The Impact of Blood Pressure Dipping Status on Cognition, Mobility, and Cardiovascular Health in Older Adults Following an Exercise Program

Narlon C Boa Sorte Silva, Michael A Gregory, Dawn P Gill, Cheri L McGowan, Robert J Petrella, Narlon C Boa Sorte Silva, Michael A Gregory, Dawn P Gill, Cheri L McGowan, Robert J Petrella

Abstract

Objectives: To determine whether a dual-task gait and aerobic exercise intervention differentially impacted older adults with normal blood pressure (BP) dipping status (dippers) compared to those with nondipping status (nondippers). Methods: This study was a secondary analysis involving participants (mean age = 70.3 years, 61% women) who attended a laboratory-based exercise intervention over a 6-month period (40 min/day and 3 days/week). Participants were assessed in measures of cognition, mobility, and cardiovascular health at baseline, 3, 6, and 12 months (after a 6-month no-contact follow-up). Results: We observed improvements in cognition in both groups at 6 and 12 months, although no between-group differences were seen. Nondippers demonstrated superior improvements in usual gait velocity and step length after the exercise intervention compared to dippers. Dippers reduced daytime systolic BP at 6 and 12 months to a greater extent than nondippers. Discussion: BP dipping status at baseline did not influence exercise benefits to cognition but did mediate changes in mobility and cardiovascular health.

Keywords: aging; blood pressure; cognition; exercise; mobility.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
Participant flow for the 6-month case-series study with a 6-month no-contact follow-up.
Figure 2.
Figure 2.
Estimated mean changes in cognition. Note. Solid triangles (nondippers) and squares (dippers) represent estimated group mean changes from baseline; bars represent associated 95% confidence intervals. Confidence intervals not including zero (i.e., not crossing the vertical dotted line) indicate significant differences from baseline (see Supplemental Table 1). All analyses were adjusted for age, education, gender, presence of hypertension, and type 2 diabetes.
Figure 3.
Figure 3.
Estimated mean changes in mobility. Note. Solid triangles (nondippers) and squares (dippers) represent estimated group mean changes from baseline; bars represent associated 95% confidence intervals. Confidence intervals not including zero (i.e., not crossing the vertical dotted line) indicate significant differences from baseline (see Supplemental Table 1). The p value indicates significant differences between groups in estimated mean change from baseline adjusting for age, education, gender, presence of hypertension, and type 2 diabetes.
Figure 4.
Figure 4.
Estimated mean changes in cardiovascular health from baseline. Note. Solid triangles (nondippers) and squares (dippers) represent estimated group mean changes from baseline; bars represent associated 95% confidence intervals. Confidence intervals not including zero (i.e., not crossing the vertical dotted line) indicate significant differences from baseline (see Supplemental Table 1). The p value indicate significant differences between groups in estimated mean change from baseline adjusting for age, education, gender, presence of hypertension, and type 2 diabetes.

