Microbial volatile compounds in health and disease conditions

Robin Michael Statham Thorn, John Greenman, Robin Michael Statham Thorn, John Greenman

Abstract

Microbial cultures and/or microbial associated diseases often have a characteristic smell. Volatile organic compounds (VOCs) are produced by all microorganisms as part of their normal metabolism. The types and classes of VOC produced is wide, including fatty acids and their derivatives (e.g. hydrocarbons, aliphatic alcohols and ketones), aromatic compounds, nitrogen containing compounds, and volatile sulfur compounds. A diversity of ecological niches exist in the human body which can support a polymicrobial community, with the exact VOC profile of a given anatomical site being dependent on that produced by both the host component and the microbial species present. The detection of VOCs is of interest to various disciplines, hence numerous analytical approaches have been developed to accurately characterize and measure VOCs in the laboratory, often from patient derived samples. Using these technological advancements it is evident that VOCs are indicative of both health and disease states. Many of these techniques are still largely confined to the research laboratory, but it is envisaged that in future bedside 'VOC profiling' will enable rapid characterization of microbial associated disease, providing vital information to healthcare practitioners.

Figures

Figure 1.
Figure 1.
Composition and microbial hydrolysis pathways for complex feedstock. The majority of carbon-energy nutrient is in the form of soluble or insoluble polymers.
Figure 2.
Figure 2.
Formation of indolic (1) and phenolic (2 and 3) volatile compounds. (Adapted from Macfarlane and Macfarlane .)
Figure 3.
Figure 3.
Microbial mechanisms in the generation of oral malodour gases from a ‘generalized’ bacterial cell.
Figure 4.
Figure 4.
Main VOCs from fermentation in the gastrointestinal tract (large colon).
Figure 5.
Figure 5.
Classes of physical in vitro model for measuring VOC production rates from microbes by gas analysis (GA). (a) Planktonic batch culture; microbial headspace can be sampled from closed accumulative models. (b) Batch culture biofilm; a supporting substratum (SS) is provided to enable surface microbial growth. (c) Planktonic continuous culture; enabling steady state growth conditions, as nutrients (growth medium, M) are continuously added and waste products (W) taken away. (d) Continuous flow biofilms using impermeable substratum; nutrients (growth medium, M) are continuously added and waste products (W) taken away, enabling dynamic quasi-steady state microbial biofilms to form. (e) Continuous flow biofilms using highly permeable matrix perfusion substratum; all cells are close to nutrient micro-channels and are served with growth-limiting nutrient at approximately the same rate. More homogeneous environment with all cells growing at nutrient supply rate (i.e. µ proportional to flow rate) forming near true steady state biofilms under controlled conditions.

References

    1. Aas J A, Paster B J, Stokes L N, Olsen I, Dewhirst F E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005;43:5721–32. doi: 10.1128/JCM.43.11.5721-5732.2005.
    1. Aathithan S, Plant J C, Chaudry A N, French G L. Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors. J. Clin. Microbiol. 2001;39:2590–3. doi: 10.1128/JCM.39.7.2590-2593.2001.
    1. Akiba S, Arai H, Kusuoku Y, Takagi T, Hagura K, Takeuchi K, Fuji A. The N-terminal amino acid of apolipoprotein D is putatively convalently bound to 3-hydroxy-3-methyl hexanoic acid, a key odour compound in axillary sweat. Int. J. Cosmet. Sci. 2011;33:283–6. doi: 10.1111/j.1468-2494.2010.00636.x.
    1. Allaker R P, Greenman J, Osbourne R H, Gowers J L. Cytotoxic activity of Propionibacterium acnes and other skin organisms. Br. J. Dermatol. 1985;113:229–35. doi: 10.1111/j.1365-2133.1985.tb02069.x.
    1. Allaker R P, Greenman J, Osborne R H. Histamine production by Propionibacterium acnes in batch and continuous culture. Microbios. 1986;48:165–72.
    1. Allaker R P, Greenman J, Osborne R H. The production of inflammatory compounds by Propionibacterium acnes and other skin organisms. Br. J. Dermatol. 1987;117:175–83. doi: 10.1111/j.1365-2133.1987.tb04114.x.
    1. Allardyce R A, Hill A L, Murdoch D R. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn. Microbiol. Infect. Dis. 2006a;55:255–61. doi: 10.1016/j.diagmicrobio.2006.01.031.
    1. Allardyce R A, Langford V S, Hill A L, Murdoch D R. Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS) J. Microbiol. Methods. 2006b;65:361–5. doi: 10.1016/j.mimet.2005.09.003.
    1. Ammons W F, Schectman L R, Page R C. Host tissue response in chronic periodontal disease: 1. The normal periodontium and clinical manifestations of dental and periodontal disease in the marmoset. J. Periodontol. Res. 1972;7:131–43. doi: 10.1111/j.1600-0765.1972.tb00638.x.
    1. Ara K, Hama M, Akiba S, Koike K, Okisaka K, Hagura T, Kamiya T, Tomita F. Foot odor due to microbial metabolism and its control. Can. J. Microbiol. 2006;52:357–64. doi: 10.1139/w05-130.
    1. Archer S, Meng S, Wu J, Johnson J, Tang R, Hodin R. Butyrate inhibits colon carcinoma cell growth through two distinctive pathways. Surgery. 1998;124:248–53. doi: 10.1016/S0039-6060(98)70127-8.
    1. Armitage G C. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 1999;4:1–6. doi: 10.1902/annals.1999.4.1.1.
    1. Armitage G C. Periodontal diagnoses and classification of periodontal diseases. Periodontology. 2004;34:9–21. doi: 10.1046/j.0906-6713.2002.003421.x.
    1. Bailey A L P S, Pisanelli A M, Persaud K C. Development of conducting polymer sensor arrays for wound monitoring. Sensors Actu. B. 2008;131:5–9. doi: 10.1046/j.0906-6713.2002.003421.x.
    1. Barcenilla A, Pryde S E, Martin J C, Duncan S H, Stewart C S, Henderson C, Flint H J. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 2000;66:1654–61. doi: 10.1128/AEM.66.4.1654-1661.2000.
    1. Bearson S, Bearson B, Foster J W. Acid stress responses in enterobacteria. FEMS Microbiol. Lett. 1997;147:173–80. doi: 10.1111/j.1574-6968.1997.tb10238.x.
    1. Beatty S, Gibbons N E. The measurement of spoilage in fish. J. Biol. B Can. 1937;3:77–91.
    1. Bisno A L, Stevens D L. Streptococcal infections of skin and soft tissues. N. Engl. J. Med. 1996;334:240–5. doi: 10.1056/NEJM199601253340407.
    1. Bogaard A E, Hazen M J, Van Boven C P. Quantitative gas chromatographic analysis of volatile fatty acids in spent culture media and body fluids. J. Clin. Microbiol. 1986;23:523–30.
    1. Bojko B, Mirnaghi F, Pawliszyn J. Solid-phase microextraction: a multi-purpose microtechnique. Bioanalysis. 2011;3:1895–9. doi: 10.4155/bio.11.210.
    1. Boland F K. Gas gangrene in compound fractures. Ann. Surg. 1929;90:603–13. doi: 10.1097/00000658-192910000-00016.
    1. Bowler P G, Duerden B I, Armstrong D G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001;14:244–69. doi: 10.1128/CMR.14.2.244-269.2001.
