Effects of dexmedetomidine on cardiac electrophysiology in patients undergoing general anesthesia during perioperative period: a randomized controlled trial

Chao Tan, Shiting Yan, Jie Shen, Hao Wu, Leyang Yu, Ying Wang, Shunping Tian, Wei Zhou, Yong Wu, Zhuan Zhang, Chao Tan, Shiting Yan, Jie Shen, Hao Wu, Leyang Yu, Ying Wang, Shunping Tian, Wei Zhou, Yong Wu, Zhuan Zhang

Abstract

Background: Dexmedetomidine has controversial influence on cardiac electrophysiology. The aim of this study was to explore the effects of dexmedetomidine on perioperative cardiac electrophysiology in patients undergoing general anesthesia.

Methods: Eighty-one patients were randomly divided into four groups: groups D1, D2, D3 receiving dexmedetomidine 1, 1, 0.5 μg/kg over 10 min and 1, 0.5, 0.5 μg/kg/h continuous infusion respectively, and control group (group C) receiving normal saline. Twelve-lead electrocardiograms were recorded at the time before dexmedetomidine/normal saline infusion (T1), loading dose finish (T2), surgery ending (T6), 1 h (T7) after entering PACU, 24 h (T8), 48 h (T9), 72 h (T10) and 1 month (T11) postoperatively. Cardiac circulation efficiency (CCE) were also recorded.

Results: Compared with group C, QTc were significantly increased at T2 in groups D1 and D2 while decreased at T7 and T8 in group D3 (P < 0.05), iCEB were decreased at T8 (P < 0.05). Compared with group D1, QTc at T2, T6, T7, T9 and T10 and iCEB at T8 were decreased, and CCE at T2-T4 were increased in group D3 significantly (P < 0.05). Compared with group D2, QTc at T2 and iCEB at T8 were decreased and CCE at T2 and T3 were increased in group D3 significantly (P < 0.05).

Conclusions: Dexmedetomidine at a loading dose of 0.5 μg/kg and a maintenance dose of 0.5 μg/kg/h can maintain stability of cardiac electrophysiology during perioperative period and has no significant adverse effects on CCE.

Trial registration: ClinicalTrials.gov NCT04577430 (Date of registration: 06/10/2020).

Keywords: Cardiac electrophysiology; Cardiac function; Dexmedetomidine; General anesthesia.

Conflict of interest statement

The authors declared that they had no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT flow diagram of enrollment
Fig. 2
Fig. 2
ECG at different time points in four groups during the perioperative period. A Changes of ECG in group D1. B Changes of ECG in group D2. C Changes of ECG in group D3. D Changes of ECG in group C. II Leads II of the 12-lead ECG; V5 Leads V5 of the 12-lead ECG. T1: before infusion of dexmedetomidine; T2: dexmedetomidine loading dose finish; T6: surgery ending; T7: 1 h after transferring to PACU; T8: 24 h postoperatively; T9: 48 h postoperatively; T10: 72 h postoperatively; T11: 1 month postoperatively
Fig. 3
Fig. 3
Cardiac function and hemodynamic indexes at different time points in the four groups. A Bar graphs of quantification of CCE change levels. B Bar graphs of quantification of dp/dt change levels. C Bar graphs of quantification of HR change levels. D Bar graphs of quantification of MAP change levels. E Bar graphs of quantification of SVR change levels. CCE cardiac circulation efficiency; dp/dt maximum pressure gradient; HR heart rate; MAP mean arterial blood pressure; SVR systemic vascular resistance. T1: before dexmedetomidine infusion; T2: dexmedetomidine loading dose finish; T3: surgery beginning; T4: 30 min after surgery beginning; T5: 1 h after surgery beginning; T6: surgery ending; T7: 1 h after transferring to PACU. aP < 0.05, cP < 0.01, compared with T1; bP < 0.05, dP < 0.01, compared with T2; △P < 0.05, *P < 0.01, compared with group C; #P < 0.05, ▲P < 0.01, compared with group D1; ※P < 0.05, P < 0.01, Compared with group D2

