Plasma uric acid is related to large arterial stiffness but not to other hemodynamic variables: a study in 606 normotensive and never-medicated hypertensive subjects

Humam Hamid, Venla Kurra, Manoj Kumar Choudhary, Heidi Bouquin, Onni Niemelä, Mika A P Kähönen, Jukka T Mustonen, Ilkka H Pörsti, Jenni K Koskela, Humam Hamid, Venla Kurra, Manoj Kumar Choudhary, Heidi Bouquin, Onni Niemelä, Mika A P Kähönen, Jukka T Mustonen, Ilkka H Pörsti, Jenni K Koskela

Abstract

Background: Elevated level of plasma uric acid (PUA) has been associated with cardiovascular disease, but whether uric acid is an independent risk factor or merely a marker remains controversial.

Methods: We investigated in a cross-sectional setting the association of PUA with hemodynamics in 606 normotensive and never-medicated hypertensive subjects (295 men, 311 women, age range 19-73 years) without cardiovascular disease or gout. In all except 15 individuals, PUA was within the normal range. Supine hemodynamics were recorded using whole-body impedance cardiography and radial tonometric pulse wave analysis.

Results: The mean concentrations of PUA in age, sex and body mass index adjusted quartiles were 234, 278, 314, and 373 µmol/l, respectively. The highest PUA quartile presented with higher aortic to popliteal pulse wave velocity (PWV) than the lowest quartile (8.7 vs. 8.2 m/s, p = 0.026) in analyses additionally adjusted for plasma concentrations of C-reactive protein, low density lipoprotein cholesterol, triglycerides, and mean aortic blood pressure. No differences in radial and aortic blood pressure, wave reflections, heart rate, cardiac output, and systemic vascular resistance were observed between the quartiles. In linear regression analysis, PUA was an independent explanatory factor for PWV (β = 0.168, p < 0.001, R2 of the model 0.591), but not for systolic or diastolic blood pressure. When the regression analysis was performed separately for men and women, PUA was an independent predictor of PWV in both sexes.

Conclusions: PUA concentration was independently and directly associated with large arterial stiffness in individuals without cardiovascular disease and PUA levels predominantly within the normal range. Trial registration ClinicalTrials.gov NCT01742702.

Keywords: Arterial stiffness; Hemodynamics; Impedance cardiography; Pulse wave analysis; Uric acid.

Conflict of interest statement

The authors have no potential competing interests associated with this research.

Figures

Fig. 1
Fig. 1
Radial (A) and aortic (B) systolic blood pressure, and radial (C) and aortic (D) diastolic blood pressure in 606 subjects presented in age, body mass index, sex, and plasma C-reactive protein, triglyceride, and LDL cholesterol adjusted quartiles of plasma uric acid concentration; mean ± 95% confidence interval of the mean
Fig. 2
Fig. 2
Aortic pulse pressure (A), forward wave amplitude (B), augmentation index (C), and pulse wave velocity (D) in 606 all subjects, and pulse wave velocity separately in men (E) and women (F), presented in age, body mass index, sex, C-reactive protein, triglyceride, and LDL cholesterol adjusted quartiles of plasma uric acid concentration; mean ± 95% confidence interval of the mean
Fig. 3
Fig. 3
Heart rate (A), stroke volume (B), cardiac output (C), systemic vascular resistance (D) in 606 subjects presented in age, body mass index, sex, C-reactive protein, triglyceride, and LDL cholesterol adjusted quartiles of plasma uric acid concentration; mean ± 95% confidence interval of the mean

