Prostaglandin E2 As a Modulator of Viral Infections

Willem J Sander, Hester G O'Neill, Carolina H Pohl, Willem J Sander, Hester G O'Neill, Carolina H Pohl

Abstract

Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.

Keywords: immunity; inflammation; prostaglandin E2; therapeutic agents; viral infection.

Figures

Figure 1
Figure 1
The biosynthesis pathway of PGE2. (A) Production of PGE2 is initiated with the liberation of AA by cPLA2. Arachidonic acid can then enter one of three pathways. (B) Lipoxygenase (LOX) converts AA to hydroperoxyeicosatetraenoic acid (HPETE) which is converted to leukotriene A2 (LTA2) and is further converted in the remainder of the leukotriene family (B4–E4) which are mainly responsible for lipid signaling. (C) Cytochrome P450 can also use AA as substrate which subsequently produces 16, 20- hydroxyicosatetraenoic acid (HETE) and 14, 15-epoxyeicosatrienoic acid (EET) which function in autocrine and paracrine signaling. (D) Arachidonic acid is converted to PGH2 by die COX isoenzymes. (E) Prostaglandin H2 is the precursor for all the other prostaglandins and can be converted into PGE2 (via PGE2 synthase [cPGES, mPGES-1 and mPGES-2)], PGD2 (PGD2 synthase), PGI2 (Prostacyclin synthase), TXA2 (TX synthase) which functions as a vasoconstrictor. (F) PGF2α can be produced from PGH2 directly by endoproxide reductase or form PGE2 via 9-ketoreductase. Adapted from Jenkins et al. (2009).
Figure 2
Figure 2
PGE2-EP receptor signaling pathways. Following the synthesis of PGE2, the prostanoid is exported and signals via four known receptors (EP1–EP4). The receptors then active cAMP/PKA/CREB signaling pathways which are responsible for the major suppressive and regulatory functions of PGE2. Adapted from Nasrallah et al. (2014) and Sugimoto and Narumiya (2007).
Figure 3
Figure 3
The interaction between the innate and adaptive immunity in the presence of pathogens. (A) Upon viral infection the infected cell presents the viral antigen on the major histocompatibility complex (MHC)-I. (B) Cytotoxic T cells (Tc) and natural killer cells (NK) can then bind to these viral antigens and (C) lead to the destruction of the cell. (D) Viral particles neutralized by pre-existing antibodies can be engulfed by macrophages via antibody neutralization. (E) This leads to viral antigens being presented by dendritic cells (DC), shown in blue on MHC-ll and the resulting antigen presenting cells (APC) activating Tc and NK and releasing cytokines. (F) T helper cells bind to these viral antigens and differentiate into Th1 or Th2 responses. T helper cells are also responsible for the activation of B cells. (G) The B cells transform into plasma cells which start producing antibodies specific toward the antigen and differentiate into B memory cells. (H) Toll-like receptors are an integral part of the innate immunity and function via two pathways activating NFκB, mitogen-activated kinases and type I IFN. (I). The complement system composes of different pathways that lead to the destruction of infected cells. Adapted from Rouse and Sehrawat (2010).
Figure 4
Figure 4
Effect of PGE2 on immune responses. Prostaglandin E2 suppresses the Th1- and natural killer (NK) cell-mediated type I form of immunity at their sites of induction, while supporting local acute inflammation and phagocyte mediated immunity. Prostaglandin E2 regulates the influx and activity of the effector vs. the regulatory cells into affected tissues. Purple indicates effects on immune suppression; blue indicates effects on immunity against intracellular pathogens, while green indicates effects on extracellular pathogens; ↑ increase; ↓ decrease. Interleukin (IL), interferon (IFN), tumor necrosis factor (TNF), Immunoglobulin (Ig). Toll-like receptors (TLRs) Adapted from Kalinski (2012).

