Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease

Elaheh Moradi, Ilona Hallikainen, Tuomo Hänninen, Jussi Tohka, Alzheimer's Disease Neuroimaging Initiative, Elaheh Moradi, Ilona Hallikainen, Tuomo Hänninen, Jussi Tohka, Alzheimer's Disease Neuroimaging Initiative

Abstract

Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

Keywords: Alzheimer's disease; Elastic net; Magnetic resonance imaging; Penalized regression; Rey's Auditory Verbal Learning Test.

Figures

Fig. 1
Fig. 1
Scatter plot for estimation of RAVLT Immediate (left) and RAVLT Percent Forgetting (right) using ENLR (top) and KRVR (bottom) with all available subjects, i.e., AD, MCI and NC subjects.
Fig. 2
Fig. 2
The selection probability of voxels in the estimation RAVLT Immediate (A) and RAVLT Percent Forgetting (B) across 100 different 10-fold CV iterations. The images are displayed according to the neurological convention.
Fig. 3
Fig. 3
Scatter plot for estimation of RAVLT Immediate (left) and RAVLT Percent Forgetting (right) based on ENLR using AD and NC subjects (top), AD and MCI subjects (middle) and NC and MCI subjects (bottom).
Fig. 4
Fig. 4
Mean RAVLT scores (A–B) during 3years follow-up assessment in pMCI and sMCI subjects with error bars representing the standard deviation.
Fig. 5
Fig. 5
ROC curves of MCI subjects classification to sMCI or pMCI using observed RAVLT and estimated RAVLT based on different methods (ENLR, RVR, KRVR). The learning was done using all subjects (AD, MCI and NC) and the evaluation was done on pMCI and sMCI subjects (median within 100 runs). Left: RAVLT Immediate, Right: RAVLT Percent Forgetting.

