A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies

Rogier W Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de Los Reyes, Thomas J Ketas, Marit J van Gils, C Richter King, Ian A Wilson, Andrew B Ward, P J Klasse, John P Moore, Rogier W Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de Los Reyes, Thomas J Ketas, Marit J van Gils, C Richter King, Ian A Wilson, Andrew B Ward, P J Klasse, John P Moore

Abstract

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.

Conflict of interest statement

I have read the journal's policy and have the following conflicts: A patent application on BG505 SOSIP.664 gp140. This does not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

Figures

Figure 1. Design and biochemical characterization of…
Figure 1. Design and biochemical characterization of BG505 SOSIP.664 gp140 trimers.
(A) Linear representation of the BG505 gp160, SOSIP.664 gp140, SOSIP.664-D7324 gp140 and gp120-D7324 Env proteins. Modifications compared to the original BG505 gp160 sequence are indicated in red and mentioned in the text. The following changes were made to the wild type BG505 amino acid sequence: 1) The tissue plasminogen activator (tPA) signal peptide replaced the natural one; 2) the gp41 transmembrane (TM) and cytoplasmic tail (CT) domains were deleted to create a soluble gp140; 3) the A501C and T605C substitutions were made to form a disulfide bond between gp120 and gp41ECTO ; 4) the I559P substitution was included to promote trimerization , ; 5) an optimal cleavage site (RRRRRR; R6) replaces the natural one, REKR ; 6) truncation of the MPER from residue-664 prevents aggregation , ; 7) the T332N substitution facilitates binding of bNAbs dependent on glycan-N332. The D7324- and His-tags are indicated in yellow. Env sub-domains are indicated: 5 conserved domains (C1–C5); 5 variable domains (V1–V5); heptad repeats 1 and 2 (HR1, HR2); the membrane proximal external region (MPER); the transmembrane domain (TM); and the cytoplasmic tail (CT). The glycan assignments in Env are based on previous studies using gp120 , , , but may be different for trimeric Env . The amino acid sequence of BG505 SOSIP.664 is given in Fig. S1. (B) SEC profile of 2G12-purified BG505 SOSIP.664 gp140 expressed in CHO-K1 cells. A Superdex 200 26/60 column was used. (C) Analytical SEC profile of 2G12/SEC-purified BG505 SOSIP.664 trimer re-run on a Superose 6 10/30 column. (D) BN-PAGE analysis of CHO-K1 expressed, 2G12-purified BG505 SOSIP.664 gp140, stained by Coomassie blue. The m.w. of marker (M) proteins (thyroglobulin and ferritin) are indicated. (E) BN-PAGE analysis of 2G12/SEC-purified BG505 SOSIP.664 gp140, stained by Coomassie blue. (F) SDS-PAGE analysis using a 4–12% Bis-Tris Nu-PAGE gel of 2G12/SEC-purified BG505 SOSIP.664 gp140, under non-reducing and reducing conditions, followed by Coomassie blue staining. (G) SDS-PAGE analysis using a 10% Tris-Glycine gel of 2G12/SEC-purified BG505 SOSIP.664 gp140, under non-reducing and reducing conditions, followed by silver staining. The conversion of the gp140 band to gp120 and the appearance of a gp41ECTO band under reducing conditions is indicative of cleavage.
Figure 2. Biophysical characterization of BG505 SOSIP.664…
Figure 2. Biophysical characterization of BG505 SOSIP.664 gp140 trimers.
DSC analysis of (A) purified BG505 SOSIP.664 gp140 trimers and (B) purified BG505 gp120 monomers. The melting profiles show that the trimer has a higher degree of stability than its monomeric counterpart, as its thermal transitions are initiated at a 14.4°C higher temperature. Raw data are shown in black, while the fitted curves from which Tm values were obtained are in red. (C) EM reconstruction of the BG505 SOSIP.664 gp140 trimer at 24-Å resolution. The 2D class averages and a Fourier Shell Correlation (FSC) curve are shown in Fig. S2.
Figure 3. BG505.T332N virus neutralization and ELISA…
Figure 3. BG505.T332N virus neutralization and ELISA binding to BG505 SOSIP.664 gp140 trimers by bNAbs or non-NAbs.
