The type of the functional cardiovascular response to upright posture is associated with arterial stiffness: a cross-sectional study in 470 volunteers

Anna M Tahvanainen, Antti J Tikkakoski, Jenni K Koskela, Klaus Nordhausen, Jani M Viitala, Miia H Leskinen, Mika A P Kähönen, Tiit Kööbi, Marko T Uitto, Jari Viik, Jukka T Mustonen, Ilkka H Pörsti, Anna M Tahvanainen, Antti J Tikkakoski, Jenni K Koskela, Klaus Nordhausen, Jani M Viitala, Miia H Leskinen, Mika A P Kähönen, Tiit Kööbi, Marko T Uitto, Jari Viik, Jukka T Mustonen, Ilkka H Pörsti

Abstract

Background: In a cross-sectional study we examined whether the haemodynamic response to upright posture could be divided into different functional phenotypes, and whether the observed phenotypes were associated with known determinants of cardiovascular risk.

Methods: Volunteers (n = 470) without medication with cardiovascular effects were examined using radial pulse wave analysis, whole-body impedance cardiography, and heart rate variability analysis. Based on the passive head-up tilt induced changes in systemic vascular resistance and cardiac output, the principal determinants of blood pressure, a cluster analysis was performed.

Results: The haemodynamic response could be clustered into 3 categories: upright increase in vascular resistance and decrease in cardiac output were greatest in the first (+45 % and -27 %, respectively), smallest in the second (+2 % and -2 %, respectively), and intermediate (+22 % and -13 %, respectively) in the third group. These groups were named as 'constrictor' (n = 109), 'sustainer' (n = 222), and 'intermediate' (n = 139) phenotypes, respectively. The sustainers were characterized by male predominance, higher body mass index, blood pressure, and also by higher pulse wave velocity, an index of large arterial stiffness, than the other groups (p < 0.01 for all). Heart rate variability analysis showed higher supine and upright low frequency/high frequency (LF/HF) ratio in the sustainers than constrictors, indicating increased sympathovagal balance. Upright LF/HF ratio was also higher in the sustainer than intermediate group. In multivariate analysis, independent explanatory factors for higher pulse wave velocity were the sustainer (p < 0.022) and intermediate phenotypes (p < 0.046), age (p < 0.001), body mass index (p < 0.001), and hypertension (p < 0.001).

Conclusions: The response to upright posture could be clustered to 3 functional phenotypes. The sustainer phenotype, with smallest upright decrease in cardiac output and highest sympathovagal balance, was independently associated with increased large arterial stiffness. These results indicate an association of the functional haemodynamic phenotype with an acknowledged marker of cardiovascular risk.

Trial registration: ClinicalTrials.gov NCT01742702.

Keywords: Arterial stiffness; Cardiac output; Head-up tilt; Heart rate; Systemic vascular resistance.

Figures

Fig. 1
Fig. 1
Clustering to phenotypes. Cluster dendrogram according to hierarchical clustering using Ward’s criterion for the squared Euclidean distances. Dashed line indicates the cut-off point for the three phenotypic clusters (I, II and III). The classification was based on the changes in systemic vascular resistance index and cardiac index in response to passive head-up tilt (n = 470)
Fig. 2
Fig. 2
Average haemodynamics during the head-up tilt protocol. Average radial systolic (a) and diastolic (b) blood pressure, systemic vascular resistance index (c), and cardiac index (d) during the 15-min measurement protocol (5 min supine – 5 min upright – 5 min supine) in all subjects (n = 470). Mean ± 95 % confidence interval
Fig. 3
Fig. 3
Haemodynamics in the 3 phenotypes in response to upright posture. Systemic vascular resistance index and cardiac index during the measurement protocol, respectively, in the constrictor (a, d), intermediate (b, e), and sustainer phenotypes (c, f). Mean (bold line) and individual curves (grey lines)
Fig. 4
Fig. 4
Arterial stiffness in the 3 phenotypes. Boxplots depicting supine pulse wave velocity in the constrictor, intermediate and sustainer phenotypes. Median (line inside box), 25th to 75th percentile (box), range (+), and outliers (open circles); *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 5
Fig. 5
Heart rate variability in the 3 phenotypes. Boxplots depicting low frequency (LF) power (a), high frequency (HF) power (b), and LF/HF ratio (c) of heart rate variability in supine and upright positions. Median (line inside box), 25th to 75th percentile (box), and range (whiskers); *p < 0.05, **p < 0.01, ***p < 0.001

