An Absorption and Plasma Kinetics Study of Monoterpenes Present in Mastiha Oil in Humans

Efstathia Papada, Aristea Gioxari, Charalampia Amerikanou, Nikolaos Galanis, Andriana C Kaliora, Efstathia Papada, Aristea Gioxari, Charalampia Amerikanou, Nikolaos Galanis, Andriana C Kaliora

Abstract

Monoterpenes are bioactive compounds, however studies on their metabolic fate in humans are scarce. The present work aimed to identify and quantify the bioactive monoterpenes myrcene, α- and β-pinene of the Mediterranean product Mastiha Oil, in human plasma after acute consumption of a single dose. This was an open-label, single-arm acute study. After overnight fasting, healthy males were administered with Mastiha Oil. Blood samples were collected on different time-points before and after consumption. A novel GC-MS-MS application was performed to detect and quantify terpenes in MO and in plasma. Serum lipid resistance to oxidation was also determined. Alpha-Pinene, β-pinene and myrcene were identified and quantified in plasma. Alpha-pinene concentration significantly increased after 0.5 h of Mastiha Oil consumption, remaining significantly increased at 1 h, 2 h, 4 h, 6 h and 24 h. Beta-pinene and myrcene followed similar patterns. The increase in serum lipid resistance to oxidation was significant at 1 h, reached its peak at 2 h and remained significant until 4 h. Conclusively, α-pinene, β-pinene and myrcene that are present in Mastiha Oil are absorbed by humans. (ClinicalTrials.gov Identifier: NCT04290312).

Keywords: absorption; mastiha oil; monoterpenes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study flowchart.
Figure 2
Figure 2
Plasma concentration-time curves for β-pinene, myrcene and a-pinene. Values are presented as mean ± standard error of mean. * p <0.05.
Figure 2
Figure 2
Plasma concentration-time curves for β-pinene, myrcene and a-pinene. Values are presented as mean ± standard error of mean. * p <0.05.
Figure 3
Figure 3
Antioxidant capacity was estimated applying the copper sulphate oxidation assay. * p < 0.05.

