Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities

Sheung-Tak Cheng, Sheung-Tak Cheng

Abstract

Purpose of review: The article discusses the two most significant modifiable risk factors for dementia, namely, physical inactivity and lack of stimulating cognitive activity, and their effects on developing cognitive reserve.

Recent findings: Both of these leisure-time activities were associated with significant reductions in the risk of dementia in longitudinal studies. In addition, physical activity, particularly aerobic exercise, is associated with less age-related gray and white matter loss and with less neurotoxic factors. On the other hand, cognitive training studies suggest that training for executive functions (e.g., working memory) improves prefrontal network efficiency, which provides support to brain functioning in the face of cognitive decline. While physical activity preserves neuronal structural integrity and brain volume (hardware), cognitive activity strengthens the functioning and plasticity of neural circuits (software), thus supporting cognitive reserve in different ways. Future research should examine whether lifestyle interventions incorporating these two domains can reduce incident dementia.

Keywords: Cognitive activity; Cognitive reserve; Dementia; Physical activity.

Conflict of interest statement

The author declares that he has no conflict of interest. Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

References

    1. Alzheimer’s Disease International . World Alzheimer Report 2015—the global impact of dementia: an analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International; 2015.
    1. Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299–320. doi: 10.1037/0882-7974.17.2.299.
    1. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737–52. doi: 10.1016/j.cger.2013.07.002.
    1. Baltes PB. The aging mind: potential and limits. Gerontologist. 1993;33(5):580–94. doi: 10.1093/geront/33.5.580.
    1. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–89. doi: 10.1093/cercor/bhi044.
    1. Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G, et al. Brain development and aging: overlapping and unique patterns of change. Neuroimage. 2013;68:63–74. doi: 10.1016/j.neuroimage.2012.11.039.
    1. Gunning-Dixon F, Brickman AM, Cheng JC, Alexopoulos GS. Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry. 2009;24(2):109–17. doi: 10.1002/gps.2087.
    1. Jack CR, Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. doi: 10.1016/S1474-4422(12)70291-0.
    1. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323. doi: 10.1016/j.jalz.2016.02.002.
    1. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–12. doi: 10.1016/S1474-4422(12)70191-6.
    1. Clément F, Belleville S. Effect of disease severity on neural compensation of item and associative recognition in mild cognitive impairment. J Alzheimer’s Dis. 2012;29(1):109–23.
    1. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23(3):986–93.
    1. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R. Qué PASA? The posterior-anterior shift in aging. Cereb Cortex. 2008;18(5):1201–9. doi: 10.1093/cercor/bhm155.
    1. Reuter-Lorenz P, Park DC. Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci. 2010;65(4):405–15. doi: 10.1093/geronb/gbq035.
    1. Buckner RL, Vincent JL. Unrest at rest: default activity and spontaneous network correlations. Neuroimage. 2007;37(4):1091–6. doi: 10.1016/j.neuroimage.2007.01.010.
    1. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007;37(4):1083–90. doi: 10.1016/j.neuroimage.2007.02.041.
    1. Burggren A, Brown J. Imaging markers of structural and functional brain changes that precede cognitive symptoms in risk for Alzheimer’s disease. Brain Imaging Behav. 2014;8(2):251–61. doi: 10.1007/s11682-013-9278-4.
    1. Krajcovicova L, Marecek R, Mikl M, Rektorova I. Disruption of resting functional connectivity in Alzheimer’s patients and at-risk subjects. Curr Neurol Neurosci Rep. 2014;14(10):491. doi: 10.1007/s11910-014-0491-3.
