Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects

Jenni K Koskela, Anna Tahvanainen, Antti Haring, Antti J Tikkakoski, Erkki Ilveskoski, Jani Viitala, Miia H Leskinen, Terho Lehtimäki, Mika Ap Kähönen, Tiit Kööbi, Onni Niemelä, Jukka T Mustonen, Ilkka H Pörsti, Jenni K Koskela, Anna Tahvanainen, Antti Haring, Antti J Tikkakoski, Erkki Ilveskoski, Jani Viitala, Miia H Leskinen, Terho Lehtimäki, Mika Ap Kähönen, Tiit Kööbi, Onni Niemelä, Jukka T Mustonen, Ilkka H Pörsti

Abstract

Background: High resting heart rate (HR) is associated with increased cardiovascular risk in general populations, possibly due to elevated blood pressure (BP) or sympathetic over-activity. We studied the association of resting HR with cardiovascular function, and examined whether the hemodynamics remained similar during passive head-up tilt.

Methods: Hemodynamics were recorded using whole-body impedance cardiography and continuous radial pulse wave analysis in 522 subjects (age 20-72 years, 261 males) without medication influencing HR or BP, or diagnosed diabetes, coronary artery, renal, peripheral arterial, or cerebrovascular disease. Correlations were calculated, and results analysed according to resting HR tertiles.

Results: Higher resting HR was associated with elevated systolic and diastolic BP, lower stroke volume but higher cardiac output and work, and lower systemic vascular resistance, both supine and upright (p < 0.05 for all). Subjects with higher HR also showed lower supine and upright aortic pulse pressure and augmentation index, and increased resting pulse wave velocity (p < 0.001). Upright stroke volume decreased less in subjects with highest resting HR (p < 0.05), and cardiac output decreased less in subjects with lowest resting HR (p < 0.009), but clear hemodynamic differences between the tertiles persisted both supine and upright.

Conclusions: Supine and upright hemodynamic profile associated with higher resting HR is characterized by higher cardiac output and lower systemic vascular resistance. Higher resting HR was associated with reduced central wave reflection, in spite of elevated BP and arterial stiffness. The increased cardiac workload, higher BP and arterial stiffness, may explain why higher HR is associated with less favourable prognosis in populations.

Trial registration: ClinicalTrials.gov NCT01742702.

Figures

Figure 1
Figure 1
Radial blood pressures during rest and passive head-up tilt according to resting heart rate tertiles. (A) Systolic blood pressure, (B) diastolic blood pressure; mean (95% confidence intervals), p values denote significant differences between the tertiles depicted with different symbols.
Figure 2
Figure 2
Principal hemodynamic variables during rest and passive head-up tilt according to resting heart rate tertiles. (A) Heart rate, (B) stroke index, (C) cardiac index, (D) left cardiac work index, (E) systemic vascular resistance index; mean (95% confidence intervals).
Figure 3
Figure 3
Central pulse pressure and wave reflection during rest and passive head-up tilt according to resting heart rate tertiles. (A) Aortic pulse pressure, (B) augmentation index; mean (95% confidence intervals).
Figure 4
Figure 4
Pulse wave velocity according to resting heart rate tertiles; mean (95% confidence intervals), *p < 0.001 vs. tertile 1.
Figure 5
Figure 5
Evaluation of stroke volume in 16 subjects during passive head-up tilt using echocardiography (Echo) and impedance cardiography (ICG). (A) Comparison of stroke volume measurements mean (95% confidence intervals). (B) Scatterplot depicting the measurements in each individual.