References

    1. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–60. doi: 10.1016/S0140-6736(02)11403-6.
    1. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987–1003. doi: 10.1016/S0195-668X(03)00114-3.
    1. Wilson PW, Castelli WP, Kannel WB. Coronary risk prediction in adults. The Framingham Heart Study. Am J Cardiol. 1987;59:91G–4G. doi: 10.1016/0002-9149(87)90165-2.
    1. Smith P, Tuomisto MT, Blumenthal J, Sherwood A, Parkkinen L, Kahonen M, et al. Psychosocial correlates of atrial natriuretic peptide: a marker of vascular health. Ann Behav Med. 2013;45:99–109. doi: 10.1007/s12160-012-9414-1.
    1. Hodgkinson J, Mant J, Martin U, Guo B, Hobbs FD, Deeks JJ, et al. Relative effectiveness of clinic and home blood pressure monitoring compared with ambulatory blood pressure monitoring in diagnosis of hypertension: systematic review. BMJ. 2011;342:d3621. doi: 10.1136/bmj.d3621.
    1. Leino J, Minkkinen M, Nieminen T, Lehtimaki T, Viik J, Lehtinen R, et al. Combined assessment of heart rate recovery and T-wave alternans during routine exercise testing improves prediction of total and cardiovascular mortality: the Finnish Cardiovascular Study. Heart Rhythm. 2009;6:1765–71. doi: 10.1016/j.hrthm.2009.08.015.
    1. Omvik P, Gerdts E, Myking OL, Lund-Johansen P. Long-term central hemodynamic effects at rest and during exercise of losartan in essential hypertension. Am Heart J. 2000;140:624–30. doi: 10.1067/mhj.2000.109919.
    1. Luke RG. Chronic renal failure--a vasculopathic state. N Engl J Med. 1998;339:841–3. doi: 10.1056/NEJM199809173391211.
    1. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41. doi: 10.1161/01.HYP.37.5.1236.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605. doi: 10.1093/eurheartj/ehl254.
    1. Safar H, Mourad JJ, Safar M, Blacher J. Aortic pulse wave velocity, an independent marker of cardiovascular risk. Arch Mal Coeur Vaiss. 2002;95:1215–8.
    1. Tahvanainen A, Leskinen M, Koskela J, Ilveskoski E, Nordhausen K, Oja H, et al. Ageing and cardiovascular responses to head-up tilt in healthy subjects. Atherosclerosis. 2009;207:445–51. doi: 10.1016/j.atherosclerosis.2009.06.001.
    1. Sung SH, Chen ZY, Tseng TW, Lu DY, Yu WC, Cheng HM, et al. Wave reflections, arterial stiffness, and orthostatic hypotension. Am J Hypertens. 2014;27:1446–55. doi: 10.1093/ajh/hpu063.
    1. Kasagi F, Akahoshi M, Shimaoka K. Relation between cold pressor test and development of hypertension based on 28-year follow-up. Hypertension. 1995;25:71–6. doi: 10.1161/01.HYP.25.1.71.
    1. Tsumura K, Hayashi T, Hamada C, Endo G, Fujii S, Okada K. Blood pressure response after two-step exercise as a powerful predictor of hypertension: the Osaka Health Survey. J Hypertens. 2002;20:1507–12. doi: 10.1097/00004872-200208000-00012.
    1. Avolio A, Parati G. Reflecting on posture. J Hypertens. 2011;29:655–7. doi: 10.1097/HJH.0b013e328345852a.
    1. Tikkakoski AJ, Tahvanainen AM, Leskinen MH, Koskela JK, Haring A, Viitala J, et al. Hemodynamic alterations in hypertensive patients at rest and during passive head-up tilt. J Hypertens. 2013;31:906–15. doi: 10.1097/HJH.0b013e32835ed605.
    1. Hautaniemi EJ, Tikkakoski AJ, Tahvanainen A, Nordhausen K, Kahonen M, Mattsson T, et al. Effect of fermented milk product containing lactotripeptides and plant sterol esters on haemodynamics in subjects with the metabolic syndrome--a randomised, double-blind, placebo-controlled study. Br J Nutr. 2015;114:376–86. doi: 10.1017/S0007114515002032.