    1. Bradshaw D J, Marsh P D, Schilling K M, Cummins D. A modified chemostat system to study the ecology of oral biofilms. J. Appl. Bacteriol. 1996;80:124–30. doi: 10.1111/j.1365-2672.1996.tb03199.x.
    1. Bricknell K S, Finegold S M. A simple, rapid method to process and assay fatty acids and alcohols by gas chromatography. Anal. Biochem. 1973;51:23–31. doi: 10.1016/0003-2697(73)90449-1.
    1. Brown S K, Shalita A R. Acne vulgaris. Lancet. 1998;351:1871–6. doi: 10.1016/S0140-6736(98)01046-0.
    1. Buimer M, van Doornum G J, Ching S, Peerbooms P G, Plier P K, Ram D, Lee H H. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by ligase chain reaction-based assays with clinical specimens from various sites: implications for diagnostic testing and screening. J. Clin. Microbiol. 1996;34:2395–400.
    1. Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Mark T D. On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl. Environ. Microbiol. 2008;74:2179–86. doi: 10.1128/AEM.02069-07.
    1. Byun H, Pisanelli A M, Persaud K C. Wound state monitoring for burn patients using e-nose/SPME system. ETRI J. 2010;32:440–6. doi: 10.4218/etrij.10.0109.0300.
    1. Calenic B, Yaegaki K, Murata T, Imai T, Aoyama I, Sato T, Ii H. Oral malodorous compound triggers mitochondrial-dependent apoptosis and causes genomic DNA damage in human gingival epithelial cells. J. Periodontal. Res. 2010a;45:31–7. doi: 10.1111/j.1600-0765.2008.01199.x.
    1. Calenic B, Yaegaki K, Kozhuharova A, Imai T. Oral malodorous compound causes oxidative stress and p53-mediated programmed cell death in keratinocyte stem cells. J. Periodontol. 2010b;81:1317–23. doi: 10.1902/jop.2010.100080.
    1. Castanie-Cornet M-P, Penfound T A, Smith D, Elliott J F, Foster J W. Control of acid resistance in Escherichia coli. J. Bacteriol. 1999;181:3525–35.
    1. Castellani A. Foetor oris of tonsillar origin and certain bacilli causing it. Lancet. 1930;215:623–4. doi: 10.1016/S0140-6736(00)57189-X.
    1. Chambers S T, Syhre M, Murdoch D R, McCartin F, Epton M J. Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Med. Mycol. 2009;47:468–76. doi: 10.1080/13693780802475212.
    1. Chambers S T, Bhandari S, Scott-Thomas A, Syhre M. Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus. Med. Mycol. 2011;49:S54–61. doi: 10.3109/13693786.2010.508187.
    1. Chirica L C, Elleby B, Jonsson B H, Lindskog S. The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur. J. Biochem. 1997;244:755–60. doi: 10.1111/j.1432-1033.1997.00755.x.
    1. Chivukula V S, Shur M S, Čiplys D. Recent advances in application of acoustic, acousto-optic and photoacoustic methods in biology and medicine. Solid State Phys. 2007;204:3209–36. doi: 10.1002/pssa.200723313.
    1. Choby B A. Diagnosis and treatment of streptococcal pharyngitis. Am. Fam. Physician. 2009;79:383–90.
    1. Christl S U, Eisner H-D, Dusel G, Kasper H, Scheppach W. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig. Dis. Sci. 1996;41:2477–81. doi: 10.1007/BF02100146.
    1. Ciaffoni L, Peverall R, Ritchie G A. Laser spectroscopy on volatile sulfur compounds: possibilities for breath analysis. J. Breath Res. 2011;5:024002. doi: 10.1088/1752-7155/5/2/024002.
    1. Cohen J, Powderly W. Infectious Diseases. 2nd edn. Amsterdam: Elsevier; 2004. Bronchitis, bronchiectasis, and cystic fibrosis.
    1. Cox C D, Parker J. Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J. Clin. Microbiol. 1979;9:479–84.
    1. Crunaire S, Marcoux P R, Guillemot L H, Mallard F, Tran-Thi T H, Ngo K Q. [O02] Discriminating bacteria with functionalized nanoporous xerogels. 2nd Int. Conf. on Bio-Sensing Technology; Amsterdam. 2011.
    1. Cummings J H, Pomare E W, Branch W J, Naylor C P E, Macfarlane G T. Short chain fatty acids in the human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–7. doi: 10.1136/gut.28.10.1221.
    1. Cummings J H. Short chain fatty acids. In: Gibson G R, MacFarlane G T, editors. Human Colonic Bacteria. Michegan: CRC Press; 1995. pp. pp 101–30.
    1. Cummings J H, Macfarlane G T, Englyst H N. Prebiotic digestion and fermentation. Am. J. Clin. Nutr. 2001;73:415–20.
    1. Cunliffe W J, Simpson N B. Disorders of sebaceous glands. In: Champion R H, Burton J L, Burns D A, Brethnach S M, editors. Textbook of Dermatology. Milan: Blackwell; 1998.
    1. De Lacy Costello B, Ewen R, Ewer A K, Garner C E, Probert C S, Ratcliffe N M, Smith S J. An analysis of volatiles in the headspace of the faeces of neonates. Breath Res. 2008;2:037023. doi: 10.1088/1752-7155/2/3/037023.
    1. Devos M, Patte F, Rouault J, Laffort P, Van Gemert L J. Standardized Human Olfactory Thresholds. 1st edn. New York: Oxford University Press; 1990.
    1. Diez-Gonzalez F, Bond D R, Jennings E, Russell J B. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch. Microbiol. 1999;171:324–30. doi: 10.1007/s002030050717.
    1. Dolfing J, Gottschal J C. Microbe–microbe interactions. In: Mackie R I, White B A, Isaacson R E, editors. Gastrointestinal Microbiology . vol 2. New York: Chapman and Hall; 1997. pp. pp 373–433.
    1. Edwards-Jones V, Greenwood J E. What's new in burn microbiology? James Laing memorial prize essay 2000. Burns. 2003;29:15–24. doi: 10.1016/S0305-4179(02)00203-6.
    1. Edwards R, Harding K G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004;17:91–6. doi: 10.1097/00001432-200404000-00004.
    1. Eiceman G A. Ion-mobility spectrometry as a fast monitor of chemical composition. Trends Anal. Chem. 2002;21:259–75. doi: 10.1016/S0165-9936(02)00406-5.
    1. Ettre L S. International union of pure and applied chemistry analytical chemistry division commission on chromatography and other analytical separations. Commission on analytical nomenclature for chromatography (IUPAC Recommendations, 1993) Pure Appl. Chem. 1993;65:81–72. doi: 10.1351/pac199365040819.
    1. Feingold K R, Elias P M. Endocrine-skin interactions. Cutaneous manifestations of adrenal disease, pheochromocytomas, carcinoid syndrome, sex hormone excess and deficiency, polyglandular autoimmune syndromes, multiple endocrine neoplasia syndromes, and other miscellaneous disorders. J. Am. Acad. Dermatol. 1988;19:1–20. doi: 10.1016/S0190-9622(88)70146-2.
