When Conventional Oxygen Therapy Fails-The Effectiveness of High-Flow Nasal Oxygen Therapy in Patients with Respiratory Failure in the Course of COVID-19

Marta Rorat, Wojciech Szymański, Tomasz Jurek, Maciej Karczewski, Jakub Zelig, Krzysztof Simon, Marta Rorat, Wojciech Szymański, Tomasz Jurek, Maciej Karczewski, Jakub Zelig, Krzysztof Simon

Abstract

High-flow nasal oxygen (HFNO) is recommended as a first-line treatment in patients with acute hypoxemic respiratory failure due to COVID-19. We assessed the effectiveness of HFNO and predictors of failure and death. The medical records of 200 consecutive adult patients treated with HFNO were analysed. Ninety-two patients (46%) were successfully cured, 52 (26%) required noninvasive ventilation, and 61 (30.5%) received intubation. Overall mortality was 40.5%. Risk factors of HFNO ineffectiveness were: SpO2 ≤ 90% with conventional oxygen therapy (HR 0.32, 95% CI 0.19-0.53, p < 0.001), SpO2 ≤ 74% without oxygen therapy (HR 0.44, 95% CI 0.27-0.71, p < 0.001), an age ≥ 60, comorbidities, biomarkers (C-reactive protein, procalcitonin, creatinine, lactate dehydrogenase), duration of symptoms before admission to hospital ≤ 9 days, start of treatment with HFNO ≤ 4 days. The multivariate logistic regression models (age ≥ 60, comorbidities, C-reactive protein concentration and SpO2 with oxygen therapy) revealed a high predictive value of death and HFNO failure (AUC 0.851, sensitivity 0.780, specificity 0.802; AUC 0.800, sensitivity 0.776, specificity 0.739, respectively). HFNO is a safe method for treating acute hypoxemic respiratory failure, with effectiveness reaching nearly 50%. Low values of SpO2 without and during oxygen therapy seem to be good diagnostic tools for predicting death and HFNO failure.

