Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer

Matthew D Hellmann, Tavi Nathanson, Hira Rizvi, Benjamin C Creelan, Francisco Sanchez-Vega, Arun Ahuja, Ai Ni, Jacki B Novik, Levi M B Mangarin, Mohsen Abu-Akeel, Cailian Liu, Jennifer L Sauter, Natasha Rekhtman, Eliza Chang, Margaret K Callahan, Jamie E Chaft, Martin H Voss, Megan Tenet, Xue-Mei Li, Kelly Covello, Andrea Renninger, Patrik Vitazka, William J Geese, Hossein Borghaei, Charles M Rudin, Scott J Antonia, Charles Swanton, Jeff Hammerbacher, Taha Merghoub, Nicholas McGranahan, Alexandra Snyder, Jedd D Wolchok, Matthew D Hellmann, Tavi Nathanson, Hira Rizvi, Benjamin C Creelan, Francisco Sanchez-Vega, Arun Ahuja, Ai Ni, Jacki B Novik, Levi M B Mangarin, Mohsen Abu-Akeel, Cailian Liu, Jennifer L Sauter, Natasha Rekhtman, Eliza Chang, Margaret K Callahan, Jamie E Chaft, Martin H Voss, Megan Tenet, Xue-Mei Li, Kelly Covello, Andrea Renninger, Patrik Vitazka, William J Geese, Hossein Borghaei, Charles M Rudin, Scott J Antonia, Charles Swanton, Jeff Hammerbacher, Taha Merghoub, Nicholas McGranahan, Alexandra Snyder, Jedd D Wolchok

Abstract

Combination immune checkpoint blockade has demonstrated promising benefit in lung cancer, but predictors of response to combination therapy are unknown. Using whole-exome sequencing to examine non-small-cell lung cancer (NSCLC) treated with PD-1 plus CTLA-4 blockade, we found that high tumor mutation burden (TMB) predicted improved objective response, durable benefit, and progression-free survival. TMB was independent of PD-L1 expression and the strongest feature associated with efficacy in multivariable analysis. The low response rate in TMB low NSCLCs demonstrates that combination immunotherapy does not overcome the negative predictive impact of low TMB. This study demonstrates the association between TMB and benefit to combination immunotherapy in NSCLC. TMB should be incorporated in future trials examining PD-(L)1 with CTLA-4 blockade in NSCLC.

Keywords: CTLA-4; PD-1; TMB; immunotherapy; lung cancer; mutation burden.