Midpoint neutralization concentrations (IC50, in ng/ml) were derived from single cycle experiments involving Env-pseudovirus infection of TZM-bl cells. The values represent the averages of 2–5 independent titration experiments, each performed in duplicate, with the standard error recorded. Half-maximal binding concentrations (EC50, in ng/ml) were derived from D7324-capture ELISAs. The values represent the averages of 2–6 independent single titration experiments, with the standard error recorded.
Figure 4. BG505 SOSIP.664 gp140 antigenicity by…
Figure 4. BG505 SOSIP.664 gp140 antigenicity by ELISA with bNAbs.
(A) Schematic representation of D7324-capture ELISAs using BG505 gp120-D7324 monomers and/or SOSIP.664-D7324 gp140 trimers. (B) Representative binding curves of bNAbs VRC01, VRC03, VRC06, VRC06b, PGV04, 3BNC117, 12A12, 45–46, 45–46W, 1NC9, 8ANC195, CH31, CH103, CH106, PGT121, PGT123, PGT125, PGT126, PGT128, PGT130, and also CD4-IgG2, to purified BG505 SOSIP.664-D7324 gp140 trimers. (C) Representative binding curves of bNAb 3BC315 with purified BG505 SOSIP.664-D7324 gp140 trimers and gp120-D7324 monomers. (D) Representative binding curves of quaternary structure dependent bNAbs PG9, PG16, CH01 and PGT145 to purified BG505 SOSIP.664-D7324 gp140 trimers and gp120-D7324 monomers. The legend is the same as for panel C. (E) BG505 SOSIP.664-D7324 gp140 trimers were 2G12-affinity purified and fractionated using a Superose 6 10/30 SEC column. The SEC fractions were analyzed for PG9, PG16, PGT145 and b6 binding by D7324-capture ELISA. Note that the scales on the y-axes and x-axes vary from MAb to MAb.
Figure 5. BG505 SOSIP.664 gp140 antigenicity by…
Figure 5. BG505 SOSIP.664 gp140 antigenicity by ELISA with non-bNAbs.
Representative binding curves of: (A) gp120-directed non-NAbs 15e, F91, F105 and b6 to purified BG505 SOSIP.664-D7324 gp140 trimers and gp120-D7324 monomers, with bNAbs 2G12 and PGT128 included as controls. (B) CD4i MAbs 17b, A32 and 412d to purified BG505 SOSIP.664-D7324 gp140 trimers and gp120-D7324 monomers in the absence (open symbols) and presence (closed symbols) of sCD4. (C) gp41-directed non-NAbs 7B2 and F240 to BG505 SOSIP.664-His and WT.664-His ( = gp41ECTO-His) proteins. Both proteins were expressed in the presence of furin, yielding cleaved gp140. The lack of the SOS disulfide bond results in gp120 shedding from gp41ECTO-His, as illustrated by the poor reactivity with VRC01 (left panel). (D) V3 MAbs 39F, 19b and 14e to purified BG505 SOSIP.664-D7324 gp140 trimers and gp120-D7324 monomers. Note that the scales on the y-axes and x-axes vary from MAb to MAb.
Figure 6. Correlation between MAb binding to…
Figure 6. Correlation between MAb binding to BG505 SOSIP.664 gp140 trimers and BG505.T332N neutralization.
The midpoint binding concentrations (EC50) for MAb binding to BG505 SOSIP.664-D7324 gp140 trimers (y-axis) were plotted against the IC50 values for neutralization of the BG505.T332N Env-pseudotype virus (x-axis). The Pearson's correlation coefficient, r, was calculated using Prism software version 5.0. When accurate midpoint concentrations could not be calculated because of lack of binding or neutralization, the highest concentration tested was included in the correlation analysis (i.e., when the IC50 of neutralization was >30,000 ng/ml, a value of 30,000 ng/ml was used). The data points for NAbs are indicated in black, those for non-NAbs in gray. Also note that 11 data points are overlapping in the right upper corner; they were derived using MAbs that neither neutralized the virus nor bound the trimer (IC50 of neutralization >30,000 ng/ml, EC50 in ELISA >10,000 ng/ml). Only MAbs whose epitope could be shown to be present on at least one form of BG505 Env protein were included in this analysis; MAbs that were non-reactive, presumably because of sequence variation, were excluded. The Pearson's correlation was also calculated without the data points for 2G12, 39F, 14e and 19b, as discussed in the text. The fitted line is based on all data, i.e. including 2G12, 39F, 14e and 19b.