    1. Bharath S, Joshi H, John JP, Balachandar R, Sadanand S, Saini J, et al. A multimodal structural and functional neuroimaging study of amnestic mild cognitive impairment. Am J Geriatr Psychiatry Epub ahead of print.
    1. Boots EA, Schultz SA, Almeida RP, Oh JM, Koscik RL, Dowling MN, et al. Occupational complexity and cognitive reserve in a middle-aged cohort at risk for Alzheimer’s disease. Arch Clin Neuropsychol. 2015;17(7):634–42. doi: 10.1093/arclin/acv041.
    1. Almeida RP, Schultz SA, Austin BP, Boots EA, Dowling NM, Gleason CE, et al. Effect of cognitive reserve on age-related changes in cerebrospinal fluid biomarkers of Alzheimer disease. JAMA Neurol. 2015;17(6):699–706. doi: 10.1001/jamaneurol.2015.0098.
    1. Soldan A, Pettigrew C, Lu Y, Wang M, Selnes O, Albert M, et al. Relationship of medial temporal lobe atrophy, APOE genotype, and cognitive reserve in preclinical Alzheimer’s disease. Hum Brain Mapp. 2015;17(7):2826. doi: 10.1002/hbm.22810.
    1. Roe CM, Xiong C, Miller JP, Morris JC. Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology. 2007;68(3):223–8. doi: 10.1212/01.wnl.0000251303.50459.8a.
    1. Bruandet A, Richard F, Bombois S, Maurage CA, Masse I, Amouyel P, et al. Cognitive decline and survival in Alzheimer’s disease according to education level. Dement Geriatr Cogn Disord. 2008;25(1):74–80. doi: 10.1159/000111693.
    1. Qiu C, Bäckman L, Winblad B, Agüero-Torres H, Fratiglioni L. The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project. Arch Neurol. 2001;58(12):2034–9. doi: 10.1001/archneur.58.12.2034.
    1. Cheng S-T. Double compression: a vision for compressing morbidity and caregiving in dementia. Gerontologist. 2014;54(6):901–8. doi: 10.1093/geront/gnu015.
    1. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94. doi: 10.1016/S1474-4422(14)70136-X.
    1. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39(1):3–11. doi: 10.1017/S0033291708003681.
    1. Luck T, Riedel-Heller S, Luppa M, Wiese B, Köhler M, Jessen F, et al. Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: analysis of gene–environment interaction for the risk of dementia and Alzheimer’s disease dementia. Psychol Med. 2014;44(6):1319–29. doi: 10.1017/S0033291713001918.
    1. Kishimoto H, Ohara T, Hata J, Ninomiya T, Yoshida D, Mukai N, et al. The long-term association between physical activity and risk of dementia in the community: the Hisayama Study. Eur J Epidemiol. 2016;31(3):267–74. doi: 10.1007/s10654-016-0125-y.
    1. Llamas-Velasco S, Contador I, Villarejo-Galende A, Lora-Pablos D, Bermejo-Pareja F. Physical activity as protective factor against dementia: a prospective population-based study (NEDICES) J Int Neuropsychol Soc. 2015;17(10):861–7. doi: 10.1017/S1355617715000831.
    1. Rosness TA, Strand BH, Bergem ALM, Engedal K, Bjertness E. Associations between physical activity in old age and dementia-related mortality: a Population-Based Cohort Study. Dement Geriatr Cogn Dis Extra. 2014;4(3):410–8. doi: 10.1159/000367938.
    1. Wang S, Luo X, Barnes D, Sano M, Yaffe K. Physical activity and risk of cognitive impairment among oldest-old women. Am J Geriatr Psychiatry. 2014;22(11):1149–57. doi: 10.1016/j.jagp.2013.03.002.
    1. Beckett MW, Ardern CI, Rotondi MA. A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer’s disease in older adults. BMC Geriatr. 2015;17:9–9. doi: 10.1186/s12877-015-0007-2.
    1. Rovio S, Kåreholt I, Helkala E, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4(11):705–11. doi: 10.1016/S1474-4422(05)70198-8.
    1. Tolppanen A, Solomon A, Kulmala J, Kåreholt I, Ngandu T, Rusanen M, et al. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement. 2015;17(4):434–43. doi: 10.1016/j.jalz.2014.01.008.
    1. van Gelder BM, Tijhuis MAR, Kalmijn S, Giampaoli S, Nissinen A, Kromhout D. Physical activity in relation to cognitive decline in elderly men: the FINE Study. Neurology. 2004;63(12):2316–21. doi: 10.1212/01.WNL.0000147474.29994.35.
    1. Lam LCW, Chau RCM, Wong BML, Fung AWT, Tam CWC, Leung GTY, et al. A 1-year randomized controlled trial comparing mind body exercise (Tai Chi) with stretching and toning exercise on cognitive function in older Chinese adults at risk of cognitive decline. J Am Med Dir Assoc. 2012;13(6):568.e15-568.e20.