References

    1. Kleiman AM, Johnson KB. Untapped potential of dexmedetomidine. Anesth Analg. 2019;129(6):1450–1453. doi: 10.1213/ANE.0000000000004411.
    1. Keating GM. Dexmedetomidine: a review of Its use for sedation in the intensive care setting. Drugs. 2015;75(10):1119–1130. doi: 10.1007/s40265-015-0419-5.
    1. Zhao J, Zhou CL, Xia ZY, Wang L. Effects of dexmedetomidine on l-type calcium current in rat ventricular myocytes. Acta Cardiol Sin. 2013;29(2):175–180.
    1. Burns KM, Greene EA. Long QT syndrome unmasked by dexmedetomidine: a case report. Congenit Heart Dis. 2014;9(1):E11–15. doi: 10.1111/chd.12055.
    1. Yang L, Gong YQ, Tan Y, Wu L, Witman N, Zheng JJ, et al. Dexmedetomidine exhibits antiarrhythmic effects on human-induced pluripotent stem cell-derived cardiomyocytes through a Na/Ca channel-mediated mechanism. Ann Transl Med. 2021;9(5):399. doi: 10.21037/atm-20-5898.
    1. Sichrovsky TC, Mittal S, Steinberg JS. Dexmedetomidine sedation leading to refractory cardiogenic shock. Anesth Analg. 2008;106(6):1784–1786. doi: 10.1213/ane.0b013e318172fafc.
    1. Ergul Y, Unsal S, Ozyilmaz I, Ozturk E, Carus H, Guzeltas A. Electrocardiographic and electrophysiologic effects of dexmedetomidine on children. Pacing Clin Electrophysiol. 2015;38(6):682–687. doi: 10.1111/pace.12623.
    1. Hammer GB, Drover DR, Cao H, Jackson E, Williams GD, Ramamoorthy C, et al. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106(1):79–83. doi: 10.1213/01.ane.0000297421.92857.4e.
    1. Char D, Drover DR, Motonaga KS, Gupta S, Miyake CY, Dubin AM, et al. The effects of ketamine on dexmedetomidine-induced electrophysiologic changes in children. Paediatr Anaesth. 2013;23(10):898–905. doi: 10.1111/pan.12143.
    1. Tirotta CF, Nguyen T, Fishberger S, Velis E, Olen M, Lam L, et al. Dexmedetomidine use in patients undergoing electrophysiological study for supraventricular tachyarrhythmias. Paediatr Anaesth. 2017;27(1):45–51. doi: 10.1111/pan.13019.
    1. Safaeian R, Hassani V, Mohseni M, Ahmadi A, Ashraf H, Movaseghi G, et al. Comparison of the effects of propofol and sevoflurane on QT interval in pediatrics undergoing cochlear implantation: a randomized clinical trial study. Anesth Pain Med. 2019;9(4):e88805. doi: 10.5812/aapm.88805.
    1. Staikou C, Stamelos M, Stavroulakis E. Impact of anaesthetic drugs and adjuvants on ECG markers of torsadogenicity. Br J Anaesth. 2014;112(2):217–230. doi: 10.1093/bja/aet412.
    1. Park JH, Lee KY, Choi YD, Lee J, Shin HJ, Han DW, et al. Effect of different general anaesthetics on ventricular repolarisation in robot-assisted laparoscopic prostatectomy. Acta Anaesthesiol Scand. 2020;64(9):1243–1252. doi: 10.1111/aas.13653.
    1. Oji M, Terao Y, Toyoda T, Kuriyama T, Miura K, Fukusaki M, et al. Differential effects of propofol and sevoflurane on QT interval during anesthetic induction. J Clin Monit Comput. 2013;27(3):243–248. doi: 10.1007/s10877-012-9420-7.
    1. Keating S, Fries R, Kling K, Graham L, Clark-Price S, Schaeffer DJ. Effect of methadone or hydromorphone on cardiac conductivity in dogs before and during sevoflurane anesthesia. Front Vet Sci. 2020;7:573706. doi: 10.3389/fvets.2020.573706.