Figure 7. BG505 SOSIP.664 gp140 antigenicity by…
Figure 7. BG505 SOSIP.664 gp140 antigenicity by SPR.
BG505 SOSIP.664-His gp140 trimers were immobilized on NTA chips (AD). The sensorgrams show the response (RU) over time (s) using IgGs at 1,000 nM (150,000 ng/ml) (A–C) or Fabs at 500 nM (25,000 ng/ml) (D). The association phase was 300 s and dissociation was followed over 600 s. (A) 2G12 (high), PGT135 (intermediate), PGV04 (high), b6 (marginal), b12 (undetectable) and F240 (undetectable); (B) PG9, PG16, PGT145 (all intermediate); (C) PGT121 (intermediate), PGT123 (high), PGT128 (high), 14e (low); (D) Fabs of PGV04 (intermediate), b6, b12, and F240 (undetectable). (E) In an alternative approach, Env-reactive MAb was captured by anti-Fc Ab on the chip and the responses to BG505 SOSIP.664 gp140 trimers (200 nM; 78,000 ng/ml) were followed: 2G12 (high), PGT128 (high), b6 (low), b12, F240 (undetectable). Each curve represents one of 2–3 similar replicates.
Figure 8. BG505 SOSIP.664 gp140 trimer antigenicity…
Figure 8. BG505 SOSIP.664 gp140 trimer antigenicity by ITC.
The top panels show the raw data and the bottom panel the binding isotherms for representative ITC binding experiments measuring the binding of BG505 SOSIP.664 gp140 trimers to: (A) PGT121 Fab, (B) PGT128 Fab, (C) 2G12 IgG (domain-exchanged). The thermodynamic parameters of binding are listed in Table 1.
Figure 9. BG505 SOSIP.664 gp140 trimer antigenicity…
Figure 9. BG505 SOSIP.664 gp140 trimer antigenicity by negative stain EM.
(A) EM reconstruction of the BG505 SOSIP.664 gp140 trimer in complex with Fab PGV04 at 23 Å resolution. The 2D class averages and the Fourier Shell Correlation (FSC) are shown in Fig. S3. The crystal structure of gp120 in complex with PGV04 (PDB:3SE9; [85]) was fitted into the EM density. (B) EM reconstruction of the BG505 SOSIP.664 gp140 trimer in complex with sCD4 and Fab 17b at 22 Å resolution. The 2D class averages and the Fourier Shell Correlation (FSC) are shown in Fig. S4. The crystal structure of gp120 in complex with sCD4 and 17b (PDB:1RZK; [86]) was fitted into the EM density. (C) Comparison of unliganded BG505 SOSIP.664 gp140 trimers with complexes of the same trimers with PGV04, PGT122, PG9, PGT135, or sCD4 with 17b. The unliganded trimer is shown in mesh. The EM reconstructions of PGT122, PG9, PGT135 with BG505 SOSIP.664 trimers, expressed in HEK293S cells, have been published elsewhere , , .
Figure 10. Negative stain EM data of…
Figure 10. Negative stain EM data of the BG505 SOSIP.664 gp140 trimer in complex with Fabs b6, F240, 14e or 19b.