References

    1. American College of Sports Medicine. (2014). ACSM’s guidelines for exercise testing and prescription (9th ed.). Baltimore, MD: Wolters Kluwer/Lippincott Williams & Wilkins Health.
    1. Barnes D. E., Santos-Modesitt W., Poelke G., Kramer A. F., Castro C., Middleton L. E., Yaffe K. (2013). The Mental Activity and eXercise (MAX) trial: A randomized controlled trial to enhance cognitive function in older adults. Journal of the American Medical Association Internal Medicine, 173, 797-804. doi:10.1001/jamainternmed.2013.189
    1. Barnes D. E., Yaffe K., Satariano W. A., Tager I. B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. Journal of the American Geriatrics Society, 51, 459-465. doi:10.1046/j.1532-5415.2003.51153.x
    1. Bartels C., Wegrzyn M., Wiedl A., Ackermann V., Ehrenreich H. (2010). Practice effects in healthy adults: A longitudinal study on frequent repetitive cognitive testing. BMC Neuroscience, 11(1), Article 118. doi:1471-2202-11-118
    1. Bellelli G., Frisoni G. B., Lucchi E., Guerini F., Geroldi C., Magnifico F., . . . Trabucchi M. (2004). Blunted reduction in night-time blood pressure is associated with cognitive deterioration in subjects with long-standing hypertension. Blood Pressure Monitoring, 9, 71-76. doi:10.1097/00126097-200404000-00003
    1. Brach J. S., Perera S., Studenski S., Newman A. B. (2008). The reliability and validity of measures of gait variability in community-dwelling older adults. Archives of Physical Medicine and Rehabilitation, 89, 2293-2296. doi: S0003-9993(08)01481-0
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., . . . Elavsky S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101, 3316-3321. doi:10.1073/pnas.0400266101
    1. Cornelissen V. A., Buys R., Smart N. A. (2013). Endurance exercise beneficially affects ambulatory blood pressure: A systematic review and meta-analysis. Journal of Hypertension, 31, 639-648. doi:10.1097/HJH.0b013e32835ca964
    1. Cuspidi C., Sala C., Tadic M., Gherbesi E., Grassi G., Mancia G. (2016). Nondipping pattern and carotid atherosclerosis. Journal of Hypertension, 34, 385-392. doi:10.1097/HJH.0000000000000812
    1. de Laat K. F., Tuladhar A. M., van Norden A. G., Norris D. G., Zwiers M. P., de Leeuw F. E. (2011). Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain, 134(1), 73-83. doi:10.1093/brain/awq343
    1. Dorfman M., Herman T., Brozgol M., Shema S., Weiss A., Hausdorff J., Mirelman A. (2014). Dual-task training on a treadmill to improve gait and cognitive function in elderly idiopathic fallers. Journal of Neurologic Physical Therapy, 38, 246-253. doi:10.1097/NPT.0000000000000057
    1. Engelen L., Ferreira I., Stehouwer C. D., Boutouyrie P., Laurent S. (2012). Reference intervals for common carotid intima-media thickness measured with echotracking: Relation with risk factors. European Heart Journal, 34, 2368-2380.
    1. Erickson K. I., Kramer A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43, 22-24. doi:10.1136/bjsm.2008.052498
    1. Fagard R. H., Celis H., Thijs L., Staessen J. A., Clement D. L., De Buyzere M. L., De Bacquer D. A. (2008). Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension, 51, 55-61. doi:10.1161/HYPERTENSIONAHA.107.100727
    1. Filomena J., Riba-Llena I., Vinyoles E., Tovar J. L., Mundet X., Castañé X., . . . Delgado P. (2015). Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension. Hypertension, 66(3), 634-640; discussion 445. doi:10.1161/HYPERTENSIONAHA.115.05440
    1. Fitzmaurice G. M., Laird N. M., Ware J. H. (2011). Wiley Series in Probability and Statistics. Applied longitudinal analysis (2nd ed.). Hoboken, NJ: John Wiley. doi:10.1198/jasa.2005.s24
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189-198. doi:10.1016/0022-3956(75)90026-6
    1. Gates N., Singh M. A. F., Sachdev P. S., Valenzuela M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized controlled trials. American Journal of Geriatric Psychiatry, 21, 1086-1097. doi:10.1016/j.jagp.2013.02.018
    1. Gill D. P., Gregory M. A., Zou G., Liu-Ambrose T., Shigematsu R., Hachinski V., . . . Petrella R. J. (2016). The healthy mind, healthy mobility trial: A novel exercise program for older adults. Medicine & Science in Sports & Exercise, 48, 297-306. doi:10.1249/MSS.0000000000000758
    1. Gregory M. A., Boa Sorte Silva N. C., Gill D. P., McGowan C. L., Liu-Ambrose T., Shoemaker J. K., . . . Petrella R. J. (2017). Combined dual-task gait training and aerobic exercise to improve cognition, mobility, and vascular health in community-dwelling older adults at risk for future cognitive decline. Journal of Alzheimer’s Disease, 57, 747-763. doi:10.3233/JAD-161240
    1. Gregory M. A., Gill D. P., Petrella R. J. (2013). Brain health and exercise in older adults. Current Sports Medicine Reports, 12, 256-271. doi:10.1249/JSR.0b013e31829a74fd
    1. Gregory M. A., Gill D. P., Zou G., Liu-Ambrose T., Shigematsu R., Fitzgerald C., . . . Petrella R. J. (2016). Group-based exercise combined with dual-task training improves gait but not vascular health in active older adults without dementia. Archives of Gerontology and Geriatrics, 63, 18-27. doi:10.1016/j.archger.2015.11.008
