Transcranial direct current stimulation combined with upper limb functional training in children with spastic, hemiparetic cerebral palsy: study protocol for a randomized controlled trial

Renata Calhes Franco Moura, Cibele Almeida Santos, Luanda André Collange Grecco, Roberta Delasta Lazzari, Arislander Jonathan Lopes Dumont, Natalia Carvalho de Almeida Duarte, Luiz Alfredo Braun, Jamile Benite Palma Lopes, Ligia Abram Dos Santos, Eliane Lopes Souza Rodrigues, Giorgio Albertini, Veronica Cimolin, Manuela Galli, Claudia Santos Oliveira, Renata Calhes Franco Moura, Cibele Almeida Santos, Luanda André Collange Grecco, Roberta Delasta Lazzari, Arislander Jonathan Lopes Dumont, Natalia Carvalho de Almeida Duarte, Luiz Alfredo Braun, Jamile Benite Palma Lopes, Ligia Abram Dos Santos, Eliane Lopes Souza Rodrigues, Giorgio Albertini, Veronica Cimolin, Manuela Galli, Claudia Santos Oliveira

Abstract

Background: The aim of the proposed study is to perform a comparative analysis of functional training effects for the paretic upper limb with and without transcranial direct current stimulation over the primary motor cortex in children with spastic hemiparetic cerebral palsy.

Methods: The sample will comprise 34 individuals with spastic hemiparetic cerebral palsy, 6 to 16 years old, classified at level I, II, or III of the Manual Ability Classification System. Participants will be randomly allocated to two groups: (1) functional training of the paretic upper limb combined with anodic transcranial stimulation; (2) functional training of the paretic upper limb combined with sham transcranial stimulation. Evaluation will involve three-dimensional movement analysis and electromyography using the SMART-D 140® system (BTS Engineering) and the FREEEMG® system (BTS Engineering), the Quality of Upper Extremity Skills Test, to assess functional mobility, the Portable Device and Ashworth Scale, to measure movement resistance and spasticity, and the Pediatric Evaluation of Disability Inventory, to evaluate performance. Functional reach training of the paretic upper limb will include a range of manual activities using educational toys associated with an induced constraint of the non-paretic limb during the training. Training will be performed in five weekly 20-minute sessions for two weeks. Transcranial stimulation over the primary motor cortex will be performed during the training sessions at an intensity of 1 mA. Findings will be analyzed statistically considering a 5 % significance level (P ≤ 0.05).

Discussion: This paper presents a detailed description of a prospective, randomized, controlled, double-blind, clinical trial designed to demonstrate the effects of combining transcranial direct current stimulation over the primary motor cortex and functional training of the paretic limb in children with cerebral palsy classified at level I, II, or III of the Manual Ability Classification System. The results will be published and evidence found may contribute to the use of transcranial stimulation for this population.

Trial registration: ReBEC RBR-6V4Y3K . Registered on 11 February 2015.

Keywords: Cerebral palsy; Electrical stimulation; Physical therapy.

Figures

Fig. 1
Fig. 1
Flowchart of the study following Consolidated Standards of Reporting Trials (CONSORT) guidelines. tDCS, transcranial direct current stimulation
Fig. 2
Fig. 2
Placement of markers for three-dimensional analysis (SMARTup protocol). Schematic diagram of frontal and rear views of marker set used for 3D kinematic analysis adapted by Menegoni, 2009 [34]
Fig. 3
Fig. 3
Sequential phases. Schematic representation of the distance profile between finger and target, during pointing movement. Using a threshold on the distance profile, the adjusting phase was defined Menegoni, 2009 [34]
Fig. 4
Fig. 4
Educational toys