2D class averages of trimers and trimer∶Fab complexes, with 2D class averages of BG505 SOSIP.664 gp140 with PGV04 shown on the lower left panel for comparison. Examples of complexes are circled. Blue circle: no Fab bound to trimer; yellow circle: one Fab bound; red circle: two Fabs bound; green circle: three Fabs bound. For generating b6 complexes, BG505 SOSIP.664 (44 nM; 17,200 ng/ml) was incubated with Fab b6 (480 nM; 24,000 ng/ml) prior to imaging. For generating F240 complexes, BG505 SOSIP.664 (48 nM; 18,720 ng/ml) was incubated with Fab F240 (860 nM; 43,000 ng/ml) prior to imaging. For generating 14e complexes, BG505 SOSIP.664 (14 nM; 5460 ng/ml) was incubated with Fab 14e (240 nM; 12,000 ng/ml). For generating 19b images, BG505 SOSIP.664 (40 nM; 15,600 ng/ml) was incubated with Fab 19b (600 nM; 30,000 ng/ml). The results are summarized in Table 2.
Figure 11. BG505 SOSIP.664 antigenicity summary for…
Figure 11. BG505 SOSIP.664 antigenicity summary for bNAbs and non-NAbs.
The following scoring was used for neutralization: +: IC50<30,000 ng/ml; −: IC50>30,000 ng/ml. See Table 1 for details. The following scoring was used for SPR analyses: +: >70 RU; +/−: >30 RU, <70 RU; −: <30 RU, based on plateau estimates of 1,000 nM for IgG and 500 nM for Fab. See Fig. 7 for details. In SPR CD4 binding results were obtained with sCD4 not CD4-IgG2. b6 binding was absent with b6 Fab (−) and low with b6 IgG (+/−). The following scoring was used for ITC experiments: +: N>1.2 (except for PG9, PG16 and PGT145 where N>0.4) and Kd<300 nM; −: N<1.2 and Kd>300 nM, where N is the stoichiometry of binding. See Table 1 and Fig. 8 for details. . The following scoring was used for EM analyses: +: N = 3 (except for PG9, PG16 and PGT145 where N = 1) for >50% of the trimers; +/−: N = 3 for <50% of the trimers; −: N = 1,2 or 3 for <10% of the trimers, where N is the number of Fabs bound per trimer. See Table 2, Fig. 9 and Fig. 10 for details. Note that ITC data with PG16 and PGT127 were obtained using BG505 SOSIP.664 trimers produced in GnTI-defective HEK293S cells. No ITC experiments were performed with non-NAbs. The following scoring was used for ELISA experiments: +: EC50<10,000 ng/ml; EC50>10,000 ng/ml. See Figs. 3–5 for details.

References

    1. Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, et al. (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5: 233–236.
    1. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, et al. (2005) Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 191: 654–665.
    1. Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, et al. (2005) Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J Infect Dis 191: 666–677.
    1. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, et al. (2006) Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 194: 1661–1671.
    1. Binley JM, Sanders RW, Clas B, Schuelke N, Master A, et al. (2000) A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J Virol 74: 627–643.
    1. Sanders RW, Vesanen M, Schuelke N, Master A, Schiffner L, et al. (2002) Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol 76: 8875–8889.
    1. Sanders RW (2011) Clinical evaluation of a soluble trimeric HIV-1 envelope glycoprotein vaccine. Expert Rev Vaccines 10: 1117–1120.
    1. Forsell MN, Schief WR, Wyatt RT (2009) Immunogenicity of HIV-1 envelope glycoprotein oligomers. Curr Opin HIV AIDS 4: 380–387.
    1. Earl PL, Broder CC, Long D, Lee SA, Peterson J, et al. (1994) Native oligomeric human immunodeficiency virus type 1 envelope glycoprotein elicits diverse monoclonal antibody reactivities. J Virol 68: 3015–3026.
    1. Earl PL, Sugiura W, Montefiori DC, Broder CC, Lee SA, et al. (2001) Immunogenicity and protective efficacy of oligomeric human immunodeficiency virus type 1 gp140. J Virol 75: 645–653.
    1. Gao F, Weaver EA, Lu Z, Li Y, Liao HX, et al. (2005) Antigenicity and immunogenicity of a synthetic human immunodeficiency virus type 1 group m consensus envelope glycoprotein. J Virol 79: 1154–1163.
    1. Kovacs JM, Nkolola JP, Peng H, Cheung A, Perry J, et al. (2012) HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc Natl Acad Sci U S A 109: 12111–12116.