    1. Fend R, Kolk A H, Bessant C, Buijtels P, Klatser P R, Woodman A C. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J. Clin. Microbiol. 2006;44:2039–45. doi: 10.1128/JCM.01591-05.
    1. Fredricks D N, Fiedler T L, Marrazzo J M. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 2005;353:1899–911. doi: 10.1056/NEJMoa043802.
    1. Fujimura M, Calenic B, Yaegaki K, Murata T, Ii H, Imai T, Sato T, Izumi Y. Oral malodorous compound activates mitochondrial pathway inducing apoptosis in human gingival fibroblasts. Clin. Oral Investig. 2010;14:367–73. doi: 10.1007/s00784-009-0301-5.
    1. Fukamachi H, Nakano Y, Yoshimura M, Koga T. Cloning and characterization of the L-cysteine desulfhydrase gene of Fusobacterium nucleatum. FEMS Microbiol. Lett. 2002;215:75–80.
    1. Gale E F, Epps H M R. The effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. Biochem. J. 1942;36:600–19.
    1. Gallagher M, Wysocki C J, Leyden J J, Spielman A I, Sun X, Preti G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008;159:780–91. doi: 10.1111/j.1365-2133.2008.08748.x.
    1. Garner C E, Smith S, Bardhan P K, Ratcliffe N M, Probert C S. A pilot study of faecal volatile organic compounds in faeces from cholera patients in Bangladesh to determine their utility in disease diagnosis. Trans. R. Soc. Trop. Med. Hyg. 2009;103:1171–3. doi: 10.1016/j.trstmh.2009.02.004.
    1. Garner C E, Smith S, Costello B dL, White P, Spencer R, Probert C S J, Ratcliffe N M. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007;21:1675–88. doi: 10.1096/fj.06-6927com.
    1. Gibson T D, Prosser O, Hulbert J N, Marshall R W, Corcoran P, Lowery P, Ruck-Keene E A, Heron S. Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sensors Actuators B. 1997;44:413–22. doi: 10.1016/S0925-4005(97)00235-9.
    1. Goldberg S, Kozlovsky A, Gordon D, Gelernter I, Sintov A, Rosenberg M. Cadaverine as a putative component of oral malodor. J. Dent. Res. 1994;73:1168–72.
    1. Gorbach S L, Mayhem J W, Bartlett J G, Thadepalli H, Onderdonk A B. Rapid diagnosis of anaerobic infections by direct gas-liquid chromatography of clinical specimens. J. Clin. Investig. 1976;57:478–84. doi: 10.1172/JCI108300.
    1. Gould D J, Cunliffe W J. The long-term treatment of acne vulgaris. Clin. Exp. Dermatol. 1978;3:249–52. doi: 10.1111/j.1365-2230.1978.tb01495.x.
    1. Gower D B, Holland K T, Mallet A I, Rennie P J, Watkins W J. Comparison of 16-Androstene steroid concentrations in sterile apocrine sweat and axillary secretions: Interconversions of 16-Androstenes by the axillary microflora—a mechanism for axillary odour production in man? J. Steroid Biochem. Mol. Biol. 1994;48:409–18. doi: 10.1016/0960-0760(94)90082-5.
    1. Greenman J, Duffield J, Spencer P, Rosenberg M, Corry D, Saad S, Lenton P, Majerus G, Nachnani S, El-Maaytah M. Study on the organoleptic intensity scale for measuring oral malodor. J. Dent. Res. 2004;83:81–5. doi: 10.1177/154405910408300116.
    1. Greenman J, Holland K T. Effects of dilution rate on biomass and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. J. Gen. Microbiol. 1985;131:1619–24.
    1. Greenman J, Ieropoulos I, Melhuish C. Biological computing using perfusion anodophile biofilm electrodes (PABE) Int. J. Unconv. Comput. 2008a;4:23–32.
    1. Greenman J, Mckenzie C, Saad S, Wiegand B, Zguris J C. Effects of chlorhexidine on a tongue-flora microcosm and VSC production using an in vitro biofilm perfusion model. J. Breath Res. 2008b;2:046005. doi: 10.1088/1752-7155/2/4/046005.
    1. Greenman J, Osborne R H, Allaker R P. The production of potentially inflammatory compounds by human dental plaque and species of periodontal bacteria. Microb. Ecol. Health D. 1988;1:245–53. doi: 10.3109/08910608809140529.
    1. Greenman J, Saad B M. Relating breath malodour to food constituents and oral health. In: Wilson M, editor. In: Food Constituents and Oral Health: Current Status and Future Prospects. Cambridge: Woodhead Publishing; 2009. (Woodhead Food Series 172).
    1. Greenman J, Spencer P, McKenzie C, Saad S, Duffield J. Review: in vitro models for Oral Malodor. Oral Dis. 2005;11:14–23. doi: 10.1111/j.1601-0825.2005.01082.x.
    1. Groninger S. Occurrence and Significance of Trimethylamine Oxide in Marine Animals. Special Scientific Report: Fisheries 333. 1959 (Washington, DC: United States Fish and Wildlife Service)
    1. Guilloton M B, Korte J J, Lamblin A F, Fuchs J A, Anderson P M. Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J. Biol. Chem. 1992;267:3731–4.
    1. Hall H K, Karem K L, Foster J W. Molecular responses of microbes to environmental pH stress. Adv. Microb. Physiol. 1995;37:229–72. doi: 10.1016/S0065-2911(08)60147-2.
    1. Hanel H, Kalisch J, Keil M, Marsch W C, Buslau M. Quantification of keratinolytic activity from Dermatophilus congolensis. Med. Microbiol. Immunol. 1991;180:45–51. doi: 10.1007/BF00191700.
    1. Hanson C W, Thaler E R. Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology. 2005;102:63–8. doi: 10.1097/00000542-200501000-00013.
    1. Harrington D J. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. 1996;64:1885–91.
    1. Hartley M G, El-Maaytah M A, McKenzie C, Greenman J. The tongue microbiota of low odour and malodorous individuals. Microbiol. Ecol. Health Dis. 1996;9:215–23. doi: 10.3109/08910609609166462.
    1. Hartley M G, McKenzie C, Greenman J, El Maaytah M, Scully C, Porter S R. Tongue microbiota and malodour: effects of metronidazole mouthrinse on tongue microbiota and breath odour levels. Microbiol. Ecol. Health Dis. 1999;11:226–33. doi: 10.1080/08910609908540832.
    1. Hassett A J, Rohwer E R. Analysis of odorous compounds in water by isolation by closed-loop stripping with a multichannel silicone rubber trap followed by gas chromatography–mass spectrometry. J. Chromatogr. A. 1999;849:521–8. doi: 10.1016/S0021-9673(99)00621-4.
    1. Hay R J, Addriaans B M. Bacterial infection. In: Champion R H, Burton J L, Burns D A, Breathnach S M, editors. Textbook of Dermatology. 6th edn. Oxford: Blackwell; 1998. pp. pp 1097–179.
    1. Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol. 2005;55:1113–26. doi: 10.1111/j.1365-2958.2004.04449.x.
    1. Hodgson A E, Nelson S M, Brown M R W, Gilbert P. A simple in vitro model for growth control of bacterial biofilms. J. Appl. Bacteriol. 1995;79:87–93. doi: 10.1111/j.1365-2672.1995.tb03128.x.