Copyright © 2018 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
TMB Correlates with Efficacy in Patients with NSCLC Treated with Nivolumab Plus Ipilimumab (A) TMB in patients with complete response (CR)/partial response (PR) (n = 24, blue) versus stable disease (SD)/progressive disease (PD) (n = 51, red) (median 273 versus 114 mutations, Mann-Whitney p = 0.0004) and TMB in patients with DCB (green, n = 37) versus those with NDB (purple, n = 38) (median 210 versus 113 mutations, Mann-Whitney p = 0.0071). Medians, interquartile ranges, and minimum/maximum shown in boxplots. (B) Objective response and durable clinical benefit in patients with high TMB (>median, 158 mutations) versus low TMB (≤median) (ORR 51% versus 13%, odds ratio 6.97 [95% confidence interval (CI) 2.19–19.0], Fisher's exact p = 0.0005; DCB 65% versus 34%, odds ratio 3.55 [95% CI 1.3–8.64], Fisher's exact p = 0.011). Proportion of CR/PR or DCB, respectively, are colored on histograms with rate (n/N) shown above each bar. (C) PFS in patients with high TMB versus low TMB (median 17.1 versus 3.7 months, Mantel-Haenszel hazard ratio 0.41 [95% CI 0.23–0.73], log rank p = 0.0024). (D) Receiver operating characteristic (ROC) curves for correlation of TMB with objective response (CR/PR; blue line) (AUC 0.75 [95% CI 0.62–0.88], p = 0.0006) and DCB (green line) (AUC 0.68 [95% CI 0.56–0.8], p = 0.0076). (E) PFS in cohorts of patients defined by quartiles of TMB percentile rank among NSCLC tumors profiled by TCGA (log rank for trend p = 0.01). See also Figure S2 and Table S3.
Figure 2
Figure 2
Summary of Clinical and Molecular Features Associated with Response or Non-response in Patients with NSCLC Treated with Nivolumab Plus Ipilimumab Individual patients are represented in each column, organized by those with objective response on the left (blue) and those with no objective response on the right (red). Categories of histology (squamous or non-squamous) and smoking status (never or ever) are characterized. PD-L1 expression is stratified as 0%, 1%–49%, or ≥50%. PFS is shown in months, with the color of each bar representing those who are censored (dark blue) or have progressed (light blue). The NSCLC TCGA percentile rank for each case is described from 0% to 100% in light to dark purple. Nonsynonymous TMB and mutation burden quantified using genes including in the MSK-IMPACT targeted next-generation sequencing panel are shown in histograms. The percent of transitions (light green) and transversions (dark green) are shown. Candidate neoantigen burden is quantified in histograms, stratified by predicted patient-specific HLA binding affinity 0–50 nM (orange) or 50–500 nM (light yellow). The occurrences of selected genes in each case are represented in the oncoprint, with the percent frequency in responders or non-responders shown. See also Figures S2 and S3; Tables S3 and S4.
Figure 3
Figure 3
Association between TMB and Efficacy in Multivariate Context (A) Correlation between TMB and PD-L1 expression (Spearman ρ −0.087 [95% CI −0.32 to 0.16], p = 0.48). Patients with CR/PR (n = 24) are colored in blue circles; those with SD/PD (n = 51) are colored in gray squares. (B) ROC curves for multivariate model correlation with objective response (CR/PR), with model including TMB (continuous variable), PD-L1 (continuous), histology (binary, squamous versus non-squamous), smoking status (binary, ever versus never), performance status (Eastern Cooperative Oncology Group [ECOG] 0 versus 1), and tumor burden (binary, > versus ≤ median) (plain line, AUC 0.869). Univariate correlation of TMB with objective response is shown again for reference (dotted line). (C) ROC curves for univariate correlation of TMB (continuous) with progression-free survival (dotted line) at 6 months (purple, AUC = 0.585) or 12 months (yellow, AUC = 0.558). ROC curves for multivariate correlation of model including TMB (continuous), PD-L1 (continuous), histology (squamous versus non-squamous), smoking status (ever versus never), performance status (ECOG 0 versus 1), and tumor burden (binary, > versus ≤ median) also shown (plain lines; at 6 months AUC = 0.764, at 12 months AUC = 0.831). (D) Histogram of objective response (CR/PR) to nivolumab plus ipilimumab in patients characterized by high mutation burden (>median TMB) and PD-L1 expression (≥1%), high mutation burden or PD-L1 expression, or neither. Response rates (n/N) are shown above each bar, with proportion of those with PR/CR colored in blue. Chi-square for trend p 

