Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties

Marta Fiedot-Toboła, Magdalena Ciesielska, Irena Maliszewska, Olga Rac-Rumijowska, Patrycja Suchorska-Woźniak, Helena Teterycz, Marek Bryjak, Marta Fiedot-Toboła, Magdalena Ciesielska, Irena Maliszewska, Olga Rac-Rumijowska, Patrycja Suchorska-Woźniak, Helena Teterycz, Marek Bryjak

Abstract

A surface modification of polyamide 6 (PA), polyethylene terephthalate (PET) and polypropylene (PP) textiles was performed using zinc oxide to obtain antibacterial layer. ZnO microrods were synthesized on ZnO nanoparticles (NPs) as a nucleus centers by chemical bath deposition (CBD) process. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) indicated that wurzite ZnO microrods were obtained on every sample. Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Liquid Absorption Capacity (LAC) analysis indicate that the amount and structure of antibacterial layer is dependent on roughness and wettability of textile surface. The rougher and more hydrophilic is the material, the more ZnO were deposited. All studied textiles show significant bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A possible mechanism and difference in sensitivity between Gram-negative and Gram-positive bacteria to ZnO is discussed. Considering that antibacterial activity of ZnO is caused by Reactive Oxygen Species (ROS) generation, an influence of surface to volume ratio and crystalline parameters is also discussed.

Keywords: antimicrobial properties; microrods; nanoparticles; polymer textiles; roughness; wettability; zinc oxid.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
SEM and AFM images of: (a) PA; (b) PET; and (c) PP.
Figure 1
Figure 1
SEM and AFM images of: (a) PA; (b) PET; and (c) PP.
Figure 2
Figure 2
DSC analysis of the used textiles.
Figure 3
Figure 3
FTIR results for analyzed textiles.
Figure 4
Figure 4
A scheme of modification process. (A) ZnO NPs deposition; (B) CBD solution preparation.
Figure 5
Figure 5
XRD diffractograms of modified textiles.
Figure 6
Figure 6
The W-H curves for samples.
Figure 7
Figure 7
SEM images of ZnO deposited on: (a) PA; (b) PET; and (c) PP.
Figure 8
Figure 8
A scheme of a of contact angle determination.
Figure 9
Figure 9
A shape of colloid drop on different textile surfaces: (a) PP; (b) PET; and (c) PA.
Figure 10
Figure 10
A scheme of the ZnO NPs on: (a) hydrophilic; and (b) hydrophobic surface after drying.
Figure 11
Figure 11
The effect of the modified polymer textiles on the viability of E. coli determined by the serial dilution method.
Figure 12
Figure 12
The effect of the modified polymer textiles on the viability of S. aureus determined by the serial dilution method.
Figure 13
Figure 13
The effect of the modified polymer textiles on the viability of E. coli (PET-ZnO (A); PA-ZnO (B); and PP-ZnO (C)) and S. aureus (PET-ZnO (D); PA-ZnO (E); and PP-ZnO (F)) determined by the plate method.