    1. Hold G L, Pryde S E, Russell V J, Furrie E, Flint H J. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 2001;39:33–9. doi: 10.1111/j.1574-6941.2002.tb00904.x.
    1. Holland K T, Aldana O, Bojar R A, Cunliffe W J, Eady E A, Holland D B, Ingham E, McGeown C, Till A, Walters C. Propionibacterium acnes and acne. Dermatology. 1998;196:67–8. doi: 10.1159/000017870.
    1. Holland K T, Cunliffe W J, Roberts C D. The role of bacteria in acne vulgaris: a new approach. Clin. Exp. Dermatol. 1978;3:253–7. doi: 10.1111/j.1365-2230.1978.tb01496.x.
    1. Holland K T, Ingham E, Cunliffe W J. A review, the microbiology of acne. J. Appl. Bacteriol. 1981;51:195–215. doi: 10.1111/j.1365-2672.1981.tb01234.x.
    1. Holland K T, Marshall J, Taylor D. The effect of dilution rate and pH on biomass and proteinase production by Micrococcus sedentarius grown in continuous culture. J. Appl. Bacteriol. 1992;72:429–34. doi: 10.1111/j.1365-2672.1992.tb01856.x.
    1. Howell-Jones R S, Wilson M J, Hill K E, Howard A J, Price P E, Thomas D W. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J. Antimicrob. Chemother. 2005;55:143–9. doi: 10.1093/jac/dkh513.
    1. Hu W P, Storer M K. Medical applications of SIFT-MS in New Zealand. Chem. NZ. 2008;72:51–4.
    1. Huggins G R, Preti G. Diagnostic clues from vaginal odors. Contemp. OB/GYN. 1983;22:199–220.
    1. Imamura T S, Yano A, Yoshida Y. Production of indole from l-Tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl. Environ. Microbiol. 2010;76:4260–8. doi: 10.1128/AEM.00166-10.
    1. Johnson P W, Yaegaki K, Tonzetich J. Effect of volatile thiol compounds on protein metabolism by human gingival fibroblasts. J. Periodontal Res. 1992;27:553–61. doi: 10.1111/j.1600-0765.1992.tb01736.x.
    1. Johnstone J M, Lawy H S. Acute epiglottitis in adults due to infection with Haemophilus influenzae type b. Lancet. 1967;15:134–6. doi: 10.1016/S0140-6736(67)92968-6.
    1. Jones W J, Nagle D P, Whitman W B. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 1987;51:135–77.
    1. Julak J, Prochazkova-Francisci E, Stranska E, Rosova V. Evaluation of exudates by solid phase microextraction-gas chromatography. J. Microbiol. Methods. 2003;52:115–22. doi: 10.1016/S0167-7012(02)00148-3.
    1. Julak J, Stranska E, Prochazkova-Francisci E, Rosova V. Blood cultures evaluation by gas chromatography of volatile fatty acids. Med. Sci. Monit. 2000;6:605–10.
    1. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 2009;81:1001–12. doi: 10.1007/s00253-008-1760-3.
    1. Kamath A V, Yanofsky C. Characterization of the tryptophanase operon of Proteus vulgaris. Cloning, nucleotide sequence, amino acid homology, and in vitro synthesis of the leader peptide and regulatory analysis. J. Biol. Chem. 1992;267:19978–85.
    1. Kanda F, Yagi E, Fukuda M, Nakajima K, Ohta T, Nakata O. Elucidation of chemical compounds responsible for foot malodour. Br. J. Dermatol. 1990;122:771–6. doi: 10.1111/j.1365-2133.1990.tb06265.x.
    1. Kazor C E, Mitchell P M, Lee A M, Stokes L N, Loesche W J, Dewhirst F E, Paster B J. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 2003;41:558–63. doi: 10.1128/JCM.41.2.558-563.2003.
    1. Kleinberg I, Codipilly D. H2S generation and Eh reduction in cysteine challenge testing as a means of determining the potential of test products and treatments for inhibiting oral malodour. J. Breath Res. 2008;2:017018. doi: 10.1088/1752-7155/2/1/017018.
    1. Kobayashi S. Relationship between an offensive smell given off from human foot and Staphylococcus epidermidis. Nihon Saikingaku Zasshi. 1990;45:797–800. doi: 10.3412/jsb.45.797.
    1. Kostelc J G, Preti G, Zelson P R, Stoller N H, Tonzetich J. Salivary volatiles as indicators of periodontitis. J. Periodontal Res. 1980;15:185–92. doi: 10.1111/j.1600-0765.1980.tb00273.x.
    1. Kostelc J G, Zelson P R, Preti G, Tonzetich J. Quantitative differences in volatiles from healthy and diseased human mouths with periodontitis. Clin. Chem. 1981;27:842–5.
    1. Ku S Y, Yip P, Howell P L. Structure of Escherichia coli tryptophanase. Acta Crystallogr. D Biol. Crystallogr. 2006;62:814–23. doi: 10.1107/S0907444906019895.
    1. Kwak J, Preti G. Volatile disease biomarkers in breath: a critique. Curr. Pharm. Biotechnol. 2011;12:1067–74. doi: 10.2174/138920111795909050.
    1. Kyosuke S, Yoshida Y, Nagano K, Yoshimura F. Identification of an L-methionine γ-lyase involved in the production of hydrogen sulfide from L-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology. 2011;157:2992–3000. doi: 10.1099/mic.0.051813-0.
    1. Labows J N, McGinley K J, Webster G F, Leyden J J. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J. Clin. Microbiol. 1980;12:521–6.
    1. Lai S Y, Deffenderfer O F, Hanson W, Phillips M P, Thaler E R. Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope. 2002;112:975–9. doi: 10.1097/00005537-200206000-00007.
    1. Larsen T O, Frisvad J C. Chemosystematics of Penicillium based on profiles of volatile metabolites. Mycol. Res. 1995;99:1167–74. doi: 10.1016/S0953-7562(09)80272-4.
    1. Larsson L, Mardh P A, Odham G. Analysis of amines and other bacterial products by head-space gas chromatography. Acta Pathol. Microbiol. Scand. B. 1978a;86:207–13.
    1. Larsson L, Mardh P A, Odham G. Detection of alcohols and volatile fatty-acids by head-space gas-chromatography in identification of anaerobic bacteria. J. Clin. Microbiol. 1978b;7:23–7.
    1. Leyden J J, McGinley K J, Hoelzle K, Labows J, Kligman A M. The microbiology of the human axillae and its relation to axillary odors. J. Invest. Dermatol. 1981;77:413–6. doi: 10.1111/1523-1747.ep12494624.
    1. Leyden J J, McGinley K J, Nordstrom K M, Webster G F. Skin microflora. J. Invest. Dermatol. 1987;88:65–72. doi: 10.1111/1523-1747.ep12468965.
    1. Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. 1998;173:191–241. doi: 10.1016/S0168-1176(97)00281-4.
    1. Liu X N, Shinada K, Chen X C, Zhang B X, Yaegaki K, Kawaguchi Y. Oral malodor-related parameters in the Chinese general population. J. Clin. Periodontol. 2006;33:31–6. doi: 10.1111/j.1600-051X.2005.00862.x.
    1. Loesche W J, Grossman N S. Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment. Clin. Microbiol. Rev. 2001;14:727–52. doi: 10.1128/CMR.14.4.727-752.2001.