References

    1. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;49:8–14.
    1. Vasconcelos RLM, Moura TL, Campos TF, Lindquist ARR, Guerra RO. Avaliação do desempenho funcional de crianças com paralisia cerebral de acordo com níveis do comprometimento motor. Rev Bras Fisioter. 2009;13:390–7. doi: 10.1590/S1413-35552009005000051.
    1. Manoel EJ, Oliveira JA. Motor developmental status and task constraint in overarm throwing. J Hum Mov Stud. 2000;39:359–78.
    1. Elvrum AK, Braendvik SM, Saether R, Lamvik T, Vereijken B, Roeleved K. Effectiveness of resistance training in combination with botulinum toxin-A on hand and arm use in children with cerebral palsy: a pre-post intervention study. BMC Pediatr. 2012;12:91. doi: 10.1186/1471-2431-12-91.
    1. Jacobsson B. A report: the definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;109:8–14.
    1. Hoare BJ, Imms C, Rawicki HB, Carey L. Modified constraint-induced movement therapy or bimanual occupational therapy following injection of botulinum toxin-A to improve bimanual performance in young children with hemiplegic cerebral palsy: a randomized controlled trial methods paper. BMC Neurol. 2010;10:58. doi: 10.1186/1471-2377-10-58.
    1. Jessen C, Mackie P, Javis S. Epidemiology of cerebral palsy. Arch Dis Child Fetal Neonatal Ed. 1990;80(2):158. doi: 10.1136/fn.80.2.F158.
    1. Eliasson AC, Krumlinde-Sundhikn L, Shaw K, Wang C. Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Dev Med Child Neurol. 2005;47(4):266–75. doi: 10.1017/S0012162205000502.
    1. Vaz DV, Cotta Mancini M, Fonseca ST, Vieira DSR. Muscle stiffness and strength and their relation to hand function in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2006;48(9):728–33. doi: 10.1017/S0012162206001563.
    1. Body RN, Ziviani J, Sakzewski L, Miller L, Bowden J, Cunnington R, Ware R, Guzzetta A, Al Macdonell R, Jackson GD, Abbott DF, Rose S. COMBIT: protocol of a randomized comparison trial of combined modified constraint induced movement therapy and bimanual intensive training with distributed model of standard upper limb rehabilitation in children with congenital hemiplegia. BMC Neurol. 2013;13:68. doi: 10.1186/1471-2377-13-68.
    1. Baendvik SM, Elvrum AK, Vereijken B, Roeleveld K. Relationship between neuromuscular body functions and upper extremity activity in children with cerebral palsy. Dev Med Child Neurol. 2010;52:29–34. doi: 10.1111/j.1469-8749.2009.03490.x.
    1. Darrah J, Law M, Pollock N. Family-centered functional therapy: a choice for children with motor dysfunction. Inf Young Children. 2001;13(4):79–87. doi: 10.1097/00001163-200113040-00014.
    1. Damiano DL. Activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86:1534–40. doi: 10.2522/ptj.20050397.
    1. Antitla H, Autti-Ramo I, Suoranta J, Makela M, Malmivaara A. Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review. BMC Pediatr. 2008;8:14. doi: 10.1186/1471-2431-8-14.
    1. Sakzewski L, Ziviani J, Boyd R. Systematic review and meta-analysis of therapeutic management of upper limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123:E1111–22. doi: 10.1542/peds.2008-3335.
    1. Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, Bravo R, Rigonatti SP, Freedman S, Nitsche M, Pascual-Leone A, Boggio PS. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54:3988–98. doi: 10.1002/art.22195.
    1. Fregni F, Bossio PS, Brunoni AR. Neuromodulação terapêutica: Princípios e avanços da estimulação cerebral não invasiva em neurologia, reabilitação, psiquiatria e neuropsicologia. São Paulo: Sarvier; 2012.
    1. Mendonça ME, Fregni F. Neuromodulação com estimulação cerebral não invasiva: aplicação no acidente vascular encefálico, doença de Parkinson e dor crônica. In: Assis RD, editor. Condutas práticas em fisioterapia neurológica. São Paulo: Manole; 2012. pp. 307–39.
    1. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117(7):1623–9. doi: 10.1016/j.clinph.2006.04.009.
    1. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35:1113–24. doi: 10.1016/j.neuroimage.2007.01.027.
    1. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;27(10):1899–901. doi: 10.1212/WNL.57.10.1899.
    1. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52. doi: 10.1016/0014-4886(62)90056-0.
    1. Goldring S, O”Leary JL. Summation of certain enduring sequelae of cortical activation in the rabbit. Electroencephalogr Clin Neurophysiol. 1951;3(3):329–40. doi: 10.1016/0013-4694(51)90081-8.