References

    1. WHO-web-page. Cardiovascular diseases. 2017. ). Accessed 25 Feb 2020.
    1. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14. doi: 10.1016/j.ijcard.2015.08.109.
    1. Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis PA, et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ. 2017;357:j2376. doi: 10.1136/bmj.j2376.
    1. Rebora P, Andreano A, Triglione N, Piccinelli E, Palazzini M, Occhi L, et al. Association between uric acid and pulse wave velocity in hypertensive patients and in the general population: a systematic review and meta-analysis. Blood Press. 2020;29:220–31. doi: 10.1080/08037051.2020.1735929.
    1. Laurent S, Katsahian S, Fassot C, Tropeano A-I, Gautier I, Laloux B, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6. doi: 10.1161/01.STR.0000065428.03209.64.
    1. Mattace-Raso FUS, van der Cammen TJM, Hofman A, van Popele NM, Bos ML, Schalekamp MADH, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63. doi: 10.1161/CIRCULATIONAHA.105.555235.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605. doi: 10.1093/eurheartj/ehl254.
    1. Vlachopoulos C, Xaplanteris P, Vyssoulis G, Bratsas A, Baou K, Tzamou V, et al. Association of serum uric acid level with aortic stiffness and arterial wave reflections in newly diagnosed, never-treated hypertension. Am J Hypertens. 2011;24:33–9. doi: 10.1038/ajh.2010.111.
    1. Canepa M, Viazzi F, Strait JB, Ameri P, Pontremoli R, Brunelli C, et al. Longitudinal association between serum uric acid and arterial stiffness. Hypertension. 2017;69:228–35. doi: 10.1161/HYPERTENSIONAHA.116.08114.
    1. Mehta T, Nuccio E, McFann K, Madero M, Sarnak MJ, Jalal D. Association of uric acid with vascular stiffness in the Framingham heart study. Am J Hypertens. 2015;28:877–83. doi: 10.1093/ajh/hpu253.
    1. Liu J, Wang K, Liu H, Zhao H, Zhao X, Lan Y, et al. Relationship between carotid-femoral pulse wave velocity and uric acid in subjects with hypertension and hyperuricemia. Endocr J. 2019;66:629–36. doi: 10.1507/endocrj.EJ18-0570.
    1. Wang Y, Zhang X-Y, Gao W-H, Du M-F, Chu C, Wang D, et al. Association of uric acid in serum and urine with arterial stiffness: Hanzhong adolescent hypertension study. Dis Markers. 2020 doi: 10.1155/2020/1638515.
    1. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924. doi: 10.1001/jama.300.8.924.
    1. Cassano V, Crescibene D, Hribal ML, Pelaia C, Armentaro G, Magurno M, et al. Uric acid and vascular damage in essential hypertension: role of insulin resistance. Nutrients. 2020;12:2509. doi: 10.3390/nu12092509.
    1. Bian S, Guo H, Ye P, Luo L, Wu H, Xiao W. Serum uric acid level and diverse impacts on regional arterial stiffness and wave reflection. Iran J Public Health. 2012;41:33–41.
    1. Zhen H, Gui F. The role of hyperuricemia on vascular endothelium dysfunction. Biomed Rep. 2017;7:325–30. doi: 10.3892/br.2017.966.
    1. Tahvanainen A, Koskela J, Tikkakoski A, Lahtela J, Leskinen M, Kähönen M, et al. Analysis of cardiovascular responses to passive head-up tilt using continuous pulse wave analysis and impedance cardiography. Scand J Clin Lab Invest. 2009;69:128–37. doi: 10.1080/00365510802439098.
    1. Tikkakoski AJ, Tahvanainen AM, Leskinen MH, Koskela JK, Haring A, Viitala J, et al. Hemodynamic alterations in hypertensive patients at rest and during passive head-up tilt. J Hypertens. 2013;31:906–15. doi: 10.1097/HJH.0b013e32835ed605.
    1. Kangas P, Tikkakoski A, Tahvanainen A, Koskela J, Kähönen M, Kööbi T, et al. Changes in hemodynamics associated with metabolic syndrome are more pronounced in women than in men. Sci Rep. 2019;9:18377. doi: 10.1038/s41598-019-54926-0.
    1. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. J Hypertens. 2018;36:1953–2041. doi: 10.1097/HJH.0000000000001940.
    1. Finnish guidelines for the current care of subjects with alcohol problem. 2015. . Accessed 15 Nov 2020.
    1. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20–9. doi: 10.1056/NEJMoa1114248.
    1. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85:2402–10. doi: 10.1210/jcem.85.7.6661.
    1. Fimlab-Laboratories-Ltd. Normal values and interpretation of results concerning uric acid. 2020. . Accessed 15 Nov 2020.
    1. Koskela JK, Tahvanainen A, Haring A, Tikkakoski AJ, Ilveskoski E, Viitala J, et al. Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects. BMC Cardiovasc Disord. 2013;13:102. doi: 10.1186/1471-2261-13-102.
    1. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95:1827–36. doi: 10.1161/01.CIR.95.7.1827.
    1. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81. doi: 10.1001/2012.jama.10503.
    1. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43:1239–45. doi: 10.1161/01.HYP.0000128420.01881.aa.