References

    1. Adaszewski S., Dukart J., Kherif F., Frackowiak R., Draganski B., Initiative A.D.N. How early can we predict Alzheimer's disease using computational anatomy? Neurobiol. Aging. 2013;34:2815–2826.
    1. Ambroise C., McLachlan G.J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. 2002;99:6562–6566.
    1. American Psychiatric Association . American Psychiatric Pub; 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®)
    1. Anderson M.J., Robinson J. Permutation tests for linear models. Aust. N. Z. J. Stat. 2001;43:75–88.
    1. Arlot S., Celisse A. A survey of cross-validation procedures for model selection. Stat. surv. 2010;4:40–79.
    1. Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26:839–851.
    1. Balthazar M.L., Yasuda C.L., Cendes F., Damasceno B.P. Learning, retrieval, and recognition are compromised in aMCI and mild AD: are distinct episodic memory processes mediated by the same anatomical structures? J. Int. Neuropsychol. Soc. 2010;16:205–209.
    1. Beheshti I., Demirel H., Initiative A.D.N. Feature-ranking-based Alzheimer's disease classification from structural MRI. Magn. Reson. Imaging. 2016;34:252–263.
    1. Bermudez-Rattoni F. The forgotten insular cortex: its role on recognition memory formation. Neurobiol. Learn. Mem. 2014;109:207–216.
    1. Breiman L. Random forests. Mach. Learn. 2001;45:5–32.
    1. Brem A.-K., Ran K., Pascual-Leone A. Learning and memory. Handb. Clin. Neurol. 2013;116:693.
    1. Bron E.E., Smits M., Van Der Flier W.M., Vrenken H., Barkhof F., Scheltens P., Papma J.M., Steketee R.M., Orellana C.M., Meijboom R. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage. 2015;111:562–579.
    1. Bunea F., She Y., Ombao H., Gongvatana A., Devlin K., Cohen R. Penalized least squares regression methods and applications to neuroimaging. NeuroImage. 2011;55:1519–1527.
    1. Carroll M.K., Cecchi G.A., Rish I., Garg R., Rao A.R. Prediction and interpretation of distributed neural activity with sparse models. NeuroImage. 2009;44:112–122.
    1. Coupé P., Fonov V.S., Bernard C., Zandifar A., Eskildsen S.F., Helmer C., Manjón J.V., Amieva H., Dartigues J.-F., Allard M. Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis. Hum. Brain Mapp. 2015;36:4758–4770.
    1. Cuadra M.B., Cammoun L., Butz T., Cuisenaire O., Thiran J.-P. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans. Med. Imaging. 2005;24:1548–1565.
    1. Dubois B., Feldman H.H., Jacova C., Cummings J.L., DeKosky S.T., Barberger-Gateau P., Delacourte A., Frisoni G., Fox N.C., Galasko D. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol. 2010;9:1118–1127.
    1. Duda R.O., Hart P.E., Stork D.G. John Wiley & Sons; 2012. Pattern Classification.
    1. Dukart J., Sambataro F., Bertolino A. Accurate prediction of conversion to Alzheimer's disease using imaging, genetic, and neuropsychological biomarkers. J. Alzheimers Dis. 2015;49:1143–1159.
    1. Eskildsen S.F., Coupé P., Fonov V.S., Pruessner J.C., Collins D.L., Initiative A.D.N. Structural imaging biomarkers of Alzheimer's disease: predicting disease progression. Neurobiol. Aging. 2015;36:S23–S31.
    1. Eskildsen S.F., Coupé P., García-Lorenzo D., Fonov V., Pruessner J.C., Collins D.L., Initiative A.D.N. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the adni cohort using patterns of cortical thinning. Neuroimage. 2013;65:511–521.
    1. Estévez-González A., Kulisevsky J., Boltes A., Otermín P., García-Sánchez C. Rey verbal learning test is a useful tool for differential diagnosis in the preclinical phase of Alzheimer's disease: comparison with mild cognitive impairment and normal aging. Int. J. Geriatr. Psychiatry. 2003;18:1021–1028.
    1. Franke K., Ziegler G., Klöppel S., Gaser C., Initiative A.D.N. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage. 2010;50:883–892.
    1. Friedman J., Hastie T., Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010;33:1.
    1. Gaser C. Partial volume segmentation with adaptive maximum a posteriori (map) approach. NeuroImage. 2009;47:S121.
    1. Gaser C., Franke K., Klöppel S., Koutsouleris N., Sauer H., Initiative A.D.N. Brainage in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease. PloS one. 2013;8:e67346.
    1. Gomar J.J., Conejero-Goldberg C., Davies P., Goldberg T.E., Initiative A.D.N. Extension and refinement of the predictive value of different classes of markers in ADNI: four-year follow-up data. Alzheimers Dement. 2014;10:704–712.
    1. Good C.D., Johnsrude I.S., Ashburner J., Henson R.N., Friston K.J., Frackowiak R.S. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage. 2001;14:21–36.
    1. Grosenick L., Klingenberg B., Katovich K., Knutson B., Taylor J.E. Interpretable whole-brain prediction analysis with graphnet. NeuroImage. 2013;72:304–321.
    1. Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.
    1. Hastie T., Tibshirani R.J., Friedman J.H. Springer; 2011. The Elements of Statistical Learning: Data mining, Inference, and Prediction.
    1. Haufe S., Meinecke F., Görgen K., Dähne S., Haynes J.-D., Blankertz B., Bießmann F. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage. 2014;87:96–110.
    1. Huttunen H., Manninen T., Tohka J. MEG mind reading: strategies for feature selection. Proc. Fed. Comput. Sci. Event. 2012;2012:42–49.
    1. Jack C.R., Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C., Thies B., Phelps C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:257–262.
    1. Jack C.R., Knopman D.S., Jagust W.J., Shaw L.M., Aisen P.S., Weiner M.W., Petersen R.C., Trojanowski J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–128.
    1. Jeong W., Chung C.K., Kim J.S. Episodic memory in aspects of large-scale brain networks. Front. Hum. Neurosci. 2015;9