References

    1. Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA. Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J. 1987;113(6):1489–1494. doi: 10.1016/0002-8703(87)90666-1.
    1. Palatini P, Benetos A, Grassi G, Julius S, Kjeldsen SE, Mancia G, Narkiewicz K, Parati G, Pessina AC, Ruilope LM. et al.Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting. J Hypertens. 2006;24(4):603–610. doi: 10.1097/01.hjh.0000217838.49842.1e.
    1. Reunanen A, Karjalainen J, Ristola P, Heliövaara M, Knekt P, Aromaa A. Heart rate and mortality. J Intern Med. 2000;247(2):231–239. doi: 10.1046/j.1365-2796.2000.00602.x.
    1. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med. 2005;352(19):1951–1958. doi: 10.1056/NEJMoa043012.
    1. Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J. 2010;159(4):612–619. doi: 10.1016/j.ahj.2009.12.029. e613.
    1. Fernandes RA, Freitas Junior IF, Codogno JS, Christofaro DG, Monteiro HL, Roberto Lopes DM. Resting heart rate is associated with blood pressure in male children and adolescents. J Pediatr. 2011;158(4):634–637. doi: 10.1016/j.jpeds.2010.10.007.
    1. Julius S, Palatini P, Kjeldsen SE, Zanchetti A, Weber MA, McInnes GT, Brunner HR, Mancia G, Schork MA, Hua TA. et al.Usefulness of heart rate to predict cardiac events in treated patients with high-risk systemic hypertension. Am J Cardiol. 2012;109(5):685–692. doi: 10.1016/j.amjcard.2011.10.025.
    1. Gillman MW, Kannel WB, Belanger A, D’Agostino RB. Influence of heart rate on mortality among persons with hypertension: the Framingham Study. Am Heart J. 1993;125(4):1148–1154. doi: 10.1016/0002-8703(93)90128-V.
    1. Diaz A, Bourassa MG, Guertin MC, Tardif JC. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J. 2005;26(10):967–974. doi: 10.1093/eurheartj/ehi190.
    1. Kjekshus JK. Importance of heart rate in determining beta-blocker efficacy in acute and long-term acute myocardial infarction intervention trials. Am J Cardiol. 1986;57(12):43F–49F. doi: 10.1016/0002-9149(86)90888-X.
    1. Boissel JP, Leizorovicz A, Picolet H, Peyrieux JC. Secondary prevention after high-risk acute myocardial infarction with low-dose acebutolol. Am J Cardiol. 1990;66(3):251–260. doi: 10.1016/0002-9149(90)90831-K.
    1. Kolloch R, Legler UF, Champion A, Cooper-Dehoff RM, Handberg E, Zhou Q, Pepine CJ. Impact of resting heart rate on outcomes in hypertensive patients with coronary artery disease: findings from the INternational VErapamil-SR/trandolapril STudy (INVEST) Eur Heart J. 2008;29(10):1327–1334.
    1. Williams B, Lacy PS. Impact of heart rate on central aortic pressures and hemodynamics: analysis from the CAFE (Conduit Artery Function Evaluation) study: CAFE-Heart Rate. J Am Coll Cardiol. 2009;54(8):705–713. doi: 10.1016/j.jacc.2009.02.088.
    1. Bangalore S, Steg G, Deedwania P, Crowley K, Eagle KA, Goto S, Ohman EM, Cannon CP, Smith SC, Zeymer U. beta-Blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA. 2012;308(13):1340–1349. doi: 10.1001/jama.2012.12559.
    1. Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, Steg PG, Tardif JC, Tavazzi L, Tendera M. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50(9):823–830. doi: 10.1016/j.jacc.2007.04.079.
    1. Verrier RL, Tan A. Heart rate, autonomic markers, and cardiac mortality. Heart Rhythm. 2009;6(11 Suppl):S68–S75.
    1. Huikuri HV, Jokinen V, Syvänne M, Nieminen MS, Airaksinen KE, Ikäheimo MJ, Koistinen JM, Kauma H, Kesäniemi AY, Majahalme S. et al.Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1999;19(8):1979–1985. doi: 10.1161/01.ATV.19.8.1979.