References

    1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (eds.) (2002). Helper T Cells and lymphocyte activation, in Molecular Biology of the Cell (New York, NY: Garland Science; ).
    1. Alfajaro M. M., Choi J.-S., Kim D.-S., Seo J.-Y., Kim J.-Y., Park J.-G., et al. . (2017). Activation of COX-2/PGE2 promotes sapovirus replication via the inhibition of nitric oxide production. J. Virol. 91:e01656–e01716. 10.1128/JVI.01656-16
    1. Aoshi T., Koyama S., Kobiyama K., Akira S., Ishii K. J. (2011). Innate and adaptive immune responses to viral infection and vaccination. Curr. Opin. Virol. 1, 226–232. 10.1016/j.coviro.2011.07.002
    1. Aronoff D. M., Canetti C., Peters-Golden M. (2004). Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J. Immunol. 173, 559–565. 10.4049/jimmunol.173.1.559
    1. Baltimore D. (1971). Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241.
    1. Banchereau J., Steinman R. M. (1998). Dendritic cells and the control of immunity. Nature 392, 245–252. 10.1038/32588
    1. Bankhurst A. D. (1982). The modulation of human natural killer cell activity by prostaglandins. J. Clin. Lab. Immunol. 7, 85–91.
    1. Bao Y., Pucci M. L., Chan B. S., Lu R., Ito S., Schuster V. L., et al. . (2002). Prostaglandin transporter PGT is expressed in cell types that synthesize and release prostanoids. Am. J. Physiol. Renal Physiol. 282, F1103–F1110. 10.1152/ajprenal.00152.2001
    1. Baratelli F., Lin Y., Zhu L., Yang S.-C., Heuzé-Vourc'h N., Zeng G., et al. . (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J. Immunol. 175, 1483–1490. 10.4049/jimmunol.175.3.1483
    1. Bartz H., Büning-Pfaue F., Türkel O., Schauer U. (2002). Respiratory syncytial virus induces prostaglandin E2, IL-10 and IL-11 generation in antigen presenting cells. Clin. Exp. Immunol. 129, 438–445. 10.1046/j.1365-2249.2002.01927.x
    1. Bergmann C., Strauss L., Zeidler R., Lang S., Whiteside T. L. (2007). Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res. 67, 8865–8873. 10.1158/0008-5472.CAN-07-0767
    1. Biron C. A., Byron K. S., Sullivan J. L. (1989). Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735. 10.1056/NEJM198906293202605
    1. Boniface K., Bak-Jensen K. S., Li Y., Blumenschein W. M., McGeachy M. J., McClanahan T. K., et al. . (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med. 206, 535–548. 10.1084/jem.20082293
    1. Brandstadter J. D., Yang Y. (2011). Natural killer cell responses to viral infection. J. Innate Immun. 3, 274–279. 10.1159/000324176
    1. Brandt L., Scient C., Benfield T., Mens H., Clausen L. N., Katzenstein T. L., et al. . (2011). Low level of regulatory T Cells and maintenance of balance between regulatory T cells and Th17 cells in HIV-1 – infected elite controllers. J. Acquir. Immune Defic. Syndr. 57, 101–108. 10.1097/QAI.0b013e318215a991
    1. Brubaker S. W., Bonham K. S., Zanoni I., Kagan J. C. (2015). Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290. 10.1146/annurev-immunol-032414-112240
    1. Calder P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochem. Soc. Trans. 33, 423–427. 10.1042/BST0330423
    1. Calder P. C. (2006). n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83, 1505S–1519S.
    1. Calder P. C. (2010). Omega-3 fatty acids and inflammatory processes. Nutrients 2, 355–374. 10.3390/nu2030355
    1. Canetti C., Serezani C. H., Atrasz R. G., White E. S., Aronoff D. M., Peters-Golden M. (2007). Activation of phosphatase and tensin homolog on chromosome 10 mediates theinhibition of FcγR phagocytosis by prostaglandin E,2. J. Immunol. 179, 8350–8356. 10.4049/jimmunol.179.12.8350
    1. Carini C., Hudspith B. N., Brostoff J. (1981). Effect of prostaglandins and cyclic nucleotides on growth and immunoglobulin secretion of two IgE myeloma cell lines. Br. J. Cancer 43, 257–260.
    1. Cerwenka A., Lanier L. L. (2001). Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1, 41–49. 10.1038/35095564
    1. Chan C. W., Crafton E., Fan H.-N., Flook J., Yoshimura K., Skarica M., et al. . (2006). Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med. 12, 207–213. 10.1038/nm1352
    1. Chen J. H., Perry C. J., Tsui Y.-C., Staron M. M., Parish I. A., Dominguez C. X., et al. . (2015). Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334. 10.1038/nm.3831
    1. Chen N., Restivo A., Reiss C. S. (2002). Selective inhibition of COX-2 is beneficial to mice infected intranasally with VSV. Prostaglandins Other Lipid Mediat. 67, 143–155. 10.1016/S0090-6980(01)00185-X
