Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans

Diego Moretti, Michael B Zimmermann, Rita Wegmüller, Thomas Walczyk, Christophe Zeder, Richard F Hurrell, Diego Moretti, Michael B Zimmermann, Rita Wegmüller, Thomas Walczyk, Christophe Zeder, Richard F Hurrell

Abstract

Background: Although ferric pyrophosphate is a promising compound for iron fortification of foods, few data are available on the effect of food matrices, processing, and ascorbic acid on its bioavailability.

Objective: We compared the relative bioavailability (RBV) of ferrous sulfate in an experimental form of micronized dispersible ferric pyrophosphate (MDFP) in a wheat-milk infant cereal given with and without ascorbic acid with the RBV of MDFP from a processed and unprocessed rice meal.

Design: A crossover design was used to measure iron absorption in young women (n = 26) from test meals fortified with isotopically labeled [57Fe]-MDFP and [58Fe]-ferrous sulfate, based on erythrocyte incorporation of stable isotope labels 14 d later.

Results: Geometric mean iron absorption from the wheat-based meal fortified with MDFP was 2.0% and that from the meal fortified with ferrous sulfate was 3.2% (RBV = 62). The addition of ascorbic acid at a molar ratio of 4:1 to iron increased iron absorption from MDFP to 5.8% and that from ferrous sulfate to 14.8% (RBV = 39). In the rice meals, mean iron absorption from MDFP added to the rice at the time of feeding was 1.7%, and that from ferrous sulfate was 11.6% (RBV = 15). The mean iron absorption from MDFP extruded into artificial rice grains was 3.0% and that from ferrous sulfate in unprocessed rice was 12.6% (RBV = 24). Sixteen of 26 subjects were iron deficient. Iron status was a highly significant predictor of the RBV of MDFP (P < 0.001).

Conclusion: RBV of the experimental MDFP varied markedly with food matrix and iron status. Assigning a single RBV value to poorly soluble compounds may be of limited value in evaluating their suitability for food fortification.

Source: PubMed

3
Subskrybuj