The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease

Ken Ohara, Takahiro Masuda, Masato Morinari, Mari Okada, Atsushi Miki, Saki Nakagawa, Takuya Murakami, Kentaro Oka, Maki Asakura, Yasuharu Miyazawa, Akito Maeshima, Tetsu Akimoto, Osamu Saito, Daisuke Nagata, Ken Ohara, Takahiro Masuda, Masato Morinari, Mari Okada, Atsushi Miki, Saki Nakagawa, Takuya Murakami, Kentaro Oka, Maki Asakura, Yasuharu Miyazawa, Akito Maeshima, Tetsu Akimoto, Osamu Saito, Daisuke Nagata

Abstract

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an antihyperglycemic drug with diuretic action. We recently reported that the SGLT2 inhibitor dapagliflozin ameliorates extracellular volume expansion with a mild increase in urine volume. However, the impact of the pretreatment extracellular volume status on the body fluid response to SGLT2 inhibitors remains unclear.

Methods: Thirty-six diabetic kidney disease (DKD) patients were treated with dapagliflozin. The body fluid volume, including intracellular water (ICW), extracellular water (ECW) and total body water (TBW), were measured on baseline and day 7 using a bioimpedance analysis (BIA) device. The ECW/TBW and ECW were used as markers of the extracellular volume status. For a comparison, the extracellular volume status responses to loop diuretic furosemide (n = 16) and vasopressin V2 receptor antagonist tolvaptan (n = 13) were analyzed.

Results: The body weight, brain natriuretic peptide and body fluid parameters measured by a BIA (ICW, ECW, TBW, and ECW/TBW) were significantly decreased for 1 week after dapagliflozin administration. The change in the ECW/TBW in the high-ECW/TBW group (over the median value of 0.413) was significantly higher than in the low-ECW/TBW group (- 2.1 ± 0.4 vs. - 0.5 ± 0.4%, p = 0.006). Only with dapagliflozin treatment (not furosemide or tolvaptan treatment) was the baseline ECW/TBW significantly correlated with the changes in the ECW/TBW (r = - 0.590, p < 0.001) and ECW (r = - 0.374, p = 0.025).

Conclusions: The pretreatment extracellular volume status predicts the body fluid response to the SGLT2 inhibitor dapagliflozin in DKD patients. The diminished extracellular fluid reduction effect of dapagliflozin in patients without severe extracellular fluid retention may contribute to maintaining a suitable body fluid status.

Keywords: BNP; Bioimpedance analysis; Extracellular volume expansion; Furosemide; Heart failure; Hypovolemia; Loop diuretic; SGLT2 inhibition; Tolvaptan; Vasopressin V2 receptor antagonist.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Absolute changes in the ECW/TBW depending on high vs. low ECW/TBW and the BNP at baseline. a The absolute change in the high-ECW/TBW group (over the median value of 0.413, n = 18) were significantly higher than those in the low-ECW/TBW group (less than the median value of 0.413, n = 18). b The absolute change in the high-BNP group (over the median value of 95.7 pg/mL, n = 14) were significantly higher than those in the low-BNP group (less than the median value of 95.7 pg/mL, n = 13). ECW extracellular water, TBW total body water. *p < 0.05 vs. low-ECW/TBW group or low-BNP group
Fig. 2
Fig. 2
The correlation between baseline ECW/TBW and the absolute change in ECW/TBW. In the furosemide (a) and tolvaptan (c) groups, the ECW/TBW level was not significantly correlated, while in the Dapagliflozin group (b), it was negatively and significantly correlated. ECW extracellular water, TBW total body water
Fig. 3
Fig. 3
The correlation between baseline ECW/TBW and the change in ECW. In the furosemide (a) and tolvaptan (c) groups, the ECW/TBW level was not significantly correlated, while in the Dapagliflozin group (b), it was negatively and significantly correlated. ECW extracellular water, TBW total body water