    1. Chen N., Warner J. L., Reiss C. S. (2000). NSAID treatment suppresses VSV propagation in mouse CNS. Virology 276, 44–51. 10.1006/viro.2000.0562
    1. Chen Y., Liu H., Xu S., Wang T., Li W. (2015). Targeting microsomal prostaglandin E2 synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). Med. Chem. Commun. 6, 2081–2123. 10.1039/C5MD00278H
    1. Cheung W., Gill M., Esposito A., Kaminski C. F., Courousse N., Chwetzoff S., et al. . (2010). Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J. Virol. 84, 6782–6798. 10.1128/JVI.01757-09
    1. Chevalier M. F., Petitjean G., Dunyach-Rémy C., Didier C., Girard P.-M., Manea M. E., et al. . (2013). The Th17/Treg ratio, IL-1RA and sCD14 levels in primary HIV infection predict the T-cell activation set point in the absence of systemic microbial translocation. PLoS Pathog. 9:e1003453. 10.1371/journal.ppat.1003453
    1. Clemente M. I., Álvarez S., Serramí M. J., Martínez-Bonet M., Muñoz-Fernández M. Á. (2014). Prostaglandin E2 reduces the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer. PLoS ONE 9:e85230. 10.1371/journal.pone.0085230
    1. Coulombe F., Jaworska J., Verway M., Tzelepis F., Massoud A., Gillard J., et al. . (2014). Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity 40, 554–568. 10.1016/j.immuni.2014.02.013
    1. Davies P., Bailey P. J., Goldenberg M. M., Ford-Hutchinson A. W. (1984). The Role of arachidonic acid oxygenation products in pain and inflammation. Annu. Rev. Immunol. 2, 335–357. 10.1146/annurev.iy.02.040184.002003
    1. Degraaf A. J., Zasłona Z., Bourdonnay E., Peters-Golden M. (2014). Prostaglandin E2 reduces toll-like receptor 4 expression in alveolar macrophages by inhibition of translation. Am. J. Respir. Cell Mol. Biol. 51, 242–250. 10.1165/rcmb.2013-0495OC
    1. Delves P. J., Roitt I. M. (2000). The immune system. N. Engl. J. Med. 343, 108–117. 10.1056/NEJM200007063430107
    1. Dennis E. A., Norris P. C. (2015). Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523. 10.1038/nri3859
    1. Dörner T., Radbruch A. (2007). Antibodies and B cell memory in viral immunity. Immunity 27, 384–392. 10.1016/j.immuni.2007.09.002
    1. Fensterl V., Sen G. C. (2009). Interferons and viral infections. BioFactors 35, 14–20. 10.1002/biof.6
    1. Fitzgerald D. W., Bezak K., Ocheretina O., Riviere C., Wright T. C., Milne G. L., et al. . (2012). The effect of HIV and HPV coinfection on cervical COX-2 expression and systemic prostaglandin E2 levels. Cancer Prev. Res. 5, 34–40. 10.1158/1940-6207.CAPR-11-0496
    1. Flowers M., Sherker A., Sinclair S. B., Greig P. D., Cameron R., Phillips M. J., et al. . (1994). Prostaglandin E in the treatment of recurrent hepatitis B infection after orthotopic liver transplantation. Transplantation 58, 183–191.
    1. Förstermann U., Neufang B. (1983). Elimination from the circulation of cats of 6-keto-prostaglandin E1 compared with prostaglandins E2 and I2. J. Pharm. Pharmacol. 35, 724–728. 10.1111/j.2042-7158.1983.tb02878.x
    1. Fujino H., Salvi S., Regan J. W. (2005). Differential regulation of phosphorylation of the cAMP response element binding protein following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Mol. Pharmacol. 68, 251–259. 10.1124/mol.105.011833
    1. Fujino H., West K. A., Regan J. W. (2002). Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J. Biol. Chem. 277, 2614–2619. 10.1074/jbc.M109440200
    1. Fujino H., Xu W., Regan J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J. Biol. Chem. 278, 12151–12156. 10.1074/jbc.M212665200
    1. Funk C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875. 10.1126/science.294.5548.1871
    1. Gandhi J., Gaur N., Khera L., Kaul R., Robertson E. S. (2015). COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology 484, 1–14. 10.1016/j.virol.2015.05.006
    1. Gomi K., Zhu F. G., Marshall J. S. (2000). Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. J. Immunol. 165, 6545–6552. 10.4049/jimmunol.165.11.6545
    1. Guererero C. A., Murillo A., Acosta O. (2012). Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists and NSAIDs. Antiviral Res. 96, 1–12. 10.1016/j.antiviral.2012.06.011
    1. Guerrero C. A., Acosta O. (2016). Inflammatory and oxidative stress in rotavirus infection. World J. Virol. 5, 38–62. 10.5501/wjv.v5.i2.38
    1. Harbour D. A., Blyth W. A., Hill T. J. (1978). Prostaglandins enhance spread of herpes simplex virus in cell cultures. J. Gen. Virol. 41, 87–95. 10.1099/0022-1317-41-1-87