    1. Koskela JK, Tahvanainen A, Haring A, Tikkakoski AJ, Ilveskoski E, Viitala J, et al. Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects. BMC Cardiovasc Disord. 2013;13:102. doi: 10.1186/1471-2261-13-102.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Tahvanainen A, Koskela J, Tikkakoski A, Lahtela J, Leskinen M, Kahonen M, et al. Analysis of cardiovascular responses to passive head-up tilt using continuous pulse wave analysis and impedance cardiography. Scand J Clin Lab Invest. 2009;69:128–37. doi: 10.1080/00365510802439098.
    1. Tahvanainen AM, Tikkakoski AJ, Leskinen MH, Nordhausen K, Kähönen M, Kööbi T, et al. Supine and upright haemodynamic effects of sublingual nitroglycerin and inhaled salbutamol: a double-blind, placebo-controlled, randomized study. J Hypertens. 2012;30:297–306. doi: 10.1097/HJH.0b013e32834e4b26.
    1. Kööbi T, Kaukinen S, Ahola T, Turjanmaa VM. Non-invasive measurement of cardiac output: whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods. Intensive Care Med. 1997;23:1132–7. doi: 10.1007/s001340050469.
    1. Kööbi T, Kaukinen S, Turjanmaa VM, Uusitalo AJ. Whole-body impedance cardiography in the measurement of cardiac output. Crit Care Med. 1997;25:779–85. doi: 10.1097/00003246-199705000-00012.
    1. Kööbi T, Kähönen M, Iivainen T, Turjanmaa V. Simultaneous non-invasive assessment of arterial stiffness and haemodynamics - a validation study. Clin Physiol Funct Imaging. 2003;23:31–6. doi: 10.1046/j.1475-097X.2003.00465.x.
    1. Koivistoinen T, Kööbi T, Jula A, Hutri-Kähönen N, Raitakari OT, Majahalme S, et al. Pulse wave velocity reference values in healthy adults aged 26-75 years. Clin Physiol Funct Imaging. 2007;27:191–6. doi: 10.1111/j.1475-097X.2007.00734.x.
    1. Peltola MA. Role of editing of R-R intervals in the analysis of heart rate variability. Front Physiol. 2012;3:148. doi: 10.3389/fphys.2012.00148.
    1. Malik M, Bigger T, Camm J, Kleiger R, Malliani A, Moss A, et al. (Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrofysiology). Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Eur Heart J. 1996;17:354–81. doi: 10.1093/oxfordjournals.eurheartj.a014868.
    1. Boer P, Roos JC, Geyskes GG, Mees EJ. Measurement of cardiac output by impedance cardiography under various conditions. Am J Physiol. 1979;237:H491–6.
    1. R: A language and environment for statistical computing []
    1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) J Hypertens. 2013;31:1281–357. doi: 10.1097/.
    1. Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R. Heart rate variability today. Prog Cardiovasc Dis. 2012;55:321–31. doi: 10.1016/j.pcad.2012.09.001.
    1. Aerts AJ. Nitrate stimulated tilt table testing: a review of the literature. Pacing Clin Electrophysiol. 2003;26:1528–37. doi: 10.1046/j.1460-9592.2003.t01-1-00222.x.
    1. Oraii S, Maleki M, Minooii M, Kafaii P. Comparing two different protocols for tilt table testing: sublingual glyceryl trinitrate versus isoprenaline infusion. Heart. 1999;81:603–5. doi: 10.1136/hrt.81.6.603.
    1. de Liefde I, Welten GM, Verhagen HJ, van Domburg RT, Stolker RJ, Poldermans D. Exercise blood pressure response and perioperative complications after major vascular surgery. Coron Artery Dis. 2011;22:228–32. doi: 10.1097/MCA.0b013e328345000e.
    1. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106:2085–90. doi: 10.1161/01.CIR.0000033824.02722.F7.
    1. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11. doi: 10.1161/CIRCULATIONAHA.109.886655.
    1. Bouthier JD, De Luca N, Safar ME, Simon AC. Cardiac hypertrophy and arterial distensibility in essential hypertension. Am Heart J. 1985;109:1345–52. doi: 10.1016/0002-8703(85)90364-3.