    1. Khundrakpam B.S., Tohka J., Evans A.C., Group B.D.C. Prediction of brain maturity based on cortical thickness at different spatial resolutions. Neuroimage. 2015;111:350–359.
    1. Kwok S.C., Shallice T., Macaluso E. Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval. Neuropsychologia. 2012;50:2943–2955.
    1. Li J., Pan P., Huang R., Shang H. A meta-analysis of voxel-based morphometry studies of white matter volume alterations in Alzheimer's disease. Neurosci. Biobehav. Rev. 2012;36:757–763.
    1. Liaw A., Wiener M. Classification and regression by randomForest. R news. 2002;2:18–22.
    1. Magalhães S.S., Hamdan A.C. The Rey auditory verbal learning test: normative data for the Brazilian population and analysis of the influence of demographic variables. Psychol. Neurosci. 2010;3:85.
    1. Magnin B., Mesrob L., Kinkingnéhun S., Pélégrini-Issac M., Colliot O., Sarazin M., Dubois B., Lehéricy S., Benali H. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology. 2009;51:73–83.
    1. Malloy-Diniz L.F., Lasmar V.A.P., Gazinelli L.d.S.R., Fuentes D., Salgado J.V. The Rey auditory-verbal learning test: applicability for the Brazilian elderly population. Rev. Bras. Psiquiatr. 2007;29:324–329.
    1. Masdeu J.C., Kreisl W.C., Berman K.F. The neurobiology of Alzheimer disease defined by neuroimaging. Curr. Opin. Neurol. 2012;25(4):410–420.
    1. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–269.
    1. Miller A. CRC Press; 2002. Subset Selection in Regression.
    1. Moradi E., Khundrakpam B., Lewis J.D., Evans A.C., Tohka J. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. NeuroImage. 2016 In press.
    1. Moradi E., Pepe A., Gaser C., Huttunen H., Tohka J. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.
    1. Moradi E., Tohka J., Gaser C. Pattern Recognition in Neuroimaging, 2014 International Workshop on. 2014. Semi-supervised learning in MCI-to-ad conversion prediction—when is unlabeled data useful? pp. 1–4.
    1. Mwangi B., Tian T.S., Soares J.C. A review of feature reduction techniques in neuroimaging. Neuroinformatics. 2014;12:229–244.
    1. Petersen R., Aisen P., Beckett L., Donohue M., Gamst A., Harvey D., Jack C., Jagust W., Shaw L., Toga A. Alzheimer's disease neuroimaging initiative (ADNI) clinical characterization. Neurology. 2010;74:201–209.
    1. Rajapakse J.C., Giedd J.N., Rapoport J.L. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imaging. 1997;16:176–186.
    1. Rey A. L’examen clinique en psychologie [the clinical psychological examination] Paris: Presses Universitaires de France. 1964
    1. Ricci M., Graef S., Blundo C., Miller L.A. Using the Rey auditory verbal learning test (RAVLT) to differentiate Alzheimer's dementia and behavioural variant fronto-temporal dementia. Clin. Neuropsychol. 2012;26:926–941.
    1. Ritter K., Schumacher J., Weygandt M., Buchert R., Allefeld C., Haynes J.-D., Initiative A.D.N. Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers. Alzheimers Dement.: Diagn., Assessment Dis. Monit. 2015;1:206–215.
    1. Salvatore C., Battista P., Castiglioni I. Frontiers for the early diagnosis of AD by means of MRI brain imaging and support vector machines. Curr. Alzheimer Res. 2016;13:509–533.
    1. Salvatore C., Cerasa A., Battista P., Gilardi M.C., Quattrone A., Castiglioni I., Initiative A.D.N. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach. Front. Neurosci. 2015;9
    1. Schoenberg M.R., Dawson K.A., Duff K., Patton D., Scott J.G., Adams R.L. Test performance and classification statistics for the Rey auditory verbal learning test in selected clinical samples. Arch. Clin. Neuropsychol. 2006;21:693–703.
    1. Sestieri C., Corbetta M., Romani G.L., Shulman G.L. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J. Neurosci. 2011;31:4407–4420.
    1. Squire L.R., Wixted J.T. The cognitive neuroscience of human memory since HM. Annu. Rev. Neurosci. 2011;34:259.
    1. Stonnington C.M., Chu C., Klöppel S., Jack C.R., Ashburner J., Frackowiak R.S., Initiative A.D.N. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage. 2010;51:1405–1413.
    1. Teipel S., Drzezga A., Grothe M.J., Barthel H., Chételat G., Schuff N., Skudlarski P., Cavedo E., Frisoni G.B., Hoffmann W. Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection. Lancet Neurol. 2015;14:1037–1053.
    1. Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996:267–288.
    1. Tierney M., Szalai J., Snow W., Fisher R., Nores A., Nadon G., Dunn E., George-Hyslop P.S. Prediction of probable Alzheimer's disease in memory-impaired patients a prospective longitudinal study. Neurology. 1996;46:661–665.
    1. Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001;1:211–244.
    1. Tipping M.E., Faul A. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. 2003. Fast marginal likelihood maximisation for sparse Bayesian models.
    1. Tohka J., Moradi E., Huttunen H. Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia. Neuroinformatics. 2016;14:279–296.
    1. Tohka J., Zijdenbos A., Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage. 2004;23:84–97.
    1. Vergara I.A., Norambuena T., Ferrada E., Slater A.W., Melo F. Star: a simple tool for the statistical comparison of ROC curves. BMC Bioinf. 2008;9:1.
    1. Wang H., Nie F., Huang H., Risacher S., Ding C., Saykin A.J., Shen L. Computer Vision (ICCV), 2011 IEEE International Conference on. 2011. Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance; pp. 557–562.
    1. Wee C.-Y., Yap P.-T., Shen D. Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 2013;34:3411–3425.
    1. Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat Methodol. 2005;67:301–320.

Source: PubMed

3
Subskrybuj