    1. Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, et al. Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci. 2010;4:189. doi: 10.3389/fnins.2010.00189.
    1. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT. Exercise, experience and the aging brain. Neurobiol Aging. 2002;23(5):941–55. doi: 10.1016/S0197-4580(02)00028-3.
    1. Herzig K, Ahola R, Leppäluoto J, Jokelainen J, Jämsä T, Keinänen-Kiukaanniemi S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx Study RCT. Int J Obes. 2014;38(8):1089–96. doi: 10.1038/ijo.2013.224.
    1. Mobasseri M, Yavari A, Najafipoor F, Aliasgarzadeh A, Niafar M. Effect of a long-term regular physical activity on hypertension and body mass index in type 2 diabetes patients. J Sports Med Phys Fitness. 2015;17(1-2):84–90.
    1. Vinetti G, Mozzini C, Desenzani P, Boni E, Bulla L, Lorenzetti I, et al. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: a randomized controlled trial. Sci Rep. 2015;17:9238. doi: 10.1038/srep09238.
    1. Nishida Y, Tanaka K, Hara M, Hirao N, Tanaka H, Tobina T, et al. Effects of home-based bench step exercise on inflammatory cytokines and lipid profiles in elderly Japanese females: a randomized controlled trial. Arch Gerontol Geriatr. 2015;17(3):443–51. doi: 10.1016/j.archger.2015.06.017.
    1. Gong J, Chen X, Li S. Efficacy of a community-based physical activity program KM2H2 for stroke and heart attack prevention among senior hypertensive patients: a cluster randomized controlled phase-II trial. PLoS One. 2015;17(10):e0139442. doi: 10.1371/journal.pone.0139442.
    1. Boraxbekk C, Salami A, Wåhlin A, Nyberg L. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network-a multimodal approach. Neuroimage. 2016;131:133–41. doi: 10.1016/j.neuroimage.2015.12.010.
    1. Maass A, Düzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;17(5):585–93. doi: 10.1038/mp.2014.114.
    1. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu W, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(7):e002014.
    1. Hirsch MA, Iyer SS, Sanjak M. Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat Disord. 2016;22(Suppl 1):S78–81. doi: 10.1016/j.parkreldis.2015.09.030.
    1. Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist. 2012;18(1):82–97. doi: 10.1177/1073858410397054.
    1. Vaughan S, Wallis M, Polit D, Steele M, Shum D, Morris N. The effects of multimodal exercise on cognitive and physical functioning and brain-derived neurotrophic factor in older women: a randomised controlled trial. Age Ageing. 2014;43(5):623–9. doi: 10.1093/ageing/afu010.
    1. Maass A, Düzel S, Brigadski T, Goerke M, Becke A, Sobieray U, et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016;131:142–54. doi: 10.1016/j.neuroimage.2015.10.084.
    1. Thompson D, Walhin J, Batterham AM, Stokes KA, Cooper AR, Andrews RC. Effect of diet or diet plus physical activity versus usual care on inflammatory markers in patients with newly diagnosed type 2 diabetes: the Early ACTivity in Diabetes (ACTID) randomized, controlled trial. J Am Heart Assoc. 2014;3(3):e000828. doi: 10.1161/JAHA.114.000828.
    1. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann Neurol. 2010;68(3):311–8. doi: 10.1002/ana.22096.
    1. Brown BM, Peiffer JJ, Taddei K, Lui JK, Laws SM, Gupta VB, et al. Physical activity and amyloid-β plasma and brain levels: results from the Australian imaging, biomarkers and lifestyle study of ageing. Mol Psychiatry. 2013;18(8):875–81. doi: 10.1038/mp.2012.107.
    1. Mehlig K, Skoog I, Waern M, Jonasson JM, Lapidus L, Björkelund C, et al. Physical activity, weight status, diabetes and dementia: a 34-year follow-up of the population study of women in Gothenburg. Neuroepidemiology. 2014;42(4):252–9. doi: 10.1159/000362201.
    1. Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Intensity and types of physical exercise in relation to dementia risk reduction in community-living older adults. J Am Med Dir Assoc 2015;16(10):899.e1-899.e7.
    1. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30. doi: 10.1111/1467-9280.t01-1-01430.