References

    1. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215–225. doi: 10.1007/s00125-016-4157-3.
    1. Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. 2019;29:190–198. doi: 10.1097/MNH.0000000000000584.
    1. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–39. doi: 10.1016/S0140-6736(18)32590-X.
    1. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–2306. doi: 10.1056/NEJMoa1811744.
    1. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 2019 doi: 10.3390/ijms20030629.
    1. Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, Imai T, Koepsell H, Muto S, Vallon V, Nagata D. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Renal Physiol. 2018;315(3):F653–F664. doi: 10.1152/ajprenal.00143.2018.
    1. Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, Okada M, Miki A, Myoga A, Sugase T, Sekiguchi C, Miyazawa Y, Maeshima A, Akimoto T, Saito O, Muto S, Nagata D. Effects of the sodium–glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology. 2019;24(9):904–911.
    1. Masuda T, Ohara K, Murakami T, Imai T, Nakagawa S, Okada M, Miki A, Myoga A, Onishi A, Sekiguchi C, Miyazawa Y, Akimoto T, Saito O, Muto S, Nagata D. Sodium–glucose cotransporter 2 inhibition with dapagliflozin ameliorates extracellular volume expansion in diabetic kidney disease patients. POJ Diabetes Obes. 2017;1(1):1–8.
    1. Faucon AL, Flamant M, Metzger M, Boffa JJ, Haymann JP, Houillier P, Thervet E, Vrtovsnik F, Stengel B, Geri G, Vidal-Petiot E. Extracellular fluid volume is associated with incident end-stage kidney disease and mortality in patients with chronic kidney disease. Kidney Int. 2019;96(4):1020–1029. doi: 10.1016/j.kint.2019.06.017.
    1. Kim CR, Shin JH, Hwang JH, Kim SH. Monitoring volume status using bioelectrical impedance analysis in chronic hemodialysis patients. ASAIO J. 2018;64(2):245–252. doi: 10.1097/MAT.0000000000000619.
    1. Tai R, Ohashi Y, Mizuiri S, Aikawa A, Sakai K. Association between ratio of measured extracellular volume to expected body fluid volume and renal outcomes in patients with chronic kidney disease: a retrospective single-center cohort study. BMC Nephrol. 2014;15:189. doi: 10.1186/1471-2369-15-189.
    1. Hung SC, Lai YS, Kuo KL, Tarng DC. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. J Am Heart Assoc. 2015 doi: 10.1161/JAHA.115.001918.
    1. Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, Vallon V, Nagata D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8:e14360. doi: 10.14814/phy2.14360.
    1. Gilbert RE, Thorpe KE. Acute kidney injury with sodium–glucose co-transporter-2 inhibitors: a meta-analysis of cardiovascular outcome trials. Diabetes Obes Metab. 2019;21(8):1996–2000. doi: 10.1111/dom.13754.
    1. Donnan JR, Grandy CA, Chibrikov E, Marra CA, Aubrey-Bassler K, Johnston K, Swab M, Hache J, Curnew D, Nguyen H, Gamble JM. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open. 2019;9(1):e022577. doi: 10.1136/bmjopen-2018-022577.
    1. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–992. doi: 10.1053/j.ajkd.2008.12.034.
    1. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO) Kidney Int. 2005;67(6):2089–2100. doi: 10.1111/j.1523-1755.2005.00365.x.
    1. Nagayama I, Masuda T, Nakagawa S, Murakami T, Ohara K, Matsuoka R, Kobayashi T, Maeshima A, Akimoto T, Saito O, Muto S, Nagata D. Different effects on fluid distribution between tolvaptan and furosemide in a liver cirrhosis patient with chronic kidney disease. Intern Med. 2019;58(11):1587–1591. doi: 10.2169/internalmedicine.2174-18.
    1. Masuda T, Ohara K, Nagayama I, Matsuoka R, Murakami T, Nakagawa S, Oka K, Asakura M, Igarashi Y, Fukaya Y, Miyazawa Y, Maeshima A, Akimoto T, Saito O, Nagata D. Impact of serum albumin levels on the body fluid response to tolvaptan in chronic kidney disease patients. Int Urol Nephrol. 2019;51:1623–1629. doi: 10.1007/s11255-019-02180-8.
    1. Masuda T, Murakami T, Igarashi Y, Okabe K, Kobayashi T, Takeda SI, Saito T, Sekiguchi C, Miyazawa Y, Akimoto T, Saito O, Muto S, Nagata D. Dual impact of tolvaptan on intracellular and extracellular water in chronic kidney disease patients with fluid retention. Intern Med. 2016;55(19):2759–2764. doi: 10.2169/internalmedicine.55.7133.
    1. InBody Co. L: InBody S10 User’s manual. 2015.
    1. Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation. 2013;127(4):500–507. doi: 10.1161/CIRCULATIONAHA.112.120485.
    1. Vasavada N, Agarwal R. Role of excess volume in the pathophysiology of hypertension in chronic kidney disease. Kidney Int. 2003;64(5):1772–1779. doi: 10.1046/j.1523-1755.2003.00273.x.
    1. Fagugli RM, Palumbo B, Ricciardi D, Pasini P, Santirosi P, Vecchi L, Pasticci F, Palumbo R. Association between brain natriuretic peptide and extracellular water in hemodialysis patients. Nephron Clin Pract. 2003;95(2):c60–c66. doi: 10.1159/000073669.
    1. Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, Haring HU, Stefan N, Fritsche A, Artunc F. Effect of SGLT2 inhibitors on body composition, fluid status and renin–angiotensin–aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46. doi: 10.1186/s12933-019-0852-y.
    1. Yasui A, Lee G, Hirase T, Kaneko T, Kaspers S, von Eynatten M, Okamura T. Empagliflozin induces transient diuresis without changing long-term overall fluid balance in Japanese patients with type 2 diabetes. Diabetes Ther. 2018;9(2):863–871. doi: 10.1007/s13300-018-0385-5.
    1. Kataoka H, Yoshida Y. Enhancement of the serum chloride concentration by administration of sodium–glucose cotransporter-2 inhibitor and its mechanisms and clinical significance in type 2 diabetic patients: a pilot study. Diabetol Metab Syndr. 2020;12:5. doi: 10.1186/s13098-020-0515-x.
    1. Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets. 2016;20(9):1109–1125. doi: 10.1517/14728222.2016.1168808.
    1. Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306(2):F188–F193. doi: 10.1152/ajprenal.00518.2013.
    1. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Juni P, Lettino M, Marx N, Mellbin LG, Ostgren CJ, Rocca B, Roffi M, Sattar N, Seferovic PM, Sousa-Uva M, Valensi P, Wheeler DC. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. doi: 10.1093/eurheartj/ehz486.
    1. van Bommel EJ, Muskiet MH, Tonneijck L, Kramer MH, Nieuwdorp M, van Raalte DH. SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin J Am Soc Nephrol. 2017;12(4):700–710. doi: 10.2215/CJN.06080616.

Source: PubMed

3
Subskrybuj