Social Cognitive Dysfunction in Elderly Patients After Anesthesia and Surgery

Delin Zhang, Jun Ying, Xiaochi Ma, Zaifeng Gao, Hanjian Chen, Shengmei Zhu, Liping Shi, Xiqian Lu, Delin Zhang, Jun Ying, Xiaochi Ma, Zaifeng Gao, Hanjian Chen, Shengmei Zhu, Liping Shi, Xiqian Lu

Abstract

Extensive studies have revealed that cognitive processing was impaired after anesthesia and surgery, particularly for the elderly patients. However, most of the existing studies focused on the general cognitive deficits (e.g., delayed neuro-cognitive recovery and POCD). Although diagnosis of social abilities has been used in various clinical fields, few studies have investigated the potential deficit on social cognition after anesthesia and surgery. The current study examined whether there was any social cognitive dysfunction after anesthesia and surgery. We achieved this by taking biological motion (BM) as the stimuli of interest, the perception of which has been taken as the hallmark of social cognition. The elderly patients (aged ≥ 60 years) were required to judge whether an upright BM stimulus appeared among the dynamic noises to test their social cognition, as well as do a Mini-Mental State Examination to test their general cognition. The two tests were performed at both 1-day before and 7-day after the surgery. Results showed that 31.25% of patients exhibited BM perception deficit after anesthesia and surgery relative to before anesthesia and surgery, implying that social cognitive dysfunction existed. Meanwhile, social cognitive dysfunction was independent from delayed neurocognitive recovery.

Keywords: anesthesia and surgery; biological motion; delayed neurocognitive recovery; holistic processing; social cognition.

Copyright © 2020 Zhang, Ying, Ma, Gao, Chen, Zhu, Shi and Lu.

Figures

FIGURE 1
FIGURE 1
BM perception task with a scrambled mask. The red human figure is presented in white in the real experiment. Dynamic BM demos can be found in Supplementary Material.
FIGURE 2
FIGURE 2
The detection of BM under different measure times and different orientations of BM stimuli for SCD and non-SCD group, respectively. For each box plot, the top line showed the maximum of the data, the box means the range from third quartile to first quartile, the line inside the box showed the median, the bottom line showed the minimum of the data, and there was no outlier according to the 1.5 inter-quartile range criterion. The scatter figure showed the data from every patient.
FIGURE 3
FIGURE 3
(A) The correlation analysis between inversion effect of BM and the MMSE score in pre-operative phase. (B) The correlation analysis between the inversion reduction and MMSE decrease between pre- and post-operative phases. The dotted lines showed 95% CI of simple linear regression.