References

    1. Anagnostou V., Smith K.N., Forde P.M., Niknafs N., Bhattacharya R., White J., Zhang T., Adleff V., Phallen J., Wali N. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7:264–276.
    1. Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 2015;373:1627–1639.
    1. Burr M.L., Sparbier C.E., Chan Y.C., Williamson J.C., Woods K., Beavis P.A., Lam E.Y.N., Henderson M.A., Bell C.C., Stolzenburg S. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101–105.
    1. Campbell J.D., Alexandrov A., Kim J., Wala J., Berger A.H., Pedamallu C.S., Shukla S.A., Guo G., Brooks A.N., Murray B.A. Nat. Genet. 2016;48:607–616.
    1. Carbone D.P., Reck M., Paz-Ares L., Creelan B., Horn L., Steins M., Felip E., van den Heuvel M.M., Ciuleanu T.E., Badin F. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 2017;376:2415–2426.
    1. Carter S.L., Cibulskis K., Helman E., McKenna A., Shen H., Zack T., Laird P.W., Onofrio R.C., Winckler W., Weir B.A. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 2012;30:413–421.
    1. Chalmers Z.R., Connelly C.F., Fabrizio D., Gay L., Ali S.M., Ennis R., Schrock A., Campbell B., Shlien A., Chmielecki J. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.
    1. Cibulskis K., Lawrence M.S., Carter S.L., Sivachenko A., Jaffe D., Sougnez C., Gabriel S., Meyerson M., Lander E.S., Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013;31:213–219.
    1. Cibulskis K., McKenna A., Fennell T., Banks E., DePristo M., Getz G. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics. 2011;27:2601–2602.
    1. Costello M., Pugh T.J., Fennell T.J., Stewart C., Lichtenstein L., Meldrim J.C., Fostel J.L., Friedrich D.C., Perrin D., Dionne D. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 2013;41:e67.
    1. Curran M.A., Montalvo W., Yagita H., Allison J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA. 2010;107:4275–4280.
    1. DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498.
    1. Dong Z.Y., Zhong W.Z., Zhang X.C., Su J., Xie Z., Liu S.Y., Tu H.Y., Chen H.J., Sun Y.L., Zhou Q. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 2017;23:3012–3024.
    1. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247.
    1. Fabrizio D., Malboeuf C., Lieber D., Zhong S., He J., White E., Coyne M., Silterra J., Brennan T., Ma J. 102PAnalytic validation of a next generation sequencing assay to identify tumor mutational burden from blood (bTMB) to support investigation of an anti-PD-L1 agent, atezolizumab, in a first line non-small cell lung cancer trial (BFAST) Ann. Oncol. 2017;28:mdx363.018.
    1. Frampton G.M., Fichtenholtz A., Otto G.A., Wang K., Downing S.R., He J., Schnall-Levin M., White J., Sanford E.M., An P. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013;31:1023–1031.
    1. Gandara D.R., Kowanetz M., Mok T.S.K., Rittmeyer A., Fehrenbacher L., Fabrizio D., Otto G., Malboeuf C., Lieber D., Paul S.M. 1295OBlood-based biomarkers for cancer immunotherapy: tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK) Ann. Oncol. 2017;28:mdx380.
    1. Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.e9.
    1. George S., Miao D., Demetri G.D., Adeegbe D., Rodig S.J., Shukla S., Lipschitz M., Amin-Mansour A., Raut C.P., Carter S.L. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 2017;46:197–204.
    1. Glanville J., Huang H., Nau A., Hatton O., Wagar L.E., Rubelt F., Ji X., Han A., Krams S.M., Pettus C. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547:94–98.
    1. Goodman A.M., Kato S., Bazhenova L., Patel S.P., Frampton G.M., Miller V., Stephens P.J., Daniels G.A., Kurzrock R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 2017;16:2598–2608.
    1. Gubin M.M., Zhang X., Schuster H., Caron E., Ward J.P., Noguchi T., Ivanova Y., Hundal J., Arthur C.D., Krebber W.J. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–581.
    1. Hadrup S.R., Bakker A.H., Shu C.J., Andersen R.S., van Veluw J., Hombrink P., Castermans E., Thor Straten P., Blank C., Haanen J.B. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods. 2009;6:520–526.
    1. Hammers H.J., Plimack E.R., Infante J.R., Rini B.I., McDermott D.F., Lewis L.D., Voss M.H., Sharma P., Pal S.K., Razak A.R.A. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J. Clin. Oncol. 2017;35:3851–3858.
    1. Hellmann M.D., Callahan M.K., Awad M.M., Calvo E., Ascierto P.A., Atmaca A., Rizvi N.A., Hirsch F.R., Selvaggi G., Szustakowski J.D. Tumor mutation burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small cell lung cancer. Cancer Cell. 2018
    1. Hellmann M.D., Rizvi N.A., Goldman J.W., Gettinger S.N., Borghaei H., Brahmer J.R., Ready N.E., Gerber D.E., Chow L.Q., Juergens R.A. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18:31–41.
    1. Karosiene E., Lundegaard C., Lund O., Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012;64:177–186.
    1. Landau D.A., Carter S.L., Stojanov P., McKenna A., Stevenson K., Lawrence M.S., Sougnez C., Stewart C., Sivachenko A., Wang L. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–726.
    1. Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., Carter S.L., Stewart C., Mermel C.H., Roberts S.A. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–218.
    1. Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K., Lu S., Kemberling H., Wilt C., Luber B.S. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413.