References

    1. Lee Y.-H., Kim A.-L., Park Y.-G., Hwang E.-K., Baek Y.-M., Cho S., Kim H.-D. Colorimetric assay and deodorizing/antibacterial performance of natural fabrics dyed with immature pine cone extract. Text. Res. J. 2017;88:731–743. doi: 10.1177/0040517516688633.
    1. Xu Q., Xie L., Diao H., Li F., Zhang Y., Fu F., Liu X. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr. Polym. 2017;177:187–193. doi: 10.1016/j.carbpol.2017.08.129.
    1. He L., Gao C., Li S., Chung C.T.W., Xin J.H. Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. J. Ind. Eng. Chem. 2017;46:373–378. doi: 10.1016/j.jiec.2016.11.006.
    1. Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017;11:53–62. doi: 10.2174/1874285801711010053.
    1. Willers C., Wentzel J.F., Du Plessis L.H., Gouws C., Hamman J.H. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: The role of efflux inhibitors. Expert Opin. Ther. Targets. 2017;21:23–36. doi: 10.1080/14728222.2017.1265105.
    1. Zhang Y., He W., Li J., Wang K., Li J., Tan H., Fu Q. Gemini quaternary ammonium salt waterborne biodegradable polyurethanes with antibacterial and biocompatible properties. Mater. Chem. Front. 2017;1:361–368. doi: 10.1039/C6QM00039H.
    1. Ioannou C.J., Hanlon G.W., Denyer S.P. Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob. Agents Chemother. 2007;51:296–306. doi: 10.1128/AAC.00375-06.
    1. Delezuk J.A., Ramírez-Herrera D.E., de Ávila B.E.F., Wang J. Enhancement of thermal diffusivity in phase-separated bismaleimide/poly(ether imide) composite films containing needle-shaped ZnO particles. Nanoscale. 2017;9:2195–2200. doi: 10.1039/C6NR09799E.
    1. Mahbubul Hassan M. Binding of a quaternary ammonium polymer-grafted-chitosan onto a chemically modified wool fabric surface: Assessment of mechanical, antibacterial and antifungal properties. RSC Adv. 2015;5:35497–35505. doi: 10.1039/C5RA03073K.
    1. Iyigundogdu Z.U., Demir O., Asutay A.B., Sahin F. Developing Novel Antimicrobial and Antiviral Textile Products. Appl. Biochem. Biotechnol. 2017;181:1155–1166. doi: 10.1007/s12010-016-2275-5.
    1. Jiang G., Zhang J., Ji D., Qin X., Ge Y., Xie S. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns. Fibers Polym. 2017;18:987–992. doi: 10.1007/s12221-017-1194-6.
    1. Milošević M., Krkobabić A., Radoičić M., Šaponjić Z., Radetić T., Radetić M. Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydr. Polym. 2017;158:77–84. doi: 10.1016/j.carbpol.2016.12.006.
    1. Attia N.F., Moussa M., Sheta A.M.F., Taha R., Gamal H. Synthesis of effective multifunctional textile based on silica nanoparticles. Prog. Org. Coat. 2017;106:41–49. doi: 10.1016/j.porgcoat.2017.02.006.
    1. Moritz M., Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 2013;228:596–613. doi: 10.1016/j.cej.2013.05.046.
    1. Sonia S., Ruckmani K., Sivakumar M. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;79:581–589.
    1. Mirzaei H., Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017;43:907–914. doi: 10.1016/j.ceramint.2016.10.051.
    1. Fiedot M., Karbownik I., Maliszewska I., Rac O., Suchorska-Woźniak P., Teterycz H. Deposition of one-dimensional zinc oxide structures on polypropylene fabrics and their antibacterial properties. Text. Res. J. 2015;85:1340–1354. doi: 10.1177/0040517514563716.
    1. Fiedot M., Maliszewska I., Rac-Rumijowska O., Suchorska-Woźniak P., Lewińska A., Teterycz H. The Relationship between the Mechanism of Zinc Oxide Crystallization and Its Antimicrobial Properties for the Surface Modification of Surgical Meshes. Materials. 2017;10:353. doi: 10.3390/ma10040353.
    1. Textiles. Test Methods for Nonwovens. Part 6: Absorption. ISO 9073-6:2003. International Organization for Standardization (ISO); Geneva, Switzerland: 2001.
    1. Fiedot M., Rac O., Suchorska-Woźniak P., Karbownik I., Teterycz H. Manufacturing Nanostructures. One Central Press (OCP); Manchester, UK: 2014. Polymer-surfactant interactions and their influence on zinc oxide nanoparticles morphology.
    1. Textile fabrics—Determination of antibacterial activity. Agar diffusion plate test, ISO 20645:2004. International Organization for Standardization (ISO); Geneva, Switzerland: 2004.
    1. Vijayakumar S., Rajakumar P.R. Infrared spectral analysis of waste pet samples. Int. Lett. Chem. Phys. Astron. 2012;4:58–65. doi: 10.18052/.
    1. Shoushtari A.M., Malek R.M.A., Abdous M. Effect of chemical oxidation treatment on dyeability of polypropylene. Dyes Pigme. 2004;63:95–100.
    1. Cheval N., Gindy N., Flowkes C., Fahmi A. Polyamide 66 microspheres metallised with in situ synthesised gold nanoparticles for a catalytic application. Nanoscale Res. Lett. 2012;7:182. doi: 10.1186/1556-276X-7-182.
    1. Cullity B.D. Elements of X-ray Diffraction. Am. J. Phys. 1957;25:394–395. doi: 10.1119/1.1934486.
    1. Williamson G.K., Hall W.H. X-ray Line Broadening from Filed Al and W. Acta Met. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6.
    1. Curcio E., Fontananova E., Di Profio G., Drioli E. Influence of the Structural Properties of Poly(vinylidene fluoride) Membranes on the Heterogeneous Nucleation Rate of Protein Crystals. J. Phys. Chem. B. 2006;110:12438–12445. doi: 10.1021/jp061531y.
    1. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x.
    1. Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012;7:6003–6009. doi: 10.2147/IJN.S35347.
    1. Brown S., Santa Maria J.P., Jr., Walker S. Wall Teichoic Acids of Gram-Positive Bacteria. Annu. Rev. Microbiol. 2013;67:313–336. doi: 10.1146/annurev-micro-092412-155620.
    1. Brayner R., Ferrari-Iliou R., Brivois N., Djediat S., Benedetti M.F., Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006;6:866–870. doi: 10.1021/nl052326h.
    1. Sonohara R., Muramatsu N., Ohshima H., Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys. Chem. 1995;55:273–277. doi: 10.1016/0301-4622(95)00004-H.
    1. Gordon T., Perlstein B., Houbara O., Felner I., Banin E., Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. Physicochem. Eng. Asp. 2011;374:1–8. doi: 10.1016/j.colsurfa.2010.10.015.
    1. Russell A.D. Similarities and differences in the responses of microorganisms to biocides. J. Antimicrob. Chemother. 2003;52:750–763. doi: 10.1093/jac/dkg422.
    1. Clements M.O., Watson S.P., Foster S.J. Characterization of the major superoxide dismutase of staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J. Bacteriol. 1999;181:3898–3903.
    1. Gaupp R., Ledala N., Somerville G.A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. 2012;2:33. doi: 10.3389/fcimb.2012.00033.

Source: PubMed

3
Subskrybuj