    1. Rubin J, Blaha MJ, Budoff MJ, Rivera JJ, Shaw LJ, Blankstein R, Mallah MA, Carr JJ, Jones DL, Blumenthal RS. et al.The relationship between resting heart rate and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA) Atherosclerosis. 2012;220(1):194–200. doi: 10.1016/j.atherosclerosis.2011.06.033.
    1. Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39(6):1083–1087. doi: 10.1161/01.HYP.0000019132.41066.95.
    1. Albaladejo P, Laurent P, Pannier B, Achimastos A, Safar M, Benetos A. Influence of sex on the relation between heart rate and aortic stiffness. J Hypertens. 2003;21(3):555–562. doi: 10.1097/00004872-200303000-00021.
    1. Chen W, Srinivasan SR, Berenson GS. Differential impact of heart rate on arterial wall stiffness and thickness in young adults: The Bogalusa Heart Study. J Am Soc Hypertens. 2008;2(3):152–157. doi: 10.1016/j.jash.2007.10.008.
    1. Park BJ, Lee HR, Shim JY, Lee JH, Jung DH, Lee YJ. Association between resting heart rate and arterial stiffness in Korean adults. Arch Cardiovasc Dis. 2010;103(4):246–252. doi: 10.1016/j.acvd.2010.03.004.
    1. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50(1):1–13. doi: 10.1016/j.jacc.2006.12.050.
    1. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525(Pt 1):263–270.
    1. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, Eber B. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109(2):184–189. doi: 10.1161/01.CIR.0000105767.94169.E3.
    1. Sugawara J, Komine H, Hayashi K, Maeda S, Matsuda M. Relationship between augmentation index obtained from carotid and radial artery pressure waveforms. J Hypertens. 2007;25(2):375–381. doi: 10.1097/HJH.0b013e32801092ae.
    1. Black HR, Greenberg BH, Weber MA. The foundation role of beta blockers across the cardiovascular disease spectrum: a year 2009 update. Am J Med. 2010;123(11):S2. doi: 10.1016/j.amjmed.2010.08.003.
    1. Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004;141(12):929–937. doi: 10.7326/0003-4819-141-12-200412210-00009.
    1. Kööbi T. Non-invasive cardiac output determination: state of the art. Curr Opin Anaesthesiol. 1999;12(1):9–13. doi: 10.1097/00001503-199902000-00003.
    1. Kööbi T, Kähönen M, Iivainen T, Turjanmaa V. Simultaneous non-invasive assessment of arterial stiffness and haemodynamics - a validation study. Clin Physiol Funct Imaging. 2003;23(1):31–36. doi: 10.1046/j.1475-097X.2003.00465.x.
    1. Kööbi T, Kaukinen S, Turjanmaa VM, Uusitalo AJ. Whole-body impedance cardiography in the measurement of cardiac output. Crit Care Med. 1997;25(5):779–785. doi: 10.1097/00003246-199705000-00012.
    1. Gorlin R, Mc MI, Medd WE, Matthews MB, Daley R. Dynamics of the circulation in aortic valvular disease. Am J Med. 1955;18(6):855–870. doi: 10.1016/0002-9343(55)90169-8.
    1. British-Standards-Institution. Precicion of test methods 1: Guide for the determination and reproducability for a standard test method (BS 5497) London: British Standards Institution; 1979.
    1. Tahvanainen A, Koskela J, Tikkakoski A, Lahtela J, Leskinen M, Kähönen M, Nieminen T, Kööbi T, Mustonen J, Pörsti I. Analysis of cardiovascular responses to passive head-up tilt using continuous pulse wave analysis and impedance cardiography. Scand J Clin Lab Invest. 2009;69(1):128–137. doi: 10.1080/00365510802439098.
    1. Tahvanainen AM, Tikkakoski AJ, Leskinen MH, Nordhausen K, Kahonen M, Koobi T, Mustonen JT, Porsti IH. Supine and upright haemodynamic effects of sublingual nitroglycerin and inhaled salbutamol: a double-blind, placebo-controlled, randomized study. J Hypertens. 2012;30(2):297–306. doi: 10.1097/HJH.0b013e32834e4b26.