    1. Longshaw C M, Wright J D, Farrell A M, Holland K T. Kytococcus sedentarius, the organism associated with pitted keratolysis, produces two keratin-degrading enzymes. J. Appl. Microbiol. 2002;93:810–6. doi: 10.1046/j.1365-2672.2002.01742.x.
    1. Louis P, Flint H J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009;294:1–8. doi: 10.1111/j.1574-6968.2009.01514.x.
    1. MacFaddin J F. Biochemical Tests for Identification of Medical Bacteria. 2nd edn. Baltimore, MD: Williams and Wilkins; 1980.
    1. Macfarlane S, Macfarlane G T. Proteolysis and amino acid fermentation. In: Gibson G R, Macfarlane G T, editors. Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology. Boca Raton, FL: CRC Press; 1995. pp. pp 75–100.
    1. Mackay R J, McEntyre C J, Henderson C, Lever M, George P M. Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin. Biochem. Rev. 2011;32:33–43.
    1. Mackie R I. Microbial production of odor components. Proc. Int. Round Table on Swine Odor Control; Iowa State University, Ames. 1995. pp. pp 18–9.
    1. Magasanik B. Catabolite repression. Cold Spring Harb. Symp. Quant. Biol. 1961;26:249–56. doi: 10.1101/SQB.1961.026.01.031.
    1. Maita E. In: Bad Breath: A Multidisciplinary Approach. Steenberghe D, van Rosemberg M, editors. Belgium: Lueven University Press; 1996. chapter 19.
    1. Makris G, Wright J D, Ingham E, Holland K T. The hyaluronate lyase of Staphylococcus aureus—a virulence factor? Microbiology. 2004;150:2005–13. doi: 10.1099/mic.0.26942-0.
    1. Manja K S, Rao K M. Gas-chromatographic detection of urinary tract infections caused by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 1983;17:264–6.
    1. Mardh P A, Larsson L, Odham G. Head-space gas chromatography as a tool in the identification of anaerobic bacteria and diagnosis of anaerobic infections. Scand. J. Infect. Dis. 1981;26:14–8.
    1. Marples M J. Life on the human skin. Sci. Am. 1969;220:108–115. doi: 10.1038/scientificamerican0169-108.
    1. Marsh P D, Martin M. Oral Microbiology. Oxford: Reed Educational and Professional Publishing; 1999. pp. pp 82–103.
    1. Marshall J, Holland K, Gribbon E. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J. Appl. Microbiol. 1988;65:61–8. doi: 10.1111/j.1365-2672.1988.tb04318.x.
    1. Marshall J, Leeming J P, Holland K T. The cutaneous microbiology of normal human feet. J. Appl. Bacteriol. 1987;62:139–46. doi: 10.1111/j.1365-2672.1987.tb02391.x.
    1. Martin K, Morlin G, Smith A, Nordyke A, Eisenstark A, Golomb M. The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J. Bacteriol. 1998;180:107–18.
    1. Martínez-Lozano P, de la Mora J F. On-line detection of human skin vapors. J. Am. Soc. Mass Spectrom. 2009;20:1060–3. doi: 10.1016/j.jasms.2009.01.012.
    1. Martino P D, Fursy R, Bret L, Sundararaju B, Phillips R S. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can. J. Microbiol. 2003;49:443–9. doi: 10.1139/w03-056.
    1. Massey A, Mowbray J F, Noble W C. Complement activation by Corynebacterium acnes. Br. J. Dermatol. 1978;98:583–4. doi: 10.1111/j.1365-2133.1978.tb01947.x.
    1. Mayr D, Margesin R, Klingsbichel E, Hartungen E, Jenewein D, Schinner F, Mark T D. Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry. Appl. Environ. Microbiol. 2003;69:4697–705. doi: 10.1128/AEM.69.8.4697-4705.2003.
    1. McBain A J. In vitro biofilm models: an overview. Adv. Appl. Microbiol. 2009;69:99–132. doi: 10.1016/S0065-2164(09)69004-3.
    1. McNair J B. A new procedure for the Duclaux method. J. Am. Chem. Soc. 1933;55:1470–4. doi: 10.1021/ja01331a024.
    1. McNamara T F, Alexander J F, Lee M. The role of microorganisms in the production of oral malodour. Oral Surg. Oral Med. Oral Pathol. 1972;34:41–8. doi: 10.1016/0030-4220(72)90271-X.
    1. Miller T L, Wolin M J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 1996;62:1589–92.
    1. Minhas T, Greenman J, Schaffer A G. Effects of mucin, haemoglobin and collagen on the maximum specific growth rate, biomass and hydrolytic enzyme production of Porphyromonas gingivalis in continuous culture. Microbiol. Ecol. Heal Dis. 1991;4:311–8. doi: 10.3109/08910609109140281.
    1. Mitchell R S, Kumar V, Robbins S L, Abbas A K, Fausto N. Robbins Basic Pathology. Philadelphia, PA: Saunders; 2007.
    1. Mitchell S. Trimethylaminuria (fish-odour syndrome) and oral malodour. Oral Dis. 2005;11:10–3. doi: 10.1111/j.1601-0825.2005.01081.x.
    1. Miyazaki H, Sakao S, Katoh Y, Takehara T. Correlation between volatile sulfur compounds and certain oral health measurements in the general population. J. Periodontol. 1995;66:679–84. doi: 10.1902/jop.1995.66.8.679.
    1. Mobley H L, Hausinger R P. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 1989;53:85–108.
    1. Moore W E, Holdeman L V, Cato E P, Smibert R M, Burmeister J A, Palcanis K G. Comparative bacteriology of juvenile periodontitis. Infect. Immun. 1985;48:507–19.
    1. Mueller R S, Beyhan S, Saini S G, Yildiz F H, Bartlett D H. Indole acts as an extracellular cue regulating gene expression in Vibrio cholera. J. Bacteriol. 2009;191:3504–16. doi: 10.1128/JB.01240-08.
    1. Natsch A, Derrer S, Flachsmann F, Schmid J. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem. Biodiversity. 2006;3:1–20. doi: 10.1002/cbdv.200690015.
    1. Natsch A, Gfeller H, Gygax P, Schmid J, Acuna G. A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J. Biol. Chem. 2003;21:5718–27. doi: 10.1074/jbc.M210142200.
    1. Natsch A, Schmid J, Flachsmann F. Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem. Biodiversity. 2004;1:1058–72. doi: 10.1002/cbdv.200490079.
    1. Newton W A, Snell E E. Catalytic properties of tryptophanase, a multifunctional pyridoxal phosphate enzyme. Proc. Natl Acad. Sci. USA. 1964;51:382–9. doi: 10.1073/pnas.51.3.382.
    1. Ng W, Tonzetich J. Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa. J. Dent. Res. 1984;63:994–7. doi: 10.1177/00220345840630071701.
    1. Niederman R, Buyle-Bodin Y, Lu B Y, Robinson P, Naleway C. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J. Dent. Res. 1997;76:575–9. doi: 10.1177/00220345970760010801.
    1. Nisman B. The Stickland reaction. Bacteriol. Rev. 1954;18:16–42.
    1. Nordstrom K M, McGinley K J, Capiello L, Leyden J J. The etiology of malador associated with pitted keratolysis. J. Invest. Dermatol. 1986;87:159. doi: 10.1111/1523-1747.ep12696640.