References

    1. Bardi L., Regolin L., Simion F. (2011). Biological motion preference in humans at birth: role of dynamic and configural properties. Dev. Sci. 14 353–359. 10.1111/j.1467-7687.2010.00985.x
    1. Bardi L., Regolin L., Simion F. (2013). The first time ever I saw your feet: inversion effect in newborns’ sensitivity to biological motion. Dev. Psychol. 50 986–993. 10.1037/a0034678
    1. Baron-Cohen S., Wheelwright S. (2004). The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J. Autism Dev. Disord. 34 163–175. 10.1023/b:jadd.0000022607.19833.00
    1. Bekker A. Y., Weeks E. J. (2003). Cognitive function after anaesthesia in the elderly. Best Pract. Res. Clin. Anaesthesiol. 17 259–272. 10.1016/s1521-6896(03)00005-3
    1. Bertenthal B. I., Pinto J. (1994). Global processing of biological motions. Psychol. Sci. 5 221–225. 10.1111/j.1467-9280.1994.tb00504.x
    1. Blake R. (2003). Visual recognition of biological motion is impaired in children with autism. Psychol. Sci. 14 151–157. 10.1111/1467-9280.01434
    1. Blake R., Shiffrar M. (2007). Perception of human motion. Annu. Rev. Psychol. 58 47–73. 10.1146/annurev.psych.57.102904.190152
    1. Blakemore S. J. (2008). The social brain in adolescence. Nat. Rev. Neurosci. 9 267–277. 10.1038/nrn2353
    1. Blakemore S.-J. (2012). Development of the social brain in adolescence. J. R. Soc. Med. 105 111–116.
    1. Burnett S., Sebastian C., Cohen Kadosh K., Blakemore S. J. (2011). The social brain in adolescence: evidence from functional magnetic resonance imaging and behavioural studies. Neurosci. Biobehav. Rev. 35 1654–1664. 10.1016/j.neubiorev.2010.10.011
    1. Burns A., Brayne C., Folstein M. (1998). Key papers in geriatric psychiatry: mini-mental state: a practical method for grading the cognitive state of patients for the clinician. M. Folstein, S. Folstein and P. McHugh, Journal of Psychiatric Research, 1975, 12, 189-198. Int. J. Geriatr. Psychiatry 13 285–294. 10.1002/(sici)1099-1166(199805)13:5<285::aid-gps753>;2-v
    1. Christidi F., Migliaccio R., Santamaria-Garcia H., Santangelo G., Trojsi F. (2018). Social cognition dysfunctions in neurodegenerative diseases: neuroanatomical correlates and clinical implications. Behav. Neurol. 2018:1849794. 10.1155/2018/1849794
    1. Dittrich W. H. (1993). Action categories and the perception of biological motion. Perception 22 15–22. 10.1068/p220015
    1. Evered L., Scott D. A., Silbert B., Maruff P. (2011). Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth. Analg. 112 1179–1185. 10.1213/ane.0b013e318215217e
    1. Evered L., Silbert B., Knopman D., Scott D., DeKosky S., Rasmussen L., et al. (2018). Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Can. J. Anesth. 65 1248–1257. 10.1007/s12630-018-1216-x
    1. Folstein M., Folstein S. (2010). Invited reply to “The death knoll for the MMSE: has it outlived its purpose?”. J. Geriatr. Psychiatry Neurol. 23 158–159. 10.1177/0891988710375213
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198.
    1. Funder K. S., Steinmetz J. (2012). Post-operative cognitive dysfunction – Lessons from the ISPOCD studies. Trends Anaesth. Crit. Care 2 94–97. 10.1016/j.tacc.2012.02.009
    1. Gallese V., Keysers C., Rizzolatti G. (2004). A unifying view of the basis of social cognition. Trends Cogn. Sci. 8 396–403. 10.1016/j.tics.2004.07.002
    1. Gao Z., Bentin S., Shen M. (2014). Rehearsing biological motion in working memory: an EEG study. J. Cogn. Neurosci. 27 198–209. 10.1162/jocn_a_00687
    1. Gao Z., Ye T., Shen M., Perry A. (2016). Working memory capacity of biological movements predicts empathy traits. Psychon. Bull. Rev. 23 468–475. 10.3758/s13423-015-0896-2
    1. Gilaie-Dotan S., Kanai R., Bahrami B., Rees G., Saygin A. P. (2013). Neuroanatomical correlates of biological motion detection. Neuropsychologia 51 457–463. 10.1016/j.neuropsychologia.2012.11.027
    1. Grossman E. D., Battelli L., Pascual-Leone A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Res. 45 2847–2853. 10.1016/j.visres.2005.05.027
    1. Hasson-Ohayon I., Mashiach-Eizenberg M., Arnon-Ribenfeld N., Roe D. (2017). Neuro-cognition and social cognition elements of social functioning and social quality of life. Psychiatry Res. 258 538–543. 10.1016/j.psychres.2017.09.004
    1. Henry J., von Hippel W., Molenberghs P., Lee T., Sachdev P. (2015). Clinical assessment of social cognitive function in neurological disorders. Nat. Rev. Neurol. 12 28–39. 10.1038/nrneurol.2015.229