Keywords: SARS-CoV-2; acute respiratory distress syndrome; oxygen therapy.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)-China. China CDC Wkly. 2020;41:145–151.
    1. Auld S.C., Caridi-Scheible M., Blum J.M., Robichaux C., Kraft C., Jacob J.T., Jabaley C.S., Carpenter D., Kaplow R., Hernandez-Romieu A.C., et al. ICU and Ventilator Mortality Among Critically Ill Adults With Coronavirus Disease 2019. Crit. Care Med. 2020;48:e799–e804. doi: 10.1097/CCM.0000000000004457.
    1. Bellani G., Laffey J.G., Pham T., Fan E., Brochard L., Esteban A., Gattinoni L., van Haren F., Larsson A., McAuley D.F., et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. J. Am. Med. Assoc. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. ARDS Definition Task Force. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: The Berlin Definition. J. Am. Med. Assoc. 2012;307:2526–2533.
    1. Shang Y., Pan C., Yang X., Zhong M., Shang X., Wu Z., Yu Z., Zhang W., Zhong Q., Zheng X., et al. Management of critically ill patients with COVID-19 in ICU: Statement from front-line intensive care experts in Wuhan, China. Ann. Intensive Care. 2020;10:73. doi: 10.1186/s13613-020-00689-1.
    1. National Institute of Health COVID-19 Treatment Guidelines, 8 July 2021. [(accessed on 22 August 2021)]; Available online:
    1. World Health Organization COVID-19 Clinical Management. 25 January 2021. [(accessed on 22 August 2021)]. Available online: .
    1. Agency for Health Technology Assessment and Tariff System COVID-19 Recommendations. Polish Diagnostic, Therapeutic and Organizational Recommendations for the Care of Individuals Infected With SARS-CoV-2 or Exposed to a SARS-CoV-2 Infection. 25 April 2020. [(accessed on 22 August 2021)]; Available online: .
    1. Alhazzani W., Møller M.H., Arabi Y.M., Loeb M., Gong M.N., Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., et al. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19) Intensive Care Med. 2020;46:854–887. doi: 10.1007/s00134-020-06022-5.
    1. Nishimura M. High-flow nasal cannula oxygen therapy in adults: Physiological benefits, indication, clinical benefits, and adverse effects. Respir. Care. 2016;61:529–541. doi: 10.4187/respcare.04577.
    1. Frat J.P., Thille A.W., Mercat A., Girault C., Ragot S., Perbet S., Prat G., Boulain T., Morawiec E., Cottereau A., et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 2015;372:2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Rochwerg B., Granton D., Wang D.X., Helviz Y., Einav S., Frat J.P., Mekontso-Dessap A., Schreiber A., Azoulay E., Mercat A., et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: A systematic review and meta-analysis. Intensive Care Med. 2019;45:563–572. doi: 10.1007/s00134-019-05658-2.
    1. Nagata K., Morimoto T., Fujimoto D., Otoshi T., Nakagawa A., Otsuka K., Seo R., Atsumi T., Tomii K. Efficacy of high-flow nasal cannula therapy in acute hypoxemic respiratory failure: Decreased use of mechanical ventilation. Respir. Care. 2015;60:1390–1396. doi: 10.4187/respcare.04026.
    1. Plate J.D.J., Leenen L.P.H., Platenkamp M., Meijer J., Hietbrink F. Introducing high-flow nasal cannula oxygen therapy at the intermediate care unit: Expanding the range of supportive pulmonary care. Trauma Surg. Acute Care Open. 2018;3:e000179. doi: 10.1136/tsaco-2018-000179.
    1. Pan F., Ye T., Sun P., Gui S., Liang B., Li L., Zheng D., Wang J., Hesketh R.L., Yang L., et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19) Radiology. 2020;295:715–721. doi: 10.1148/radiol.2020200370.
    1. R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 22 August 2021)]. Available online:
    1. Stokes E.K., Zambrano L.D., Anderson K.N., Marder E.P., Raz K.M., Felix S.E.B., Tie Y., Fullerton K.E. Coronavirus disease 2019 case surveillance—United States, January 22–May 30, 2020. [(accessed on 22 August 2021)];MMWR Morb Mortal Wkly Rep. 2020 69:759–765. doi: 10.15585/mmwr.mm6924e2. Available online: .
    1. Centers for Disease Control and Prevention COVID Data Tracker. [(accessed on 18 August 2021)]; Available online: .
    1. Celejewska-Wójcik N., Polok K., Górka K., Stachura T., Kania A., Nastałek P., Lichołai S., Krawczyk J., Wójcik K., Sładek K. High-Flow Nasal Oxygen Therapy in the Treatment of Acute Respiratory Failure in Severe COVID-19 Pneumonia: A Prospective Observational Study. [(accessed on 18 August 2021)]. Available online:
    1. Kanecki K., Nitsch-Osuch A., Goryński P., Wojtyniak B., Juszczyk G., Bogdan M., Kosińska I., Tyszko P. Hospitalizations for COVID-19 in Poland: A study based on data from a national hospital register. Pol. Arch. Intern. Med. 2021;131:535–540.
    1. Potere N., Valeriani E., Candeloro M., Tana M., Porreca E., Abbate A., Spoto S., Rutjes A.W.S., Di Nisio M. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: A systematic review and meta-analysis. Crit. Care. 2020;24:389. doi: 10.1186/s13054-020-03022-1.
    1. Espinosa O.A., Zanetti A.D.S., Antunes E.F., Longhi F.G., Matos T.A., Battaglini P.F. Prevalence of comorbidities in patients and mortality cases affected by SARS-CoV2: A systematic review and meta-analysis. Rev. Inst. Med. Trop. Sao Paulo. 2020;62:e43. doi: 10.1590/s1678-9946202062043.