References

    1. Diederich M. Natural products target the hallmarks of chronic diseases. Biochem. Pharmacol. 2020;173:113828. doi: 10.1016/j.bcp.2020.113828.
    1. Paraschos S., Magiatis P., Mitakou S., Petraki K., Kalliaropoulos A., Maragkoudakis P., Mentis A., Sgouras D., Skaltsounis A.-L. In Vitro and In Vivo Activities of Chios Mastic Gum Extracts and Constituents against Helicobacter pylori. Antimicrob. Agents Chemother. 2006;51:551–559. doi: 10.1128/AAC.00642-06.
    1. Assimopoulou A.N., Papageorgiou V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia. Biomed. Chromatogr. 2005;19:285–311. doi: 10.1002/bmc.454.
    1. Kaliora A.C., Mylona A., Chiou A., Petsios D.G., Andrikopoulos N.K. Detection and Identification of Simple Phenolics in Pistacia lentiscus Resin. J. Liq. Chromatogr. Relat. Technol. 2004;27:289–300. doi: 10.1081/JLC-120027100.
    1. Boelens M.H., Jiménez R. Chemical composition of the essential oils from the gum and from various parts of Pistacia lentiscus l. (mastic gum tree) Flavour Fragr. J. 1991;6:271–275. doi: 10.1002/ffj.2730060406.
    1. Subramaniyan S.D., AshokKumar N. Citral, A Monoterpene Protect Against High Glucose Induced Oxidative Injury in HepG2 Cell In Vitro-An Experimental Study. J. Clin. Diagn. Res. 2017;11:BC10–BC15. doi: 10.7860/JCDR/2017/28470.10377.
    1. Kodikonda M., Naik P.R. Modulatory effect of garcinol in streptozotocin-induced diabetic Wistar rats. Arch. Physiol. Biochem. 2017;123:322–329. doi: 10.1080/13813455.2017.1336632.
    1. Salehi B., Upadhyay S., Orhan I.E., Jugran A.K., Jayaweera S.L.D., Dias D.A., Sharopov F., Taheri Y., Martins N., Baghalpour N., et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules. 2019;9:738. doi: 10.3390/biom9110738.
    1. Sieniawska E., Swatko-Ossor M., Sawicki R., Skalicka-Woźniak K., Ginalska G. Natural Terpenes Influence the Activity of Antibiotics against Isolated Mycobacterium tuberculosis. Med. Princ. Prac. 2016;26:108–112. doi: 10.1159/000454680.
    1. Matsuo A.L., Figueiredo C.R., Arruda D.C., Pereira F.V., Scutti J.A.B., Massaoka M.H., Travassos L.R., Sartorelli P., Lago J.H.G. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 2011;411:449–454. doi: 10.1016/j.bbrc.2011.06.176.
    1. Papada E., Gioxari A., Brieudes V., Amerikanou C., Halabalaki M., Skaltsounis L., Smyrnioudis I., Kaliora A. Bioavailability of Terpenes and Postprandial Effect on Human Antioxidant Potential. An Open-Label Study in Healthy Subjects. Mol. Nutr. Food Res. 2017;62:1700751. doi: 10.1002/mnfr.201700751.
    1. Aurrekoetxea I., Ruiz-Sanz J.I., Del Agua A.R., Navarro R., Hernandez M.L., Matorras R., Prieto B., Ruiz-Larrea M.B. Serum oxidizability and antioxidant status in patients undergoing in vitro fertilization. Fertil. Steril. 2010;94:1279–1286. doi: 10.1016/j.fertnstert.2009.05.028.
    1. Esterbauer H., Jiirgens G. Mechanistic and genetic aspects of susceptibility of LDL to oxidation. Curr. Opin. Lipidol. 1993;4:114–124. doi: 10.1097/00041433-199304000-00007.
    1. Lewis C.A., Palanker A.L. Acute Toxicity Studies in Rats and Rabbits. Research Institute of Fragrance Materials; Englewood Cliffs, NJ, USA: 1979. Unpublished report.
    1. Li W., Hong B., Li Z., Li Q., Bi K. GC-MS method for determination and pharmacokinetic study of seven volatile constituents in rat plasma after oral administration of the essential oil of Rhizoma Curcumae. J. Pharm. Biomed. Anal. 2018;149:577–585. doi: 10.1016/j.jpba.2017.11.058.
    1. Thao N.T., Kashiwagi T., Sawamura M. Characterization by GC-MS of Vietnamese Citrus Species and Hybrids Based on the Isotope Ratio of Monoterpene Hydrocarbons. Biosci. Biotechnol. Biochem. 2007;71:2155–2161. doi: 10.1271/bbb.70069.
    1. Furtado N.A.J.C., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Préat V., Larondelle Y., Andre C.M. Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies. Molecules. 2017;22:400. doi: 10.3390/molecules22030400.
    1. Kanellos P.T., Kaliora A., Gioxari A., Christopoulou G.O., Kalogeropoulos N., Karathanos V.T. Absorption and Bioavailability of Antioxidant Phytochemicals and Increase of Serum Oxidation Resistance in Healthy Subjects Following Supplementation with Raisins. Plant Foods Hum. Nutr. 2013;68:411–415. doi: 10.1007/s11130-013-0389-2.
    1. González-Burgos E., Gómez-Serranillos M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012;19:5319–5341. doi: 10.2174/092986712803833335.
    1. Oboh G., Ademosun A., Odubanjo O.V., Akinbola I.A. Antioxidative Properties and Inhibition of Key Enzymes Relevant to Type-2 Diabetes and Hypertension by Essential Oils from Black Pepper. Adv. Pharmacol. Sci. 2013:926047. doi: 10.1155/2013/926047.
    1. Domínguez-Perles R., Auñón D., Ferreres F., Gil-Izquierdo A. Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. Eur. J. Nutr. 2015;56:215–224. doi: 10.1007/s00394-015-1071-2.
    1. García-Villalba R., Larrosa M., Possemiers S., Tomás-Barberán F.A., Espín J.C. Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: Comparison between pre- and postmenopausal women. Eur. J. Nutr. 2013;53:1015–1027. doi: 10.1007/s00394-013-0604-9.

Source: PubMed

3
Abonnere