    1. Levine A.J., Oren M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer. 2009;9:749–758.
    1. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760.
    1. Luksza M., Riaz N., Makarov V., Balachandran V.P., Hellmann M.D., Solovyov A., Rizvi N.A., Merghoub T., Levine A.J., Chan T.A. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551:517–520.
    1. Manguso R.T., Pope H.W., Zimmer M.D., Brown F.D., Yates K.B., Miller B.C., Collins N.B., Bi K., LaFleur M.W., Juneja V.R. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–418.
    1. McGranahan N., Furness A.J., Rosenthal R., Ramskov S., Lyngaa R., Saini S.K., Jamal-Hanjani M., Wilson G.A., Birkbak N.J., Hiley C.T. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469.
    1. Mezzadra R., Sun C., Jae L.T., Gomez-Eerland R., de Vries E., Wu W., Logtenberg M.E.W., Slagter M., Rozeman E.A., Hofland I. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549:106–110.
    1. Nathanson T., Ahuja A., Rubinsteyn A., Aksoy B.A., Hellmann M.D., Miao D., Van Allen E., Merghoub T., Wolchok J.D., Snyder A., Hammerbacher J. Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol. Res. 2017;5:84–91.
    1. Ott P.A., Hu Z., Keskin D.B., Shukla S.A., Sun J., Bozym D.J., Zhang W., Luoma A., Giobbie-Hurder A., Peter L. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–221.
    1. Patel S.J., Sanjana N.E., Kishton R.J., Eidizadeh A., Vodnala S.K., Cam M., Gartner J.J., Jia L., Steinberg S.M., Yamamoto T.N. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537–542.
    1. Pfeifer G.P., Denissenko M.F., Olivier M., Tretyakova N., Hecht S.S., Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21:7435–7451.
    1. Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Fulop A., Gottfried M., Peled N., Tafreshi A., Cuffe S. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016;375:1823–1833.
    1. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128.
    1. Rizvi H., Sanchez-Vega F., La K., Chatila W., Jonsson P., Halpenny D., Plodkowski A., Long N., Sauter J.L., Rekhtman N. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand (PD-L)-Ligand 1 blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 2018;36:633–641.
    1. Rooney M.S., Shukla S.A., Wu C.J., Getz G., Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61.
    1. Rosenberg J.E., Hoffman-Censits J., Powles T., van der Heijden M.S., Balar A.V., Necchi A., Dawson N., O'Donnell P.H., Balmanoukian A., Loriot Y. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920.
    1. Sahin U., Derhovanessian E., Miller M., Kloke B.P., Simon P., Lower M., Bukur V., Tadmor A.D., Luxemburger U., Schrors B. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–226.
    1. Schumacher T.N., Schreiber R.D. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.
    1. Skoulidis F., Byers L.A., Diao L., Papadimitrakopoulou V.A., Tong P., Izzo J., Behrens C., Kadara H., Parra E.R., Canales J.R. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5:860–877.
    1. Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N.Engl. J. Med. 2014;371:2189–2199.
    1. Snyder A., Nathanson T., Funt S.A., Ahuja A., Buros Novik J., Hellmann M.D., Chang E., Aksoy B.A., Al-Ahmadie H., Yusko E. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 2017;14:e1002309.
    1. Szolek A., Schubert B., Mohr C., Sturm M., Feldhahn M., Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014;30:3310–3316.
    1. Taube J.M., Klein A., Brahmer J.R., Xu H., Pan X., Kim J.H., Chen L., Pardoll D.M., Topalian S.L., Anders R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014;20:5064–5074.
    1. Taylor-Weiner A., Zack T., O'Donnell E., Guerriero J.L., Bernard B., Reddy A., Han G.C., AlDubayan S., Amin-Mansour A., Schumacher S.E. Genomic evolution and chemoresistance in germ-cell tumours. Nature. 2016;540:114–118.
    1. Tran E., Ahmadzadeh M., Lu Y.C., Gros A., Turcotte S., Robbins P.F., Gartner J.J., Zheng Z., Li Y.F., Ray S. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015;350:1387–1390.
    1. Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L., Sucker A., Hillen U., Foppen M.H., Goldinger S.M. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–211.
    1. Van Allen E.M., Wagle N., Stojanov P., Perrin D.L., Cibulskis K., Marlow S., Jane-Valbuena J., Friedrich D.C., Kryukov G., Carter S.L. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 2014;20:682–688.
    1. van Rooij N., van Buuren M.M., Philips D., Velds A., Toebes M., Heemskerk B., van Dijk L.J., Behjati S. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 2013;31:e439–e442.
    1. Wei S.C., Levine J.H., Cogdill A.P., Zhao Y., Anang N.A.S., Andrews M.C., Sharma P., Wang J., Wargo J.A., Pe'er D., Allison J.P. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–1133.e17.
    1. Wolchok J.D., Chiarion-Sileni V., Gonzalez R., Rutkowski P., Grob J.J., Cowey C.L., Lao C.D., Wagstaff J., Schadendorf D., Ferrucci P.F. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2017;377:1345–1356.
    1. Zaretsky J.M., Garcia-Diaz A., Shin D.S., Escuin-Ordinas H., Hugo W., Hu-Lieskovan S., Torrejon D.Y., Abril-Rodriguez G., Sandoval S., Barthly L. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 2016;375:819–829.
    1. Zehir A., Benayed R., Shah R.H., Syed A., Middha S., Kim H.R., Srinivasan P., Gao J., Chakravarty D., Devlin S.M. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017;23:703–713.

Source: PubMed

3
Subskrybuj