    1. Nezu A, Kimura S, Takeshita S, Tanaka M. Functional recovery in hemiplegic cerebral palsy: ipsilateral electromyographic responses to focal transcranial magnetic stimulation. Brain Dev. 1999;21(3):162–5. doi: 10.1016/S0387-7604(98)00094-1.
    1. Garvey MA, Mall V. Transcranial magnetic stimulation in children. Clin Neurophysiol. 2008;119(5):973–84. doi: 10.1016/j.clinph.2007.11.048.
    1. Vry J, Linder-Lucht M, Berweck S, Bonati U, Hodapp M, Uhi M, Faist M, Mall V. Altered cortical inhibitory function in children with spastic diplegia: a TMS study. Exp Brain Res. 2008;186(4):611–8. doi: 10.1007/s00221-007-1267-7.
    1. Kesar TM, Sawaki L, Burdette JH, Cabrera MN, Kolaski K, Smith BP, O’Shea TM, Koman LA, Wittenberg GF. Motor cortical functional geometry in cerebral palsy and its relationship to disability. Clin Neurophysiol. 2012;123(7):1383–90. doi: 10.1016/j.clinph.2011.11.005.
    1. Grecco LAC, Duarte NAC, Mendonça M, Zanon N, Fregni F, Oliveira CS. Transcranial direct current stimulation combined with treadmill gait training in delayed neuro-psychomotor development. J Phys Ther Sci. 2014;26:945–50. doi: 10.1589/jpts.26.945.
    1. Gillick T, Feyma T, Menk J, Usset M, Vaith A, Wood J, Worthing R, Krach E. Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study. Phys Ther. 2015;95(3):337–49. doi: 10.2522/ptj.20130565.
    1. Eliasson AC, Krumlinde-Sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, Rosenbaum P. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48:549–54. doi: 10.1017/S0012162206001162.
    1. Choudhary A, Gulati S, Kabra M, Singh P, Sankhyan N, Pandey R, Kalra E. Efficacy of modified constraint induced movement therapy in improving upper limb function in children with hemiplegic cerebral palsy: a randomized controlled trial. Brain Dev. 2013;35:870–6. doi: 10.1016/j.braindev.2012.11.001.
    1. Cimolin V, Beretta E, Piccinini L, Turconi AC, Locatelli F, Galli M, Strazzer S. Constraint-induced movement therapy for children with hemiplegia after traumatic brain injury: a quantitative study. J Head Trauma Rehabil. 2012;27(3):177–87. doi: 10.1097/HTR.0b013e3182172276.
    1. Rab G, Petuskey K, Bagley A. A method for determination of upper extremity kinematics. Gait Posture. 2002;15(2):113–9. doi: 10.1016/S0966-6362(01)00155-2.
    1. Menegoni F, Milano E, Trotti C, Galli M, Bigoni M, Baudo S, Mauro A. Quantitative evaluation of functional limitation of upper limb movements in subjects affected by ataxia. Eur J Neurol. 2009;16:232–9. doi: 10.1111/j.1468-1331.2008.02396.x.
    1. Petuskey K, Bagley A, Abdala E, James MA, Rab G. Upper extremity kinematics during functional activities: three-dimensional studies in a normal pediatric population. Gait Posture. 2007;25(4):573–9. doi: 10.1016/j.gaitpost.2006.06.006.
    1. Caimmi M, Carda S, Giovanzana C, Maini ES, Sabatini AM, Smania N, Molteni F. Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Neurorehabil Neural Repair. 2008;22:31–9. doi: 10.1177/1545968307302923.
    1. Feng CJ, Mak AF. Three-dimensional motion analysis of the voluntary elbow movement in subjects with spasticity. IEEE Trans Rehab Eng. 1997;5(3):253–62. doi: 10.1109/86.623017.
    1. Monfort-Pañego M, Vera-García FJ, Sánchez-Zuriaga D, et al. Electromyographic studies in abdominal exercises: a literature synthesis. J Manipulative Physiol Ther. 2009;32:232–44. doi: 10.1016/j.jmpt.2009.02.007.
    1. Hermes JH, Freriks B, Merletti R, Steggeman D, Blok J, Rau G, Disselhorst-Klug C, Hagg G. SENIAM 8: surface electromyography for the non-invasive assessment of muscles. Enschede, the Netherlands: Roessingh Research and Development; 1999.
    1. Dematteo C, Law MC, Russell DJ, Pollock N, Rosenbaum PL, Walter SD. The reliability and validity of the Quality of Upper Extremity Skills Test. Phys Occup Ther Pediatr. 1993;13:1–18. doi: 10.1080/J006v13n02_01.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.
    1. Harlaar J, Bechar JG, Snijders CJ, Lankhorst GJ. Passive stiffness characteristics of ankle plantar flexors in hemiplegia. Clin Biomech. 2000;15:261–70. doi: 10.1016/S0268-0033(99)00069-8.
    1. Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK. Transcranial direct current stimulation in pediatric brain: a computational modeling study. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:859–862.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7. doi: 10.7326/0003-4819-158-3-201302050-00583.

Source: PubMed

3
Subskrybuj