    1. Nkolola JP, Peng H, Settembre EC, Freeman M, Grandpre LE, et al. (2011) Breadth of neutralizing antibodies elicited by stable, homogeneous clade A and clade C HIV-1 gp140 envelope trimers in guinea pigs. J Virol 84: 3270–3279.
    1. Spearman P, Lally MA, Elizaga M, Montefiori D, Tomaras GD, et al. (2011) A trimeric, V2-deleted HIV-1 envelope glycoprotein vaccine elicits potent neutralizing antibodies but limited breadth of neutralization in human volunteers. J Infect Dis 203: 1165–1173.
    1. Srivastava IK, Stamatatos L, Kan E, Vajdy M, Lian Y, et al. (2003) Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J Virol 77: 11244–11259.
    1. Yang X, Farzan M, Wyatt R, Sodroski J (2000) Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 74: 5716–5725.
    1. Yang X, Florin L, Farzan M, Kolchinsky P, Kwong PD, et al. (2000) Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution. J Virol 74: 4746–4754.
    1. Yang X, Lee J, Mahony EM, Kwong PD, Wyatt R, et al. (2002) Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J Virol 76: 4634–4642.
    1. Yang X, Wyatt R, Sodroski J (2001) Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J Virol 75: 1165–1171.
    1. Dey AK, David KB, Lu M, Moore JP (2009) Biochemical and biophysical comparison of cleaved and uncleaved soluble, trimeric HIV-1 envelope glycoproteins. Virology 385: 275–281.
    1. Pancera M, Wyatt R (2005) Selective recognition of oligomeric HIV-1 primary isolate envelope glycoproteins by potently neutralizing ligands requires efficient precursor cleavage. Virology 332: 145–156.
    1. Si Z, Phan N, Kiprilov E, Sodroski J (2003) Effects of HIV type 1 envelope glycoprotein proteolytic processing on antigenicity. AIDS Res Hum Retroviruses 19: 217–226.
    1. Khayat R, Lee JH, Julien JP, Cupo A, Klasse PJ, et al. (2013) Structural characterization of cleaved, soluble human immunodeficiency virus type-1 envelope glycoprotein trimers. J Virol 87 17: 9865–72.
    1. Klasse PJ, Depetris R, Pejchal R, Julien JP, Khayat R, et al. (2013) Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J Virol 87 17: 9873–85.
    1. Julien JP, Sok D, Khayat R, Lee JH, Doores KJ, et al. (2013) Broadly Neutralizing Antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog 9: e1003342.
    1. Kong L, Lee JH, Doores KJ, Murin CD, Julien JP, et al. (2013) Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat Struct Mol Biol 20: 796–803.
    1. Julien JP, Lee JH, Cupo A, Murin CD, Derking R, et al. (2013) Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci U S A 110: 4351–4356.
    1. Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, et al. (2006) Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol 80: 835–844.
    1. Hoffenberg S, Powell R, Carpov A, Wagner D, Wilson A, et al. (2013) Identification of an HIV-1 Clade A envelope that exhibits broad antigenicity and neutralization sensitivity and elicits antibodies targeting three distinct epitopes. J Virol 87: 5372–5383.
    1. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477: 466–470.
    1. Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL, et al. (2002) Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 76: 2606–2616.
    1. Bontjer I, Melchers M, Eggink D, David K, Moore JP, et al. (2010) Stabilized HIV-1 envelope glycoprotein trimers lacking the V1V2 domain, obtained by virus evolution. J Biol Chem 285: 36456–36470.
    1. Eggink D, Melchers M, Wuhrer M, van Montfort T, Dey AK, et al. (2010) Lack of complex N-glycans on HIV-1 envelope glycoproteins preserves protein conformation and entry function. Virology 401: 236–247.
    1. Hoorelbeke B, van Montfort T, Xue J, Liwang PJ, Tanaka H, et al. (2013) HIV-1 envelope trimer has similar binding characteristics for carbohydrate-binding agents as monomeric gp120. FEBS Lett 587: 860–866.
    1. Brower ET, Schon A, Freire E (2010) Naturally occurring variability in the envelope glycoprotein of HIV-1 and development of cell entry inhibitors. Biochemistry 49: 2359–2367.