    1. Hovens I. B., Schoemaker R. G., Ea V. D. Z., Heineman E., Izaks G. J., van Leeuwen B. L. (2012). Thinking through postoperative cognitive dysfunction: how to bridge the gap between clinical and pre-clinical perspectives. Brain Behav. Immun. 26 1169–1179. 10.1016/j.bbi.2012.06.004
    1. Hovens I. B., van Leeuwen B. L., Nyakas C., Heineman E., van der Zee E. A., Schoemaker R. G. (2015). Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol. Learn. Mem. 118 74–79. 10.1016/j.nlm.2014.11.009
    1. Johansson G. (1973). Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14 201–211. 10.3758/bf03212378
    1. Krenk L., Rasmussen L. S., Kehlet H. (2010). New insights into the pathophysiology of postoperative cognitive dysfunction. Acta Anaesthesiol. Scand. 54 951–956. 10.1111/j.1399-6576.2010.02268.x
    1. Krenk L., Rasmussen L. S., Siersma V. D., Kehlet H. (2012). Short-term practice effects and variability in cognitive testing in a healthy elderly population. Exp. Gerontol. 47 432–436. 10.1016/j.exger.2012.03.011
    1. Kulason K., Nouchi R., Hoshikawa Y., Noda M., Okada Y., Kawashima R. (2017). Indication of cognitive change and associated risk factor after thoracic surgery in the elderly: a pilot study. Front. Aging Neurosci. 9:396. 10.3389/fnagi.2017.00396
    1. Lu X., Huang J., Yi Y., Shen M., Weng X., Gao Z. (2016). Holding biological motion in working memory: an fMRI study. Front. Hum. Neurosci. 10:251. 10.3389/fnhum.2016.00251
    1. Moller J. T., Cluitmans P., Rasmussen L. S., Houx P., Rasmussen H., Canet J., et al. (1998). Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet 351 857–861. 10.1016/s0140-6736(97)07382-0
    1. Pavlova M., Sokolov A. (2000). Orientation specificity in biological motion perception. Percept. Psychophys. 62 889–899. 10.3758/bf03212075
    1. Pavlova M., Sokolov A. (2003). Prior knowledge about display inversion in biological motion perception. Perception 32 937–946. 10.1068/p3428
    1. Pavlova M. A. (2012). Biological motion processing as a hallmark of social cognition. Cereb. Cortex 22 981–995. 10.1093/cercor/bhr156
    1. Pinto J., Shiffrar M. (1999). Subconfigurations of the human form in the perception of biological motion displays. Acta Psychol. 102 293–318. 10.1016/s0001-6918(99)00028-1
    1. Puce A., Perrett D. (2003). Electrophysiology and brain imaging of biological motion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358 435–445. 10.1098/rstb.2002.1221
    1. Rizzolatti G., Fogassi L., Gallese V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2 661–670. 10.1038/35090060
    1. Shi H. J., Xue X. H., Wang Y. L., Zhang W. S., Wang Z. S., Yu A. L. (2015). Effects of different anesthesia methods on cognitive dysfunction after hip replacement operation in elder patients. Int. J. Clin. Exp. Med. 8 3883–3888.
    1. Shiffrar M., Lichtey L., Chatterjee S. H. (1997). The perception of biological motion across apertures. Percept. Psychophys. 59 51–59. 10.3758/bf03206847
    1. Shipley T. F. (2003). The effect of object and event orientation on perception of biological motion. Psychol. Sci. 14 377–380. 10.1111/1467-9280.24471
    1. Simion F., Di Giorgio E., Leo I., Bardi L. (2011). “Chapter 10 - The processing of social stimuli in early infancy: from faces to biological motion perception,” in Progress in Brain Research, eds Braddick O., Atkinson J., Innocenti G. M. (Amsterdam: Elsevier; ), 173–193.
    1. Steel K., Ellem E., Baxter D. (2015). The application of biological motion research: biometrics, sport, and the military. Psychon. Bull. Rev. 22 78–87. 10.3758/s13423-014-0659-5
    1. Sumi S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception 13 283–286. 10.1068/p130283
    1. Troje N. F. (2003). Reference frames for orientation anisotropies in face recognition and biological-motion perception. Perception 32 201–210. 10.1068/p3392
    1. Troje N. F. (2013). “What is biological motion: definition, stimuli and paradigms,” in Social Perception: Detection and Interpretation of Animacy, Agency, and Intention, eds Rutherford M. D., Kuhlmeier V. A. (Cambridge, MA: MIT Press; ), 13–36. 10.7551/mitpress/9780262019279.003.0002
    1. Troje N. F., Aust U. (2013). What do you mean with “direction”? Local and global cues to biological motion perception in pigeons. Vision Res. 79 47–55. 10.1016/j.visres.2013.01.002
    1. Van Overwalle F. (2009). Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30 829–858. 10.1002/hbm.20547
    1. Yogarajah M., Mula M. (2019). Social cognition, psychiatric comorbidities, and quality of life in adults with epilepsy. Epilepsy Behav. 100(Pt B):106321. 10.1016/j.yebeh.2019.05.017

Source: PubMed

3
Subskrybuj