    1. Nordstrom K M, McGinley K J, Cappiello L, Zechman J M, Leyden J J. Pitted keratolysis. The role of Micrococcus sedentarius. Arch. Dermatol. 1987;123:1320–5. doi: 10.1001/archderm.1987.01660340082025.
    1. O'Brien T, Collin J. Prosthetic vascular graft infection. Br. J. Surg. 1992;79:1262–7. doi: 10.1002/bjs.1800791205.
    1. O'Hara M, Mayhew C A. A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J. Breath Res. 2009;3:027001. doi: 10.1088/1752-7155/3/2/027001.
    1. Ochiai N, Takino M, Daishima S, Cardin D B. Analysis of volatile sulfur compounds in breath by gas chromatography-mass spectrometry using a three-stage cryogenic trapping preconcentration system. J. Chromatogr. B Biomed. Sci. Appl. 2001;762:67–75. doi: 10.1016/S0378-4347(01)00343-7.
    1. Panuncialman J, Falanga V. The science of wound bed preparation. Surg. Clin. North Am. 2009;89:611–26. doi: 10.1016/j.suc.2009.03.009.
    1. Paster B J, Boches S K, Galvin J L, Ericson R E, Lau C N, Levanos V A, Sahasrabudhe A, Dewhirst F E. Bacterial diversity in human subgingival plaque. J. Bacteriol. 2001;183:3770–83. doi: 10.1128/JB.183.12.3770-3783.2001.
    1. Pavlou A K, Magan N, Jones J M, Brown J, Klatser P, Turner A P. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 2004;20:538–44. doi: 10.1016/j.bios.2004.03.002.
    1. Pavlou A K, Magan N, McNulty C, Jones J, Sharp D, Brown J, Turner A P. Use of an electronic nose system for diagnoses of urinary tract infections. Biosens. Bioelectron. 2002b;17:893–9. doi: 10.1016/S0956-5663(02)00078-7.
    1. Pavlou A, Turner A P, Magan N. Recognition of anaerobic bacterial isolates in vitro using electronic nose technology. Lett. Appl. Microbiol. 2002a;35:366–9. doi: 10.1046/j.1472-765X.2002.01197.x.
    1. Park Y K, Bearson B, Bang S H, Bang I S, Foster J W. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol. Microbiol. 1996;20:605–11. doi: 10.1046/j.1365-2958.1996.5441070.x.
    1. Pauling L, Robinson A B, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc. Natl Acad. Sci. USA. 1971;68:2374–6. doi: 10.1073/pnas.68.10.2374.
    1. Persaud K C. Development of a conducting polymer sensor arrays for wound monitoring. Sensors Actuators B. 2008;131:5–9. doi: 10.1016/j.snb.2007.12.035.
    1. Persson S, Edlund M B, Claesson R, Carlsson J. The formation of hydrogen sulfide and methylmercaptan by oral bacteria. Oral Microbiol. Immunol. 1990;5:195–201. doi: 10.1111/j.1399-302X.1990.tb00645.x.
    1. Phillips K D, Tearle P V, Willis A T. Rapid diagnosis of anaerobic infections by gas-liquid chromatography of clinical material. J. Clin Pathol. 1976;29:428–32. doi: 10.1136/jcp.29.5.428.
    1. Phillips M, Basa-Dalay V, Bothamley G, Cataneo R N, Lam P K, Natividad M P, Schmitt P, Wai J. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb.). 2010;90:145–51. doi: 10.1016/j.tube.2010.01.003.
    1. Phillips M, Cataneo R N, Condos R, Ring-Erickson G A, Greenberg J, La Bombardi V, Munawar M I, Tietje O. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis. 2007;87:44–52. doi: 10.1016/j.tube.2006.03.004.
    1. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo R N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999;729:75–88. doi: 10.1016/S0378-4347(99)00127-9.
    1. Postgate J R. Sulphate Reducing Bacteria. 2nd edn. Cambridge: Cambridge University Press; 1984.
    1. Pratten J, Pasu M, Jackson G, Flanagan A, Wilson M. Modeling oral malodor in a longitudinal study. Arch. Oral Biol. 2003;48:737–43. doi: 10.1016/S0003-9969(03)00154-7.
    1. Preti G, Leyden J J. Genetic influences on human body odor: from genes to the axillae. Comment. J. Invest. Dermatol. 2010;130:344–6. doi: 10.1038/jid.2009.396.
    1. Preti G, Thaler E, Hanson C W, Troy M, Eades J, Gelperin A. Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;877:2011–8. doi: 10.1016/j.jchromb.2009.05.028.
    1. Probert C S, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointest. Liver. 2009;18:337–43.
    1. Probert C S J, Jones P R H, Ratcliffe N M. A novel method for rapidly diagnosing the causes of diarrhoea. Gut. 2004;53:58–61. doi: 10.1136/gut.53.1.58.
    1. Rayman S, Almas K. Halitosis among racially diverse populations: an update. Int. J. Dent. Hyg. 2008;6:2–7. doi: 10.1111/j.1601-5037.2007.00274.x.
    1. Reed P J, Sanderson P J. Detection of anaerobic wound infection by analysis of pus swabs for volatile fatty acids by gas–liquid chromatography. J. Clin. Pathol. 1979;32:1203–5. doi: 10.1136/jcp.32.12.1203.
    1. Rennie P J, Gower D B, Holland K T, Mallet A I, Watkins W J. The skin microflora and the formation of human axillary odour. Int. J. Cosmet. Sci. 1990;12:197–207. doi: 10.1111/j.1467-2494.1990.tb00535.x.
    1. Rennie P J, Gower D B, Holland K T. In-vitro and in vivo studies of human axillary odour and the cutaneous microflora. Br. J. Dermatol. 1991;124:596–602. doi: 10.1111/j.1365-2133.1991.tb04958.x.
    1. Riazanskaia S, Blackburn G, Harker M, Taylor D, Thomas C L. The analytical utility of thermally desorbed polydimethylsilicone membranes for in vivo sampling of volatile organic compounds in and on human skin. Analyst. 2008;133:1020–7. doi: 10.1039/b802515k.
    1. Richmond H D. Duclaux's method for the estimation of ‘volatile fatty acids,’ the laws governing ‘volatility’ deduced there-from, and their application to analysis, more especially to that of butter. Analyst. 1895;20:217–38. doi: 10.1039/an8952000217.
    1. Rio A C, Franchi-Teixeira A R, Nicola E M. Relationship between the presence of tonsilloliths and halitosis in patients with chronic caseous tonsillitis. Br. Dent. J. 2008;204:E4. doi: 10.1038/bdj.2007.1106.
    1. Rosenberg M, Septon I, Eli I, Bar-Ness R, Gelernter I, Brenner S, Gabbay J. Halitosis measurement by an industrial sulfide monitor. J. Periodontol. 1991;62:487–9. doi: 10.1902/jop.1991.62.8.487.
    1. Roth R R, James W D. Microbial ecology of the skin. Annu. Rev. Microbiol. 1988;42:441–64. doi: 10.1146/annurev.mi.42.100188.002301.