    1. Yilmaz CF, Elboğa G, Altunbaş G, Vuruşkan E, Uğur BK, Sucu M. Evaluation of ventricular repolarization features with Tp-e, Tp-e/QTc, JTc and JTd during electroconvulsive therapy. J Electrocardiol. 2018;51(3):440–442. doi: 10.1016/j.jelectrocard.2018.02.003.
    1. Sen S, Ozmert G, Boran N, Turan H, Caliskan E. Comparison of single-breath vital capacity rapid inhalation with sevoflurane 5% and propofol induction on QT interval and haemodynamics for laparoscopic surgery. Eur J Anaesthesiol. 2004;21(7):543–546. doi: 10.1097/00003643-200407000-00007.
    1. Hoimark L, Uhrskov SL, Vukelic AL. Plasma concentrations of antipsychotics and QTc prolongation: a pilot study. Nord J Psychiatry. 2020;74(5):374–379. doi: 10.1080/08039488.2020.1729857.
    1. Cobos-Puc LE, Aguayo-Morales H, Silva-Belmares Y, González-Zavala MA, Centuriónet D. alpha2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine. Eur J Pharmacol. 2016;782:35–43. doi: 10.1016/j.ejphar.2016.04.043.
    1. Tsutsui K, Hayami N, Kunishima T, Sugiura A, Mikamo T, Kanamori K, et al. Dexmedetomidine and clonidine inhibit ventricular tachyarrhythmias in a rabbit model of acquired long QT syndrome. Circ J. 2012;76(10):2343–2347. doi: 10.1253/circj.CJ-12-0171.
    1. Stoetzer C, Reuter S, Doll T, Foadi N, Wegner F, Leffler A, et al. Inhibition of the cardiac Na+ channel alpha-subunit Nav1.5 by propofol and dexmedetomidine. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(3):315–325. doi: 10.1007/s00210-015-1195-1.
    1. Odening KE, Van DLHJ, Ackerman MJ, Volders PGA, Ter Bekke RMA. Electromechanical reciprocity and arrhythmogenesis in long-QT syndrome and beyond. Eur Heart J. 2022;21:ehac135.
    1. Kim Y, Kim SY, Lee JS, Kong HJ, Han DW. Effect of dexmedetomidine on the corrected QT and Tp-e intervals during spinal anesthesia. Yonsei Med J. 2014;55(2):517–522. doi: 10.3349/ymj.2014.55.2.517.
    1. Ellermann C, Brandt J, Wolfes J, Willy K, Wegner FK, Leitz P, et al. Safe electrophysiologic profile of dexmedetomidine in different experimental arrhythmia models. Sci Rep. 2021;11(1):23940. doi: 10.1038/s41598-021-03364-y.
    1. Gorges M, Sherwin ED, Poznikoff AK, West NC, Brodie SM, Whyte SD. Effects of dexmedetomidine on myocardial repolarization in children undergoing general anesthesia: a randomized controlled trial. Anesth Analg. 2019;129(4):1100–1108. doi: 10.1213/ANE.0000000000004135.
    1. Kaya H, Suner A, Koparal M, Yucetas SC, Kafadar S. Evaluation of Tp-e interval, Tp-e/QT ratio and index of cardiac-electrophysiological balance in patients with tinnitus. BMC Cardiovasc Disord. 2021;21(1):415. doi: 10.1186/s12872-021-02227-8.
    1. Huang SS, Song FX, Yang SZ, Hu S, Zhao LY, Wang SQ, et al. Impact of intravenous dexmedetomidine on postoperative bowel movement recovery after laparoscopic nephrectomy: a consort-prospective, randomized, controlled trial. World J Clin Cases. 2021;9(26):7762–7771. doi: 10.12998/wjcc.v9.i26.7762.
    1. Robyns T, Lu HR, Gallacher DJ, Garweg C, Ector J, Willems R, et al. Evaluation of Index of Cardio-Electrophysiological Balance (iCEB) as a new biomarker for the identification of patients at increased arrhythmic risk. Ann Noninvasive Electrocardiol. 2016;21(3):294–304. doi: 10.1111/anec.12309.