    1. Groot C, Hooghiemstra AM, Raijmakers PGHM, van Berckel BNM, Scheltens P, Scherder EJA, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23. doi: 10.1016/j.arr.2015.11.005.
    1. Taylor-Piliae R. The effectiveness of Tai Chi exercise in improving aerobic capacity: an updated meta-analysis. Med Sport Sci. 2008;52:40–53. doi: 10.1159/000134283.
    1. Barreto PS, Andrieu S, Payoux P, Demougeot L, Rolland Y, Vellas B. Physical activity and amyloid‐β brain levels in elderly adults with intact cognition and mild cognitive impairment. J Am Geriatr Soc. 2015;17(8):1634–9. doi: 10.1111/jgs.13530.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. doi: 10.1073/pnas.1015950108.
    1. Sexton CE, Betts JF, Demnitz N, Dawes H, Ebmeier KP, Johansen-Berg H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage. 2016;131:81–90. doi: 10.1016/j.neuroimage.2015.09.071.
    1. Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35:S20–8. doi: 10.1016/j.neurobiolaging.2014.03.034.
    1. Boyle CP, Raji CA, Erickson KI, Lopez OL, Becker JT, Gach HM, et al. Physical activity, body mass index, and brain atrophy in Alzheimer’s disease. Neurobiol Aging. 2015;17:S194–202. doi: 10.1016/j.neurobiolaging.2014.05.036.
    1. ten Brinke LF, Bolandzadeh N, Nagamatsu LS, Hsu CL, Davis JC, Miran-Khan K, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;17(4):248–54. doi: 10.1136/bjsports-2013-093184.
    1. Drew LJ, Fusi S, Hen R. Adult neurogenesis in the mammalian hippocampus: why the dentate gyrus? Learn Mem. 2013;20(12):710–29. doi: 10.1101/lm.026542.112.
    1. Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging. 2011;32(7):1304–19. doi: 10.1016/j.neurobiolaging.2009.08.001.
    1. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61A(11):1166–70. doi: 10.1093/gerona/61.11.1166.
    1. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52. doi: 10.1097/PSY.0b013e3181d14633.
    1. Nouchi R, Taki Y, Takeuchi H, Sekiguchi A, Hashizume H, Nozawa T, et al. Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age. 2014;36(2):787–99. doi: 10.1007/s11357-013-9588-x.
    1. Daly M, McMinn D, Allan JL. A bidirectional relationship between physical activity and executive function in older adults. Front Hum Neurosci. 2015;8:1044.
    1. Best JR, Nagamatsu LS, Liu-Ambrose T. Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Front Hum Neurosci. 2014;8:353. doi: 10.3389/fnhum.2014.00353.
    1. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci. 2000;97(8):4398–403. doi: 10.1073/pnas.070039597.
    1. Lövdén M, Schaefer S, Noack H, Bodammer NC, Kühn S, Heinze H, et al. Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging. 2012;33(3):620.e9-620.e22.
    1. Valenzuela MJ, Sachdev P, Wen W, Chen X, Brodaty H. Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS One. 2008;3(7):e2598. doi: 10.1371/journal.pone.0002598.
    1. Vaughan L, Erickson KI, Espeland MA, Smith JC, Tindle HA, Rapp SR. Concurrent and longitudinal relationships between cognitive activity, cognitive performance, and brain volume in older adult women. J Gerontol B Psychol Sci Soc Sci. 2014;69(6):826–36. doi: 10.1093/geronb/gbu109.
    1. Landau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’Neil JP, et al. Association of lifetime cognitive engagement and low β-amyloid deposition. Arch Neurol. 2012;69(5):623–9. doi: 10.1001/archneurol.2011.2748.
    1. Gidicsin CM, Maye JE, Locascio JJ, Pepin LC, Philiossaint M, Becker JA, et al. Cognitive activity relates to cognitive performance but not to Alzheimer disease biomarkers. Neurology. 2015;17(1):48–55. doi: 10.1212/WNL.0000000000001704.
    1. Wirth M, Villeneuve S, La Joie R, Marks SM, Jagust WJ. Gene–environment interactions: lifetime cognitive activity, APOE genotype, and beta-amyloid burden. J Neurosci. 2014;34(25):8612–7. doi: 10.1523/JNEUROSCI.4612-13.2014.
    1. Leung GTY, Fung AWT, Tam CWC, Lui VWC, Chiu HFK, Chan WM, et al. Examining the association between late-life leisure activity participation and global cognitive decline in community-dwelling elderly Chinese in Hong Kong. Int J Geriatr Psychiatry. 2011;26(1):39–47. doi: 10.1002/gps.2478.