    1. Rowe S M, Miller S, Sorscher E J. Cystic fibrosis. N. Engl. J. Med. 2005;352:1992–2001. doi: 10.1056/NEJMra043184.
    1. Russell R J, McInroy R J, Wilkinson P C, White R G. A lipid chemotactic factor from anaerobic coryneform bacteria including Corynebacterium parvum with activity for macrophages and monocytes. Immunology. 1976;30:935–49.
    1. Sanz M, Roldán S, Herrera D. Fundamentals of breath malodour. J. Contemp. Dent. Pract. 2001;2:1–17.
    1. Sarkany I, Taplin D, Blank H. The etiology and treatment of erythrasma. J. Invest. Dermatol. 1961;37:283–90.
    1. Sato H, Hirose T, Kimura T, Moriyama Y, Nakashimab Y. Analysis of malodorous volatile substances of human waste: feces and urine. J. Health Sci. 2001;47:483–90. doi: 10.1248/jhs.47.483.
    1. Schulz S, Dickschat J S. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 2007;24:814–42. doi: 10.1039/b507392h.
    1. Scott-Thomas A, Pearson J, Chambers S. Potential sources of 2-aminoacetophenone to confound the Pseudomonas aeruginosa breath test, including analysis of a food challenge study. J. Breath Res. 2011;5:046002. doi: 10.1088/1752-7155/5/4/046002.
    1. Scott-Thomas A J, Syhre M, Pattemore P K, Epton M, Laing R, Pearson J, Chambers S T. 2-aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm. Med. 2010;10:56. doi: 10.1186/1471-2466-10-56.
    1. Scully C, Greenman J. Halitology (breath odour: aetiopathogenesis and management) Oral Dis. 2012 doi: .
    1. Shehadeh N, Kligman A M. The effect of topical antibacterial agents on the bacterial flora of the axillae. J. Invest. Dermatol. 1963a;40:61–71.
    1. Shehadeh N, Kligman A M. The bacteria responsible for apocrine odor: II. J. Invest. Dermatol. 1963b;41:1–5.
    1. Shimizu M, Cashman J R, Yamazaki H. Transient trimethylaminuria related to menstruation. BMC Med. Genet. 2007;8:2. doi: 10.1186/1471-2350-8-2.
    1. Shimura M, Yasuno Y, Iwakura M, Shimada Y, Sakai S, Suzuki K, Sakamoto S. A new monitor with a zinc-oxide thin film semiconductor sensor for the measurement of volatile sulfur compounds in mouth air. J. Periodontol. 1996;67:396–402. doi: 10.1902/jop.1996.67.4.396.
    1. Shirasu M, Nagai S, Hayashi R, Ochiai A, Touhara K. Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds. Biosci. Biotechnol. Biochem. 2009;73:2117–20. doi: 10.1271/bbb.90229.
    1. Shnayderman M, et al. Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal. Chem. 2005;77:5930–7. doi: 10.1021/ac050348i.
    1. Shykhon M E, Morgan D W, Dutta R, Hines E L, Gardner J W. Clinical evaluation of the electronic nose in the diagnosis of ear, nose and throat infection: a preliminary study. J. Laryngol. Otol. 2004;118:706–9.
    1. Singer R E, Buckner B A. Butyrate and propionate: important components of toxic dental plaque extracts. Infect. Immun. 1981;32:458–63.
    1. Smalley J W, Birss A J, McKee A S, Marsh P D. Changes in the affinity of haemin-binding by Porphyromonas gingivalis W50 under different environmental conditions. Microb. Ecol. Health Dis. 1994;7:9–15. doi: 10.3109/08910609409141569.
    1. Smith D, Spanel P. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Rapid Commun. Mass Spectrom. 1996;10:1183–98. doi: 10.1002/(SICI)1097-0231(19960731)10:10<1183::AID-RCM641>;2-3.
    1. Smith D, Spanel P. Selected ion flow tube mass spectrometry (SIFT-MS) for online trace gas analysis. Mass Spectrom. Rev. 2005;24:661–700. doi: 10.1002/mas.20033.
    1. Snell E E. Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas Mol. Biol. 1975;42:287–333.
    1. Sobel J D. Bacterial vaginosis. Annu. Rev. Med. 2000;51:349–56. doi: 10.1146/annurev.med.51.1.349.
    1. Somerville D A. Erythrasma in normal young adults. J. Med. Microbiol. 1970;3:57–64. doi: 10.1099/00222615-3-1-57.
    1. Spencer P, Greenman J, McKenzie C, Gafan G, Spratt D, Flanagan A. In vitro biofilm model for studying tongue flora and malodour. J. Appl. Microbiol. 2007;103:985–92. doi: 10.1111/j.1365-2672.2007.03344.x.
    1. Spinelli F, Noferini M, Vanneste J L, Costa G. Potential of the electronic-nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bull. 2010;40:59–67. doi: 10.1111/j.1365-2338.2009.02355.x.
    1. Statheropoulos M, Spiliopoulou C, Agapiou A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci. Int. 2005;153:147–55. doi: 10.1016/j.forsciint.2004.08.015.
    1. Starkenmann C, Troccaz M, Howell K. The role of cysteine and cysteine-S conjugates as odour precursors in the flavour and fragrance industry. Flavour Fragr. J. 2008;23:369–81. doi: 10.1002/ffj.1907.
    1. Storer M K, Hibbard-Melles K, Davis B, Scotter J. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS) J. Microbiol. Methods. 2011;87:111–3. doi: 10.1016/j.mimet.2011.06.012.
    1. Syhre M, Chambers S T. The scent of Mycobacterium tuberculosis. Tuberculosis (Edinb.). 2008;88:317–23. doi: 10.1016/j.tube.2008.01.002.
    1. Syhre M, Manning L, Phuanukoonnon S, Harino P, Chambers S T. The scent of Mycobacterium tuberculosis—part II breath. Tuberculosis (Edinb.). 2009;89:263–6. doi: 10.1016/j.tube.2009.04.003.
    1. Takeuchi H, Machigashira M, Yamashita D, Kozono S, Nakajima Y, Miyamoto M, Takeuchi N, Setoguchi T, Noguchi K. The association of periodontal disease with oral malodour in a Japanese population. Oral Dis. 2010;16:702–6. doi: 10.1111/j.1601-0825.2010.01685.x.
    1. Tanda N, Washio J, Ikawa K, Suzuki K, Koseki T, Iwakura M. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study. J. Dent. 2007;35:552–7. doi: 10.1016/j.jdent.2007.03.003.
    1. Tangerman A, Winkel E G. The portable gas chromatograph OralChroma™: a method of choice to detect oral and extra-oral halitosis. J. Breath Res. 2008;2:017010. doi: 10.1088/1752-7155/2/1/017010.
    1. Tangerman A, Winkel E G. Extra-oral halitosis: an overview. J. Breath Res. 2010;4:017003. doi: 10.1088/1752-7155/4/1/017003.
    1. Tarr L A. Microbiological deterioration of fish post mortem, its detection and control. Bacteriol. Rev. 1954;18:1–15.
    1. Taylor B, Greenman J. Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system. J. Breath Res. 2010;4:017107. doi: 10.1088/1752-7155/4/1/017107.
