, Tritto I, et al. Prognostic value of pulmonary congestion assessed by lung ultrasound imaging during heart failure hospitalisation: A two-centre cohort study. Sci Rep. 2016;6:39426. doi: 10.1038/srep39426.
    1. Coiro S, Rossignol P, Ambrosio G, Carluccio E, Alunni G, Murrone A, et al. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail. 2015;17:1172–1181. doi: 10.1002/ejhf.344.
    1. Gargani L, Pang PS, Frassi F, Miglioranza MH, Dini FL, Landi P, et al. Persistent pulmonary congestion before discharge predicts rehospitalization in heart failure: A lung ultrasound study. Cardiovasc Ultrasound. 2015;13:40. doi: 10.1186/s12947-015-0033-4.
    1. Ciumanghel A, Siriopol I, Blaj M, Siriopol D, Gavrilovici C, Covic A. B-lines score on lung ultrasound as a direct measure of respiratory dysfunction in ICU patients with acute kidney injury. Int Urol Nephrol. 2018;50:113–119. doi: 10.1007/s11255-017-1730-8.
    1. Nates JL, Nunnally M, Kleinpell R, Blosser S, Goldner J, Birriel B, et al. ICU admission, discharge, and triage guidelines: A framework to enhance clinical operations, development of institutional policies, and further research. Crit Care Med. 2016;44:1553–1602. doi: 10.1097/CCM.0000000000001856.
    1. Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27:4263–4272. doi: 10.1093/ndt/gfs375.
    1. Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316:1298–1309. doi: 10.1001/jama.2016.12310.
    1. Miller TE, Bunke M, Nisbet P, Brudney CS. Fluid resuscitation practice patterns in intensive care units of the USA: A crosssectional survey of critical care physicians. Perioper Med. 2016;5:15. doi: 10.1186/s13741-016-0035-2.
    1. Gullett J, Donnelly JP, Sinert R, Hosek B, Fuller D, Hill H, et al. Interobserver agreement in the evaluation of B-lines using bedside ultrasound. J Crit Care. 2015;30:1395–1399. doi: 10.1016/j.jcrc.2015.08.021.
    1. Chiem AT, Chan CH, Ander DS, Kobylivker AN, Manson WC. Comparison of expert and novice sonographers’ performance in focused lung ultrasonography in dyspnea (FLUID) to diagnose patients with acute heart failure syndrome. Acad Emerg Med. 2015;22:564–573. doi: 10.1111/acem.12651.

Source: PubMed

3
Abonnere