    1. Liu Y, Fu X, Gao H, Ren Y, Li H, He Y, et al. Effects of different concentrations of desflurane on the index of cardiac electrophysiological balance in gynecologic surgery patients. Can J Physiol Pharmacol. 2020;98(5):332–335. doi: 10.1139/cjpp-2019-0290.
    1. Hongo M, Fujisawa S, Adachi T, Shimbo T, Shibata S, Ohba T, et al. Age-related effects of dexmedetomidine on myocardial contraction and coronary circulation in isolated guinea pig hearts. J Pharmacol Sci. 2016;131(2):118–125. doi: 10.1016/j.jphs.2016.05.002.
    1. Talke P, Anderson BJ. Pharmacokinetics and pharmacodynamics of dexmedetomidine-induced vasoconstriction in healthy volunteers. Br J Clin Pharmacol. 2018;84(6):1364–1372. doi: 10.1111/bcp.13571.
    1. Ashraf MW, Uusalo P, Scheinin M, Saari TI. Population modelling of dexmedetomidine pharmacokinetics and haemodynamic effects after intravenous and subcutaneous administration. Clin Pharmacokinet. 2020;59(11):1467–1482. doi: 10.1007/s40262-020-00900-3.
    1. Romagnoli S, Franchi F, Ricci Z, Scolletta S, Payen D. The Pressure Recording Analytical Method (PRAM): technical concepts and literature review. J Cardiothorac Vasc Anesth. 2017;31(4):1460–1470. doi: 10.1053/j.jvca.2016.09.004.
    1. Ok SH, Kwon SC, Baik J, Hong JM, Oh J, Han JY, et al. Dexmedetomidine-induced contraction involves CPI-17 Phosphorylation in Isolated Rat Aortas. Int J Mol Sci. 2016;17(10):1663. doi: 10.3390/ijms17101663.
    1. Lee K, Hwang HJ, Kim OS, Oh YJ. Assessment of dexmedetomidine effects on left ventricular function using pressure-volume loops in rats. J Anesth. 2017;31(1):18–24. doi: 10.1007/s00540-016-2278-y.
    1. Li H, Liu J, Shi H. Effect of dexmedetomidine on perioperative hemodynamics and myocardial protection in thoracoscopic-assisted thoracic surgery. Med Sci Monit. 2021;27:e929949.
    1. Tan XL, Chen YY, Hu B, Zhou QM, Shao WD, Xu B, et al. Dose-response relationship of dexmedetomidine combined with sufentanil for postoperative intravenous analgesia in video-assisted thoracoscopic surgery. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2019;41(3):373–378.
    1. Duncan D, Sankar A, Beattie WS, Wijeysundera DN. Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery. Cochrane Database Syst Rev. 2018;3(3):CD004126.
    1. Evdokimovskii EV, Jeon R, Park S, Pimenov OY, Alekseev AE. Role of alpha2-adrenoceptor subtypes in suppression of L-Type Ca2+ Current in Mouse Cardiac Myocytes. Int J Mol Sci. 2021;22(8):4135. doi: 10.3390/ijms22084135.
    1. Shuplock JM, Smith AH, Owen J, Van Driest SL, Marshall M, Saville B, et al. Association between perioperative dexmedetomidine and arrhythmias after surgery for congenital heart disease. Circ Arrhythm Electrophysiol. 2015;8(3):643–650. doi: 10.1161/CIRCEP.114.002301.
    1. Chrysostomou C, Komarlu R, Lichtenstein S, Shiderly D, Arora G, Orr R, et al. Electrocardiographic effects of dexmedetomidine in patients with congenital heart disease. Intensive Care Med. 2010;36(5):836–842. doi: 10.1007/s00134-010-1782-z.
    1. Liu Y, Gao H, Wang G, An L, Yi J, Fu X, et al. A comparison of the effect of sevoflurane and propofol on ventricular repolarisation after preoperative cefuroxime infusion. Biomed Res Int. 2019;2019:8978906.

Source: PubMed

3
Abonnere