    1. Lindstrom HA, Fritsch T, Petot G, Smyth KA, Chen CH, Debanne SM, et al. The relationships between television viewing in midlife and the development of Alzheimer’s disease in a case-control study. Brain Cogn. 2005;58(2):157–65. doi: 10.1016/j.bandc.2004.09.020.
    1. Wang JY, Zhou DH, Li J, Zhang M, Deng J, Tang M, et al. Leisure activity and risk of cognitive impairment: the Chongqing aging study. Neurology. 2006;66(6):911–3. doi: 10.1212/01.wnl.0000192165.99963.2a.
    1. Wijndaele K, Brage S, Besson H, Khaw K, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk Study. Int J Epidemiol. 2011;40(1):150–9. doi: 10.1093/ije/dyq105.
    1. Akbaraly TN, Portet F, Fustinoni S, Dartigues JF, Artero S, Rouaud O, et al. Leisure activities and the risk of dementia in the elderly: results from the three-city study. Neurology. 2009;73(11):854–61. doi: 10.1212/WNL.0b013e3181b7849b.
    1. Sturman MT, Morris MC, de Leon M, Carlos F, Bienias JL, Wilson RS, et al. Physical activity, cognitive activity, and cognitive decline in a biracial community population. Arch Neurol. 2005;62(11):1750–4. doi: 10.1001/archneur.62.11.1750.
    1. Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–16. doi: 10.1056/NEJMoa022252.
    1. Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA. Relation of cognitive activity to risk of developing Alzheimer Disease. Neurology. 2007;69(20):1911–20. doi: 10.1212/01.wnl.0000271087.67782.cb.
    1. Buchman AS, Boyle PA, Yu L, Shah RC, Wilson RS, Bennett DA. Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology. 2012;78(17):1323–9. doi: 10.1212/WNL.0b013e3182535d35.
    1. Sörman DE, Sundström A, Rönnlund M, Adolfsson R, Nilsson L. Leisure activity in old age and risk of dementia: a 15-year prospective study. J Gerontol B Psychol Sci Soc Sci. 2014;69B(4):493–501. doi: 10.1093/geronb/gbt056.
    1. Hughes TF, Becker JT, Lee C, Chang CH, Ganguli M. Independent and combined effects of cognitive and physical activity on incident MCI. Alzheimers Dement. 2015;17(11):1377–84. doi: 10.1016/j.jalz.2014.11.007.
    1. Robitaille A, Muniz G, Lindwall M, Piccinin AM, Hoffman L, Johansson B, et al. Physical activity and cognitive functioning in the oldest old: within- and between-person cognitive activity and psychosocial mediators. Eur J Ageing. 2014;11(4):333–47. doi: 10.1007/s10433-014-0314-z.
    1. Hall CB, Lipton RB, Sliwinski M, Katz MJ, Derby CA, Verghese J. Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology. 2009;73(5):356–61. doi: 10.1212/WNL.0b013e3181b04ae3.
    1. Helzner EP, Scarmeas N, Cosentino S, Portet F, Stern Y. Leisure activity and cognitive decline in incident Alzheimer disease. Arch Neurol. 2007;64(12):1749–54. doi: 10.1001/archneur.64.12.1749.
    1. Wilson RS, Barnes LL, Aggarwal NT, Boyle PA, Hebert LE, Mendes dL, et al. Cognitive activity and the cognitive morbidity of Alzheimer disease. Neurology. 2010;75(11):990–6. doi: 10.1212/WNL.0b013e3181f25b5e.
    1. Lam LC, Chan WC, Leung T, Fung AW, Leung EM. Would older adults with mild cognitive impairment adhere to and benefit from a structured lifestyle activity intervention to enhance cognition? A cluster randomized controlled trial. PLoS One. 2015;17(3):e0118173. doi: 10.1371/journal.pone.0118173.
    1. Cheng S-T, Chow PK, Yu ECS, Chan ACM. Leisure activities alleviate depressive symptoms in nursing home residents with very mild or mild dementia. Am J Geriatr Psychiatry. 2012;20(10):904–8. doi: 10.1097/JGP.0b013e3182423988.
    1. Cheng S-T, Chow PK, Song YQ, Yu ECS, Chan ACM, Lee TMC, et al. Mental and physical activities delay cognitive decline in older persons with dementia. Am J Geriatr Psychiatry. 2014;22(1):63–74. doi: 10.1016/j.jagp.2013.01.060.
    1. Cheng S-T, Chow PK, Song Y, Yu ECS, Lam JHM. Can leisure activities slow dementia progression in nursing home residents? A cluster-randomized controlled trial. Int Psychogeriatr. 2014;26(4):637–43. doi: 10.1017/S1041610213002524.
    1. Dekhtyar S, Wang H, Scott K, Goodman A, Koupil I, Herlitz A. A life-course study of cognitive reserve in dementia—from childhood to old age. Am J Geriatr Psychiatry. 2015;17(9):885–96. doi: 10.1016/j.jagp.2015.02.002.