    1. Leavitt SA, SchOn A, Klein JC, Manjappara U, Chaiken IM, et al. (2004) Interactions of HIV-1 proteins gp120 and Nef with cellular partners define a novel allosteric paradigm. Curr Protein Pept Sci 5: 1–8.
    1. van Gils MJ, Sanders RW (2013) Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology 435: 46–56.
    1. Klein F, Gaebler C, Mouquet H, Sather DN, Lehmann C, et al. (2012) Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J Exp Med 209: 1469–1479.
    1. Davenport TM, Friend D, Ellingson K, Xu H, Caldwell Z, et al. (2011) Binding interactions between soluble HIV envelope glycoproteins and quaternary-structure-specific monoclonal antibodies PG9 and PG16. J Virol 85: 7095–7107.
    1. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, et al. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326: 285–289.
    1. Klasse PJ, Sattentau QJ (2002) Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83: 2091–2108.
    1. Parren PW, Mondor I, Naniche D, Ditzel HJ, Klasse PJ, et al. (1998) Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J Virol 72: 3512–3519.
    1. Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, et al. (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300: 2065–2071.
    1. Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, et al. (2002) The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1→2 mannose residues on the outer face of gp120. J Virol 76: 7306–7321.
    1. Sanders RW, Venturi M, Schiffner L, Kalyanaraman R, Katinger H, et al. (2002) The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76: 7293–7305.
    1. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, et al. (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334: 1097–1103.
    1. Tran EE, Borgnia MJ, Kuybeda O, Schauder DM, Bartesaghi A, et al. (2012) Structural mechanism of trimeric HIV-1 envelope glycoprotein activation. PLoS Pathog 8: e1002797.
    1. Harris A, Borgnia MJ, Shi D, Bartesaghi A, He H, et al. (2011) Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proc Natl Acad Sci U S A 108: 11440–11445.
    1. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455: 109–113.
    1. Ferrari G, Pollara J, Kozink D, Harms T, Drinker M, et al. (2011) An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum. J Virol 85: 7029–7036.
    1. Yuan W, Bazick J, Sodroski J (2006) Characterization of the multiple conformational States of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J Virol 80: 6725–6737.
    1. Kong L, Huang CC, Coales SJ, Molnar KS, Skinner J, et al. (2010) Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange. J Virol 84: 10311–10321.
    1. Montefiori DC, Karnasuta C, Huang Y, Ahmed H, Gilbert P, et al. (2012) Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials. J Infect Dis 206: 431–441.
    1. Garrity RR, Rimmelzwaan G, Minassian A, Tsai WP, Lin G, et al. (1997) Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope. J Immunol 159: 279–289.
    1. Kalia V, Sarkar S, Gupta P, Montelaro RC (2005) Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J Virol 79: 2097–2107.
    1. Vzorov AN, Compans RW (2000) Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. J Virol 74: 8219–8225.
    1. Klasse PJ, McKeating JA, Schutten M, Reitz MS Jr, Robert-Guroff M (1993) An immune-selected point mutation in the transmembrane protein of human immunodeficiency virus type 1 (HXB2-Env:Ala 582(→Thr)) decreases viral neutralization by monoclonal antibodies to the CD4-binding site. Virology 196: 332–337.
    1. Blish CA, Nguyen MA, Overbaugh J (2008) Enhancing exposure of HIV-1 neutralization epitopes through mutations in gp41. PLoS Med 5: e9.
    1. Back NK, Smit L, Schutten M, Nara PL, Tersmette M, et al. (1993) Mutations in human immunodeficiency virus type 1 gp41 affect sensitivity to neutralization by gp120 antibodies. J Virol 67: 6897–6902.
    1. Harris AK, Bartesaghi A, Milne JL, Subramaniam S (2013) HIV-1 envelope glycoprotein trimers display open quaternary conformation when bound to the gp41 MPER-directed broadly neutralizing antibody Z13e1. J Virol 87: 7191–7196.
    1. Dey AK, David KB, Klasse PJ, Moore JP (2007) Specific amino acids in the N-terminus of the gp41 ectodomain contribute to the stabilization of a soluble, cleaved gp140 envelope glycoprotein from human immunodeficiency virus type 1. Virology 360: 199–208.