    1. Guo H., Tabara Y., Igase M., Yamamoto M., Ochi N., Kido T., . . . Kohara K. (2010). Abnormal nocturnal blood pressure profile is associated with mild cognitive impairment in the elderly: The J-SHIPP study. Hypertension Research, 33(1), 32-36. doi:10.1038/hr.2009.172
    1. Hachinski V., Iadecola C., Petersen R. C., Breteler M. M., Nyenhuis D. L., Black S. E., . . . Leblanc G. G. (2006). National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke, 37, 2220-2241. doi:10.1161/01.STR.0000237236.88823.47
    1. Iqbal P., Fotherby M. D., Potter J. F. (1996). Validation of the SpaceLabs 90207 automatic non-invasive blood pressure monitor in elderly subjects. Blood Pressure Monitoring, 1, 367-373.
    1. Kim Y. J., Kwon H. K., Lee J. M., Cho H., Kim H. J., Park H. K., . . . Seo S. W. (2016). Gray and white matter changes linking cerebral small vessel disease to gait disturbances. Neurology, 86, 1199-1207. doi:10.1212/WNL.0000000000002516
    1. Lawton M. P., Brody E. M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. The Gerontologist, 9, 179-186. doi:10.1093/geront/9.3_Part_1.179
    1. Ling C., Diaz K. M., Kretzschmar J., Feairheller D. L., Sturgeon K. M., Perkins A., . . . Brown M. D. (2014). Chronic aerobic exercise improves blood pressure dipping status in African American non-dippers. Blood Pressure Monitoring, 19, 353-358. doi:10.1097/MBP.0000000000000075
    1. Nagai M., Hoshide S., Ishikawa J., Shimada K., Kario K. (2008). Ambulatory blood pressure as an independent determinant of brain atrophy and cognitive function in elderly hypertension. Journal of Hypertension, 26, 1636-1641. doi:10.1097/HJH.0b013e3283018333
    1. Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., . . . Chertkow H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695-699. doi:10.1111/j.1532-5415.2005.53221.x
    1. O’Brien E., Parati G., Stergiou G., Asmar R., Beilin L., Bilo G., . . . Zhang Y. (2013). European Society of Hypertension position paper on ambulatory blood pressure monitoring. Journal of Hypertension, 31, 1731-1768. doi:10.1097/HJH.0b013e328363e964
    1. O’Rourke M. F., Safar M. E. (2005). Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension, 46, 200-204. doi:10.1161/01.HYP.0000168052.00426.65
    1. Plummer P., Zukowski L. A., Giuliani C., Hall A. M., Zurakowski D. (2015). Effects of physical exercise interventions on gait-related dual-task interference in older adults: A systematic review and meta-analysis. Gerontology, 62(1), 94-117. doi:10.1159/000371577
    1. Radloff L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385-401. doi:10.1177/014662167700100306
    1. Salles G. F., Reboldi G., Fagard R. H., Cardoso C. R., Pierdomenico S. D., Verdecchia P., . . . Roush G. C. (2016). Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: The Ambulatory Blood Pressure Collaboration in Patients with Hypertension (ABC-H) meta-analysis. Hypertension, 67, 693-700. doi:10.1161/HYPERTENSIONAHA.115.06981
    1. Sander D., Winbeck K., Klingelhofer J., Conrad B. (2000). Extent of cerebral white matter lesions is related to changes of circadian blood pressure rhythmicity. Archives of Neurology, 57, 1302-1307.
    1. Seals D. R., Desouza C. A., Donato A. J., Tanaka H. (2008). Habitual exercise and arterial aging. Journal of Applied Physiology, 105, 1323-1332. doi:10.1152/japplphysiol.90553.2008
    1. Sherwood A., Smith P. J., Hinderliter A. L., Georgiades A., Blumenthal J. A. (2016). Effects of exercise and stress management training on nighttime blood pressure dipping in patients with coronary heart disease: A randomized controlled trial. American Heart Journal, 183, 85-90. doi:10.1016/j.ahj.2016.10.011
    1. Smith P. J., Blumenthal J. A., Hoffman B. M., Cooper H., Strauman T. A., Welsh-Bohmer K., . . . Sherwood A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72, 239-252. doi:10.1097/PSY.0b013e3181d14633
    1. Stuckey M. I., Knight E., Petrella R. J. (2012). The Step Test and Exercise Prescription Tool in Primary Care : A Critical Review. Critical ReviewsTM in Physical and Rehabilitation Medicine, 24(1), 109-123.
    1. ten Brinke L. F., Bolandzadeh N., Nagamatsu L. S., Hsu C. L., Davis J. C., Miran-Khan K., Liu-Ambrose T. (2014). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: A 6-month randomised controlled trial. British Journal of Sports Medicine, 49, 248-254. doi:10.1136/bjsports-2013-093184
    1. van Boxtel M. P., Henskens L. H., Kroon A. A., Hofman P. A., Gronenschild E. H., Jolles J., de Leeuw P. W. (2006). Ambulatory blood pressure, asymptomatic cerebrovascular damage and cognitive function in essential hypertension. Journal of Human Hypertension, 20(1), 5-13. doi:10.1038/sj.jhh.1001934
    1. Verdecchia P. (2000). Prognostic value of ambulatory blood pressure : Current evidence and clinical implications. Hypertension, 35, 844-851. doi:10.1161/01.HYP.35.3.844

Source: PubMed

3
Subskrybuj