    1. Hu M., Zhou Q., Zheng R., Li X., Ling J., Chen Y., Jia J., Xie C. Application of high-flow nasal cannula in hypoxemic patients with COVID-19: A retrospective cohort study. BMC Pulm. Med. 2020;20:324. doi: 10.1186/s12890-020-01354-w.
    1. Calligaro G.L., Lalla U., Audley G., Gina P., Miller M.G., Mendelson M., Dlamini S., Wasserman S., Meintjes G., Peter J., et al. The utility of high-flow nasal oxygen for severe COVID-19 pneumonia in a resource-constrained setting: A multi-centre prospective observational study. EClinicalMedicine. 2020;28:100570. doi: 10.1016/j.eclinm.2020.100570.
    1. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5.
    1. Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M., Lee M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;323:1612–1614. doi: 10.1001/jama.2020.4326.
    1. Rorat M., Zińczuk A., Szymański W., Simon K., Guziński M. Usefulness of a portable chest radiograph in the initial diagnosis of coronavirus disease 2019. Pol. Arch. Intern. Med. 2020;130:906–909.
    1. Demoule A., Vieillard Baron A., Darmon M., Beurton A., Géri G., Voiriot G., Dupont T., Zafrani L., Girodias L., Labbé V., et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am. J. Respir. Crit. Care Med. 2020;202:1039–1042. doi: 10.1164/rccm.202005-2007LE.
    1. Rorat M., Jurek T., Simon K., Guziński M. Value of quantitative analysis in lung computed tomography in patients severely ill with COVID-19. PLoS ONE. 2021;16:e0251946. doi: 10.1371/journal.pone.0251946.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Malik P., Patel U., Mehta D., Patel N., Kelkar R., Akrmah M., Gabrilove J.L., Sacks H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid. Based Med. 2021;26:107–108. doi: 10.1136/bmjebm-2020-111536.
    1. Messika J., Ben A.K., Gaudry S., Miguel-Montanes R., Rafat C., Sztrymf B., Dreyfuss D., Ricard J.D. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: A 1-year observational study. Respir. Care. 2015;60:162–169. doi: 10.4187/respcare.03423.
    1. National Institute of Health COVID-19 Treatment Guidelines, 17 December 2021. [(accessed on 22 August 2021)]; Available online:
    1. Zucman N., Mullaert J., Roux D., Roca O., Ricard J.D. Contributors. Prediction of outcome of nasal high flow use during COVID-19-related acute hypoxemic respiratory failure. Intensive Care Med. 2020;46:1924–1926. doi: 10.1007/s00134-020-06177-1.
    1. Wang K., Zhao W., Li J., Shu W., Duan J. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann. Intensive Care. 2020;10:37. doi: 10.1186/s13613-020-00653-z.
    1. Patel M., Gangemi A., Marron R., Chowdhury J., Yousef I., Zheng M., Mills N., Tragesser L., Giurintano J., Gupta R., et al. Retrospective analysis of high flow nasal therapy in COVID-19-related moderate-to-severe hypoxaemic respiratory failure. BMJ Open Respir. Res. 2020;7:e000650. doi: 10.1136/bmjresp-2020-000650.
    1. Windisch W., Weber-Carstens S., Kluge S., Rossaint R., Welte T., Karagiannidis C. Invasive and non-invasive ventilation in patients with COVID-19. Dtsch. Arztebl. Int. 2020;117:528–533. doi: 10.3238/arztebl.2020.0528.
    1. Sztrymf B., Messika J., Bertrand F., Hurel D., Leon R., Dreyfuss D., Ricard J.D. Beneficial effects of humidified high flow nasal oxygen in critical care patients: A prospective pilot study. Intensive Care Med. 2011;37:1780–1786. doi: 10.1007/s00134-011-2354-6.
    1. Carteaux G., Millán-Guilarte T., De Prost N., Razazi K., Abid S., Thille A.W., Schortgen F., Brochard L., Brun-Buisson C., Mekontso Dessap A. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: Role of tidal volume. Crit. Care Med. 2016;44:282–290. doi: 10.1097/CCM.0000000000001379.
    1. Kangelaris K.N., Ware L.B., Wang C.Y., Janz D.R., Zhuo H., Matthay M.A., Calfee C.S. Timing of intubation and clinical outcomes in adults with acute respiratory distress syndrome. Crit. Care Med. 2016;44:120–129. doi: 10.1097/CCM.0000000000001359.
    1. Roca O., Caralt B., Messika J., Samper M., Sztrymf B., Hernández G., García-de-Acilu M., Frat J.P., Masclans J.R., Ricard J.D. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am. J. Respir. Crit. Care Med. 2019;199:1368–1376. doi: 10.1164/rccm.201803-0589OC.
    1. Tatkov S. Nasal High-Flow Therapy: Role of FiO2 in the ROX Index. Am. J. Respir. Crit. Care Med. 2019;200:115–116. doi: 10.1164/rccm.201902-0376LE.
    1. Chu D.K., Kim L.H., Young P.J., Zamiri N., Almenawer S.A., Jaeschke R., Szczeklik W., Schunemann H.J., Neary J.D., Alhazzani W. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): A systematic review and meta-analysis. Lancet. 2018;391:1693–1705. doi: 10.1016/S0140-6736(18)30479-3.
    1. Barrot L., Asfar P., Mauny F., Winiszewski H., Montini F., Badie J., Quenot J.P., Pili-Floury S., Bouhemad B., Louis G., et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N. Engl. J. Med. 2020;382:999–1008. doi: 10.1056/NEJMoa1916431.
    1. Shenoy N., Luchtel R., Gulani P. Considerations for target oxygen saturation in COVID-19 patients: Are we under-shooting? BMC Med. 2020;18:260. doi: 10.1186/s12916-020-01735-2.

Source: PubMed

3
Subskrybuj