    1. Alladi S, Bak TH, Duggirala V, Surampudi B, Shailaja M, Shukla AK, et al. Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology. 2013;81(22):1938–44. doi: 10.1212/01.wnl.0000436620.33155.a4.
    1. Yeung CM, St John PD, Menec V, Tyas SL. Is bilingualism associated with a lower risk of dementia in community-living older adults? Cross-sectional and prospective analyses. Alzheimer Dis Assoc Disord. 2014;28(4):326–32. doi: 10.1097/WAD.0000000000000019.
    1. Lawton DM, Gasquoine PG, Weimer AA. Age of dementia diagnosis in community dwelling bilingual and monolingual Hispanic Americans. Cortex. 2015;17:141–5. doi: 10.1016/j.cortex.2014.11.017.
    1. Gold BT. Lifelong bilingualism and neural reserve against Alzheimer’s disease: a review of findings and potential mechanisms. Behav Brain Res. 2015;17:9–15. doi: 10.1016/j.bbr.2014.12.006.
    1. Lam LCW, Cheng S-T. Maintaining long-term adherence to lifestyle interventions for cognitive health in late life. Int Psychogeriatr. 2013;25(2):171–3. doi: 10.1017/S1041610212001603.
    1. Marioni RE, Proust-Lima C, Amieva H, Brayne C, Matthews FE, Dartigues J, et al. Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study. BMC Public Health. 2015;17:1089. doi: 10.1186/s12889-015-2426-6.
    1. Baltes PB, Lindenberger U. On the range of cognitive plasticity in old age as a function of experience: 15 years of intervention research. Behav Ther. 1988;19(3):283–300. doi: 10.1016/S0005-7894(88)80003-0.
    1. Noack H, Lövdén M, Schmiedek F, Lindenberger U. Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor Neurol Neurosci. 2009;27(5):435–53.
    1. Gates N, Valenzuela M. Cognitive exercise and its role in cognitive function in older adults. Curr Psychiatry Rep. 2010;12(1):20–7. doi: 10.1007/s11920-009-0085-y.
    1. Rahe J, Becker J, Fink GR, Kessler J, Kukolja J, Rahn A, et al. Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success. Front Aging Neurosci. 2015;17:187.
    1. McDaniel MA, Binder EF, Bugg JM, Waldum ER, Dufault C, Meyer A, et al. Effects of cognitive training with and without aerobic exercise on cognitively demanding everyday activities. Psychol Aging. 2014;29(3):717–30. doi: 10.1037/a0037363.
    1. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;17(9984):2255–63. doi: 10.1016/S0140-6736(15)60461-5.
    1. Uemura K, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, et al. Cognitive function affects trainability for physical performance in exercise intervention among older adults with mild cognitive impairment. Clin Interv Aging. 2013;8:97–102. doi: 10.2147/CIA.S39434.
    1. Karbach J, Verhaeghen P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol Sci. 2014;25(11):2027–37. doi: 10.1177/0956797614548725.
    1. Au J, Buschkuehl M, Duncan GJ, Jaeggi SM. There is no convincing evidence that working memory training is not effective: a reply to Melby-Lervåg and Hulme (2015) Psychon Bull Rev. 2016;23(1):331–7. doi: 10.3758/s13423-015-0967-4.
    1. Melby-Lervåg M, Hulme C. There is no convincing evidence that working memory training is effective: a reply to Au et al. (2014) and Karbach and Verhaeghen (2014) Psychon Bull Rev. 2016;23(1):324–30. doi: 10.3758/s13423-015-0862-z.
    1. Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11(11):e1001756. doi: 10.1371/journal.pmed.1001756.
    1. Vermeij A, Kessels RP, Heskamp L, Simons EM, Dautzenberg PL, Claassen JA. Prefrontal activation may predict working-memory training gain in normal aging and mild cognitive impairment. Brain Imaging Behav. 2016. doi:10.1007/s11682-016-9508-7.
    1. Heinzel S, Lorenz RC, Brockhaus W, Wüstenberg T, Kathmann N, Heinz A, et al. Working memory load-dependent brain response predicts behavioral training gains in older adults. J Neurosci. 2014;34(4):1224–33. doi: 10.1523/JNEUROSCI.2463-13.2014.
    1. Heinzel S, Lorenz RC, Pelz P, Heinz A, Walter H, Kathmann N, et al. Neural correlates of training and transfer effects in working memory in older adults. Neuroimage. 2016;134:236–249.
    1. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97–101. doi: 10.1038/nature12486.

Source: PubMed

3
Subskrybuj