    1. Tessier J F, Kulkarni G V. Bad breath: etiology, diagnosis and treatment. Oral Health. 1991;81:19–22.
    1. Thorn R M S, Reynolds D M, Greenman J. Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J. Microbiol. Methods. 2011;84:258–64. doi: 10.1016/j.mimet.2010.12.001.
    1. Tonzetich J. Direct gas chromatographic analysis of sulfur compounds in mouth air in man. Arch. Oral Biol. 1971;16:587–97. doi: 10.1016/0003-9969(71)90062-8.
    1. Tonzetich J, McBride B C. Characterization of volatile sulfur production by pathogenic and non-pathogenic strains of oral Bacteroides. Arch. Oral Biol. 1981;26:963–9. doi: 10.1016/0003-9969(81)90104-7.
    1. Tso W W, Adler J. Negative chemotaxis in Escherichia coli. J. Bacteriol. 1974;118:560–76.
    1. Ueno M, Yanagisawa T, Shinada K, Ohara S, Kawaguchi Y. Prevalence of oral malodor and related factors among adults in Akita Prefecture. J. Med. Dent. Sci. 2007;54:159–65.
    1. Van den Velde S, Quirynen M, van Hee P, van Steenberghe D. Halitosis associated volatiles in breath of healthy subjects. J. Chromatogr. B. 2007a;853:54–61. doi: 10.1016/j.jchromb.2007.02.048.
    1. Van den Velde S, Quirynen M, van Hee P, van Steenberghe D. Differences between alveolar air and mouth air. Anal. Chem. 2007b;79:3425–9. doi: 10.1021/ac062009a.
    1. Vásquez A, Jakobsson T, Ahrné S, Forsum U, Molin G. Vaginal lactobacillus flora of healthy Swedish women. J. Clin. Microbiol. 2002;40:2746–9. doi: 10.1128/JCM.40.8.2746-2749.2002.
    1. Viala J P, Méresse S, Pocachard B, Guilhon A A, Aussel L, Barras F. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS One. 2011;6:e22397. doi: 10.1371/journal.pone.0022397.
    1. Wadström T, Ljungh A. Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: key events in microbial pathogenicity. J. Med. Microbiol. 1999;48:223–33. doi: 10.1099/00222615-48-3-223.
    1. Wang D, Ding X, Rather P N. Indole can act as an extracellular signal in Escherichia coli. J. Bacteriol. 2001;183:4210–6. doi: 10.1128/JB.183.14.4210-4216.2001.
    1. Webb E C. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. San Diego, CA: Academic; 1992.
    1. Weetjens B J, et al. African pouched rats for the detection of pulmonary tuberculosis in sputum samples. Int. J. Tuberc. Lung Dis. 2009;13:737–43.
    1. Weitzman I, Summerbell R C. The dermatophytes. Clin. Microbiol. Rev. 1995;8:240–59.
    1. Whittle C L, Fakharzadeh J E, Preti G. Human breath odors and their use in diagnosis. Ann. NY Acad. Sci. 2007;1098:252–66. doi: 10.1196/annals.1384.011.
    1. Willis C L, Gibson G R, Allison C, Macfarlane S, Holt J S. Growth, incidence and activities of dissimilatory sulfate-reducing bacteria in the human oral cavity. FEMS Microbiol. Lett. 1995;15:267–71. doi: 10.1111/j.1574-6968.1995.tb07591.x.
    1. Willis C L, Gibson G R, Holt J, Allison C. Negative correlation between oral malodour and numbers and activities of sulphate-reducing bacteria in the human mouth. Arch. Oral Biol. 1999;44:665–70. doi: 10.1016/S0003-9969(99)00056-4.
    1. Wilson M. Bacterial biofilms and human disease. Sci. Prog. 2001;84:235–54. doi: 10.3184/003685001783238998.
    1. Wilson W. Microbial Inhabitants of Humans. 1st edn. Cambridge: Cambridge University Press; 2005.
    1. Wolff M, Bruhns H, Zhang W. Photoacoustic detection of volatile organic compounds. Proc. SPIE. 2011;8073
    1. Wong T P, Groman N. Production of diphtheria toxin by selected isolates of Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Infect. Immun. 1984;43:1114–6.
    1. Woodgyer A J, Baxter M, Rush-Munro F M, Brown J, Kaplan W. Isolation of Dermatophilus congolensis from two New Zealand cases of pitted keratolysis. Australas. J. Dermatol. 1985;26:29–35. doi: 10.1111/j.1440-0960.1985.tb01811.x.
    1. Yaegaki K, Coil J M. Examination, classification, and treatment of halitosis; clinical perspectives. J. Can. Dent. Assoc. 2000;66:257–61.
    1. Yaegaki K, Sanada K. Volatile sulfur compounds in mouth air from clinically healthy subjects and patients with periodontal disease. J. Periodontal Res. 1992;27:233–8. doi: 10.1111/j.1600-0765.1992.tb01673.x.
    1. Yaegaki K, Qian W, Murata T, Imai T, Sato T, Tanaka T, Kamoda T. Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J. Periodontal Res. 2008;43:391–9. doi: 10.1111/j.1600-0765.2007.01052.x.
    1. Yamada K. Occurrence and origin of trimethylamine oxide in fishes and marine invertebrates. Bull. Jpn. Soc. Sci. Fish. 1967;33:591–603. doi: 10.2331/suisan.33.591.
    1. Yamazaki K, Boyse E A, Miké V, Thaler H T, Mathieson B J, Abbott J, Boyse J, Zayas Z A, Thomas L. Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med. 1976;144:1324–35. doi: 10.1084/jem.144.5.1324.
    1. Yokoyama M T, Carlson J R. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Appl. Microbiol. 1974;27:540–8.
    1. Yoshda Y, Sasaki T, Ito S, Tamura H, Kunimatsu K, Kato H. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis. Microbiology. 2009;155:968–78. doi: 10.1099/mic.0.024174-0.
    1. Yoshida Y, Ito S, Kamo M, Kezuka Y, Tamura H, Kunimatsu K, Kato H. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology. 2010;156:2260–9. doi: 10.1099/mic.0.039180-0.
    1. Yoshida Y, Suwabe K, Nagano K, Kezuka Y, Kato H, Yoshimura F. Identification and enzymatic analysis of a novel protein associated with production of hydrogen sulfide and L-serine from L-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology. 2011;157:2164–71. doi: 10.1099/mic.0.048934-0.
    1. Zechman J, Aldinger S, Labows J. Characterization of pathogenic bacteria by automated headspace concentration—gas chromatography. J. Chromatogr. 1986;377:49–57. doi: 10.1016/S0378-4347(00)80760-4.
    1. Zeng C, Spielman A I, Vowels B R, Leyden J J, Biemann K, Preti G. A human axillary odorant is carried by apolipoprotein D. Proc. Natl Acad. Sci. USA. 1996;93:6626–30. doi: 10.1073/pnas.93.13.6626.
    1. Zeng X-N, Leyden J J, Brand J G, Spielman A I, McGinley K J, Preti G. An investigation of human apocrine gland secretion for axillary odor precursors. J. Chem. Ecol. 1992;18:1039–55. doi: 10.1007/BF00980061.
    1. Zoller H F, Clark W M. The production of volatile fatty acids by bacteria of the dysentery group. J. Gen. Physiol. 1920;20:325–30. doi: 10.1085/jgp.3.3.325.

Source: PubMed

3
Abonnere