    1. Kööbi T, Kaukinen S, Ahola T, Turjanmaa VM. Non-invasive measurement of cardiac output: whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods. Intensive Care Med. 1997;23:1132–7. doi: 10.1007/s001340050469.
    1. Kööbi T, Kähönen M, Iivainen T, Turjanmaa V. Simultaneous non-invasive assessment of arterial stiffness and haemodynamics – a validation study. Clin Physiol Funct Imaging. 2003;23:31–6. doi: 10.1046/j.1475-097X.2003.00465.x.
    1. DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71. doi: 10.1001/archinte.1916.00080130010002.
    1. Kööbi T, Kaukinen S, Turjanmaa V, Uusitalo A. Whole-body impedance cardiography in the measurement of cardiac output. Crit Care Med. 1997;25:779–85. doi: 10.1097/00003246-199705000-00012.
    1. Wilenius M, Tikkakoski AJ, Tahvanainen AM, Haring A, Koskela J, Huhtala H, et al. Central wave reflection is associated with peripheral arterial resistance in addition to arterial stiffness in subjects without antihypertensive medication. BMC Cardiovasc Disord. 2016;16:131. doi: 10.1186/s12872-016-0303-6.
    1. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27. doi: 10.1016/j.jacc.2009.10.061.
    1. Koivistoinen T, Kööbi T, Jula A, Hutri-Kähönen N, Raitakari OT, Majahalme S, et al. Pulse wave velocity reference values in healthy adults aged 26–75 years. Clin Physiol Funct Imaging. 2007;27:191–6. doi: 10.1111/j.1475-097X.2007.00734.x.
    1. Arterial Stiffness’ Collaboration Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: establishing normal and reference values. Eur Heart J. 2010;31:2338–50. doi: 10.1093/eurheartj/ehq165.
    1. Cicero AFG, Salvi P, D’Addato S, Rosticci M, Borghi C. Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella Heart Study. J Hypertens. 2014;32:57–64. doi: 10.1097/HJH.0b013e328365b916.
    1. An L-N, Rong N, Ning M, Feng L-L, Chen Z-H, Liu W-Q, et al. High serum uric acid is associated with increased arterial stiffness in hypertension. Aging. 2020;12:14569–81. doi: 10.18632/aging.103506.
    1. Mulè G, Riccobene R, Castiglia A, D’Ignoto F, Ajello E, Geraci G, et al. Relationships between mild hyperuricaemia and aortic stiffness in untreated hypertensive patients. Nutr Metab Cardiovasc Dis. 2014;24:744–50. doi: 10.1016/j.numecd.2014.01.014.
    1. Fang J-I, Wu J-S, Yang Y-C, Wang R-H, Lu F-H, Chang C-J. High uric acid level associated with increased arterial stiffness in apparently healthy women. Atherosclerosis. 2014;236:389–93. doi: 10.1016/j.atherosclerosis.2014.07.024.
    1. Baena CP, Lotufo PA, Mill JG, Cunha R, de Benseñor S. Serum uric acid and pulse wave velocity among healthy adults: baseline data from the Brazilian longitudinal study of adult health (ELSA-Brasil) Am J Hypertens. 2015;28:966–70. doi: 10.1093/ajh/hpu298.
    1. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739–42. doi: 10.1111/j.1523-1755.2005.00273.x.
    1. Farquharson Colin AJ, Butler Robert Hill, Alexander, Belch Jill JF. Struthers Allan D. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106:221–6. doi: 10.1161/01.CIR.0000022140.61460.1D.
    1. Butler R, Morris AD, Belch JJF, Hill A, Struthers Allan D. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35:746–51. doi: 10.1161/01.HYP.35.3.746.
    1. Teng R, Ye Y, Parks D, Beckman J. Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic Biol Med. 2002;33:1243–1249. doi: 10.1016/S0891-5849(02)01020-1.
    1. Kurra V, Eraranta A, Jolma P, Vehmas TI, Riutta A, Moilanen E, et al. Hyperuricemia, oxidative stress, and carotid artery tone in experimental renal insufficiency. Am J Hypertens. 2009;22:964–70. doi: 10.1038/ajh.2009.109.
    1. George J, Carr E, Davies J, Belch JJF, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508–16. doi: 10.1161/CIRCULATIONAHA.106.651117.
    1. Koivistoinen T, Lyytikäinen L-P, Aatola H, Luukkaala T, Juonala M, Viikari J, et al. Pulse wave velocity predicts the progression of blood pressure and development of hypertension in young adults. Hypertension. 2018;71:451–6. doi: 10.1161/HYPERTENSIONAHA.117.10368.
    1. Barochiner J, Aparicio LS, Alfie J, Morales MS, Cuffaro PE, Rada MA, et al. Arterial stiffness in treated hypertensive patients with white-coat hypertension. J Clin Hypertens. 2017;19:6–10. doi: 10.1111/jch.12913.
    1. de Simone G, Schillaci G, Chinali M, Angeli F, Reboldi GP, Verdecchia P. Estimate of white-coat effect and arterial stiffness. J Hypertens. 2007;25:827–31. doi: 10.1097/HJH.0b013e32801d1f62.
    1. Roman MJ, Devereux RB, Kizer JR, LE T, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure. Hypertension. 2007;50:197–203. doi: 10.1161/HYPERTENSIONAHA.107.089078.
    1. Kollias A, Lagou S, Zeniodi M, Elena B, Nadia S, George S. Association of central versus brachial blood pressure with target-organ damage. Hypertension. 2016;67:183–90. doi: 10.1161/HYPERTENSIONAHA.115.06066.

Source: PubMed

3
Subskrybuj