    1. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95(7):1827–1836. doi: 10.1161/01.CIR.95.7.1827.
    1. Avolio A, Parati G. Reflecting on posture. J Hypertens. 2011;29(4):655–657. doi: 10.1097/HJH.0b013e328345852a.
    1. Tikkakoski AJ, Tahvanainen AM, Leskinen MH, Koskela JK, Haring A, Viitala J, Kähönen MA, Kööbi T, Niemelä O, Mustonen JT. et al.Hemodynamic alterations in hypertensive patients at rest and during passive head-up tilt. J Hypertens. 2013;31(5):906–915. doi: 10.1097/HJH.0b013e32835ed605.
    1. Palatini P, Julius S. Heart rate and the cardiovascular risk. J Hypertens. 1997;15(1):3–17. doi: 10.1097/00004872-199715010-00001.
    1. Magder SA. The ups and downs of heart rate. Crit Care Med. 2012;40(1):239–245. doi: 10.1097/CCM.0b013e318232e50c.
    1. Tanaka N, Nozawa T, Yasumura Y, Futaki S, Hiramori K, Suga H. Heart-rate-proportional oxygen consumption for constant cardiac work in dog heart. Jpn J Physiol. 1990;40(4):503–521. doi: 10.2170/jjphysiol.40.503.
    1. Palatini P, Julius S. Elevated heart rate: a major risk factor for cardiovascular disease. Clin Exp Hypertens. 2004;26(7–8):637–644.
    1. Palatini P. Role of elevated heart rate in the development of cardiovascular disease in hypertension. Hypertension. 2011;58(5):745–750. doi: 10.1161/HYPERTENSIONAHA.111.173104.
    1. Grassi G. Sympathetic neural activity in hypertension and related diseases. Am J Hypertens. 2010;23(10):1052–1060. doi: 10.1038/ajh.2010.154.
    1. Julius S, Esler MD, Randall OS. Role of the autonomic nervous system in mild human hypertension. Clin Sci Mol Med Suppl. 1975;2:243s–252s.
    1. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, Levy T, Cockcroft JR. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15(1 Pt 1):24–30.
    1. Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension. 2005;45(2):222–226. doi: 10.1161/01.HYP.0000154229.97341.d2.
    1. Sa Cunha R, Pannier B, Benetos A, Siche JP, London GM, Mallion JM, Safar ME. Association between high heart rate and high arterial rigidity in normotensive and hypertensive subjects. J Hypertens. 1997;15(12 Pt 1):1423–1430.
    1. Nurnberger J, Opazo Saez A, Dammer S, Mitchell A, Wenzel RR, Philipp T, Schafers RF. Left ventricular ejection time: a potential determinant of pulse wave velocity in young, healthy males. J Hypertens. 2003;21(11):2125–2132. doi: 10.1097/00004872-200311000-00022.
    1. Dart AM, Kingwell BA. Pulse pressure–a review of mechanisms and clinical relevance. J Am Coll Cardiol. 2001;37(4):975–984. doi: 10.1016/S0735-1097(01)01108-1.
    1. Plichart M, Thomas F, Empana JP, Bean K, Perier MC, Celermajer DS, Hanon O, Danchin N, Pannier B, Jouven X. Gender-specific trends in heart rate in the general population from 1992–2007: a study of 226,288 French adults. Eur J Prev Cardiolog. 2013;20(1):61–72.
    1. Peltonen M, Harald K, Männistö S, Saarikoski L, Peltomäki P, Lund L, Sundvall J, Juolevi A, Laatikainen T, Aldén-Nieminen H, Kansallinen Finriski 2007 -terveystutkimus Tutkimuksen toteutus ja tulokset. Kansanterveyslaitoksen julkaisuja B 34/2008. Yliopistopaino: Helsinki; 2008.
    1. Sharman JE, Lim R, Qasem AM, Coombes JS, Burgess MI, Franco J, Garrahy P, Wilkinson IB, Marwick TH. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension. 2006;47(6):1203–1208. doi: 10.1161/01.HYP.0000223013.60612.72.
    1. Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972;30(1):67–81. doi: 10.1161/01.RES.30.1.67.

Source: PubMed

3
Subskrybuj