    1. Leaman DP, Zwick MB (2013) Increased functional stability and homogeneity of viral envelope spikes through directed evolution. PLoS Pathog 29: e1003184.
    1. Finzi A, Pacheco B, Zeng X, Kwon YD, Kwong PD, et al. (2010) Conformational characterization of aberrant disulfide-linked HIV-1 gp120 dimers secreted from overexpressing cells. J Virol Methods 168: 155–161.
    1. Depetris RS, Julien JP, Khayat R, Lee JH, Pejchal R, et al. (2012) Partial enzymatic deglycosylation preserves the structure of cleaved recombinant HIV-1 envelope glycoprotein trimers. J Biol Chem 287: 24239–24254.
    1. Kirschner M, Monrose V, Paluch M, Techodamrongsin N, Rethwilm A, et al. (2006) The production of cleaved, trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein vaccine antigens and infectious pseudoviruses using linear polyethylenimine as a transfection reagent. Protein Expr Purif 48: 61–68.
    1. Gasteiger E GA, Duvaud S., Wilkins M.R., Appel R.D., Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor. The Proteomics Protocols Handbook: Humana Press. pp. 571–607.
    1. Schulke N, Vesanen MS, Sanders RW, Zhu P, Lu M, et al. (2002) Oligomeric and conformational properties of a proteolytically mature, disulfide-stabilized human immunodeficiency virus type 1 gp140 envelope glycoprotein. J Virol 76: 7760–7776.
    1. Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O'Brien WA, et al. (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74: 8358–8367.
    1. Wei X, Decker JM, Wang S, Hui H, Kappes JC, et al. (2003) Antibody neutralization and escape by HIV-1. Nature 422: 307–312.
    1. Bontjer I, Land A, Eggink D, Verkade E, Tuin K, et al. (2009) Optimization of human immunodeficiency virus type 1 envelope glycoproteins with V1/V2 deleted, using virus evolution. J Virol 83: 368–383.
    1. Eggink D, Langedijk JP, Bonvin AM, Deng Y, Lu M, et al. (2009) Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors. J Biol Chem 284: 26941–26950.
    1. Melchers M, Bontjer I, Tong T, Chung NP, Klasse PJ, et al. (2012) Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses. J Virol 86: 2488–2500.
    1. Melchers M, Matthews K, de Vries RP, Eggink D, van Montfort T, et al. (2011) A stabilized HIV-1 envelope glycoprotein trimer fused to CD40 ligand targets and activates dendritic cells. Retrovirology 8: 48.
    1. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B (2009) DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J Struct Biol 166: 205–213.
    1. Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, et al. (2009) Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166: 95–102.
    1. Sorzano CO, Bilbao-Castro JR, Shkolnisky Y, Alcorlo M, Melero R, et al. (2010) A clustering approach to multireference alignment of single-particle projections in electron microscopy. J Struct Biol 171: 197–206.
    1. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116: 17–24.
    1. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, et al. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157: 38–46.
    1. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128: 82–97.
    1. Sanders RW, Busser E, Moore JP, Lu M, Berkhout B (2004) Evolutionary repair of HIV type 1 gp41 with a kink in the N-terminal helix leads to restoration of the six-helix bundle structure. AIDS Res Hum Retroviruses 20: 742–749.
    1. Cutalo JM, Deterding LJ, Tomer KB (2004) Characterization of glycopeptides from HIV-I(SF2) gp120 by liquid chromatography mass spectrometry. J Am Soc Mass Spectrom 15: 1545–1555.
    1. Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, et al. (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265: 10373–10382.
    1. Zhu X, Borchers C, Bienstock RJ, Tomer KB (2000) Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 39: 11194–11204.
    1. Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, et al. (2011) The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 6: e23521.
    1. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, et al. (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 329: 811–817.
    1. Huang CC, Venturi M, Majeed S, Moore MJ, Phogat S, et al. (2004) Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc Natl Acad Sci U S A 101: 2706–2711.
    1. de Azevedo WF Jr, Dias R (2008) Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr Drug Targets 9: 1071–1076.

Source: PubMed

3
Subskrybuj