    1. Wildman RP, Mackey RH, Bostom A, Thompson T, Sutton-Tyrrell K. Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension. 2003;42:468–73. doi: 10.1161/.
    1. The Reference Values for Arterial Stiffness’ Collaboration Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31:2338–50. doi: 10.1093/eurheartj/ehq165.
    1. Matsukawa T, Sugiyama Y, Watanabe T, Kobayashi F, Mano T. Gender difference in age-related changes in muscle sympathetic nerve activity in healthy subjects. Am J Physiol. 1998;275:R1600–4.
    1. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3. doi: 10.1161/01.HYP.25.4.560.
    1. Mark AL. The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens. 1996;14(suppl):S159–65.
    1. Pal GK, Adithan C, Ananthanarayanan PH, Pal P, Nanda N, Thiyagarajan D, et al. Association of sympathovagal imbalance with cardiovascular risks in young prehypertensives. Am J Cardiol. 2013;112:1757–62. doi: 10.1016/j.amjcard.2013.07.040.
    1. Jaiswal M, Urbina EM, Wadwa RP, Talton JW, D’Agostino RB, Jr, Hamman RF, et al. Reduced heart rate variability is associated with increased arterial stiffness in youth with type 1 diabetes: the SEARCH CVD study. Diabetes Care. 2013;36:2351–8. doi: 10.2337/dc12-0923.
    1. Cardoso CR, Moraes RA, Leite NC, Salles GF. Relationships between reduced heart rate variability and pre-clinical cardiovascular disease in patients with type 2 diabetes. Diabetes Res Clin Pract. 2014;106:110–7. doi: 10.1016/j.diabres.2014.07.005.
    1. Chandra P, Sands RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, et al. Relationship between heart rate variability and pulse wave velocity and their association with patient outcomes in chronic kidney disease. Clin Nephrol. 2014;81:9–19. doi: 10.5414/CN108020.
    1. Mattace-Raso FU, van den Meiracker AH, Bos WJ, van der Cammen TJ, Westerhof BE, Elias-Smale S, et al. Arterial stiffness, cardiovagal baroreflex sensitivity and postural blood pressure changes in older adults: the Rotterdam Study. J Hypertens. 2007;25:1421–6. doi: 10.1097/HJH.0b013e32811d6a07.
    1. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–14. doi: 10.1161/CIRCRESAHA.114.302524.
    1. Kornet L, Hoeks AP, Janssen BJ, Willigers JM, Reneman RS. Carotid diameter variations as a non-invasive tool to examine cardiac baroreceptor sensitivity. J Hypertens. 2002;20:1165–73. doi: 10.1097/00004872-200206000-00029.
    1. Gatzka CD, Kingwell BA, Cameron JD, Berry KL, Liang YL, Dewar EM, et al. Gender differences in the timing of arterial wave reflection beyond differences in body height. J Hypertens. 2001;19:2197–203. doi: 10.1097/00004872-200112000-00013.
    1. Shoemaker JK, Hogeman CS, Khan M, Kimmerly DS, Sinoway LI. Gender affects sympathetic and hemodynamic response to postural stress. Am J Physiol Heart Circ Physiol. 2001;281:H2028–35.
    1. Summers RL, Platts S, Myers JG, Coleman TG. Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight. Theor Biol Med Model. 2010;7:8. doi: 10.1186/1742-4682-7-8.
    1. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95:1827–36. doi: 10.1161/01.CIR.95.7.1827.
    1. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8. doi: 10.1097/HJH.0b013e32834fa8b0.
    1. Peltonen M, Harald K, Männistö S, Saarikoski L, Peltomäki P, Lund L, et al. The National FINRISK 2007 Study. Publications of the National Public Health Institute, B34/2008 (with English summary). 2008;.
    1. Wolf HK, Tuomilehto J, Kuulasmaa K, Domarkiene S, Cepaitis Z, Molarius A, et al. Blood pressure levels in the 41 populations of the WHO MONICA Project. J Hum Hypertens. 1997;11:733–42. doi: 10.1038/sj.jhh.1000531.

Source: PubMed

3
Subskrybuj