    1. Harris S. G., Padilla J., Koumas L., Ray D., Phipps R. P. (2002). Prostaglandins as modulators of immunity. Trends Immunol. 23, 144–150. 10.1016/S1471-4906(01)02154-8
    1. Hata A. N., Breyer R. M. (2004). Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther. 103, 147–166. 10.1016/j.pharmthera.2004.06.003
    1. Hawkey C. J. (2001). COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol. 15, 801–820. 10.1053/bega.2001.0236
    1. Hayes M. M., Lane B. R., King S. R., Markovitz D. M., Coffey M. J. (2002). Prostaglandin E2 inhibits replication of HIV-1 in macrophages through activation of protein kinase A. Cell. Immunol. 215, 61–71. 10.1016/S0008-8749(02)00017-5
    1. He Y., Li J., Zheng Y., Luo Y., Zhou H., Yao Y., et al. . (2012). A randomized case–control study of dynamic changes in peripheral blood Th17/Treg cell balance and interleukin-17 levels in highly active antiretroviral-treated HIV Type 1/AIDS patients. AIDS Res. Hum. Retroviruses 28, 339–345. 10.1089/aid.2011.0140
    1. Henke A., Spengler H.-P., Stelzner A., Nain M., Gemsa D. (1992). Lipopolysaccharide suppresses cytokine release from coxsackie virus-infected human monocytes. Res. Immunol. 143, 65–70.
    1. Hess N. C. L., Carlson D. J., Inder J. D., Jesulola E., Mcfarlane J. R., Smart N. A. (2016). Clinically meaningful blood pressure reductions with low intensity isometric handgrip exercise. A randomized trial. Physiol. Res. 65, 461–468. 10.1017/CBO9781107415324.004
    1. Holzer U., Reinhardt K., Lang P., Handgretinger R., Fischer N. (2013). Influence of a mutation in IFN-γ receptor 2 (IFNGR2) in human cells on the generation of Th17 cells in memory T cells. Hum. Immunol. 74, 693–700. 10.1016/j.humimm.2013.02.002
    1. Hooks J. J., Chin M. S., Srinivasan K., Momma Y., Hooper L. C., Nagineni C. N., et al. . (2006). Human cytomegalovirus induced cyclooxygenase-2 in human retinal pigment epithelial cells augments viral replication through a prostaglandin pathway. Microbes Infect. 8, 2236–2244. 10.1016/j.micinf.2006.04.010
    1. Hu Z. Q., Asano K., Seki H., Shimamura T. (1995). An essential role of prostaglandin E on mouse mast cell induction. J. Immunol. 155, 2134–2142.
    1. Hubbard L. L. N., Ballinger M. N., Thomas P. E., Wilke C. A., Standiford T. J., Kobayashi K. S., et al. . (2010). A role for IL-1 receptor-associated kinase-M in prostaglandin E2-induced immunosuppression post-bone marrow transplantation. J. Immunol. 184, 6299–6308. 10.4049/jimmunol.0902828
    1. Hyman A., Yim C., Krajden M., Read S., Basinski A. S. H., Wanless I., et al. . (1999). Oral prostaglandin (PGE2) therapy for chronic viral hepatitis B and C. J. Viral Hepat. 6, 329–336. 10.1046/j.1365-2893.1999.00161.x
    1. Jackson L., Hawkey C. (2000). Cox-2 selective nonsteroidal anti-inflammatory drugs: do they really offer any advantages? Drugs 59, 1207–1216. 10.2165/00003495-200059060-00001
    1. Janeway C. A., Jr., Travers P., Walport M., Shlomchik M. J. (2004). Immunobiology : The Immune System in Health and Disease. 6th Edn. New York, NY: Garland Science.
    1. Jenkins C. M., Cedars A., Gross R. W. (2009). Eicosanoid signalling pathways in the heart. Cardiovasc. Res. 82, 240–249. 10.1093/cvr/cvn346
    1. Joshi P. C., Zhou X. C., Cuchens M., Jones Q. (2001). Prostaglandin E2 suppressed IL-15-mediated human NK cell function through down-regulation of common gamma-chain. J. Immunol. 166, 885–891. 10.4049/jimmunol.166.2.885
    1. Jost S., Altfeld M. (2013). Control of human viral infections by natural killer cells. Annu. Rev. Immunol. 31, 163–194. 10.1146/annurev-immunol-032712-100001
    1. Kabashima K., Sakata D., Nagamachi M., Miyachi Y., Inaba K., Narumiya S. (2003). Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat.Med. 9, 744–749. 10.1038/nm872
    1. Kalinski P. (2012). Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28. 10.4049/jimmunol.1101029
    1. Kalinski P., Hilkens C. M., Snijders A., Snijdewint F. G., Kapsenberg M. L. (1997). IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35.
    1. Kanai N., Lu R., Satriano J. A., Bao Y., Wolkoff A. W., Schuster V. L. (1995). Identification and characterization of a prostaglandin transporter. Science 268, 866–869. 10.1126/science.7754369
    1. Katze M. G., He Y., Gale M., Jr. (2002). Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687. 10.1038/nri888
    1. Kawai T., Akira S. (2005). Pathogen recognition with TLRs. Curr. Opin. Immunol. 17, 338–344. 10.1016/j.coi.2005.02.007
    1. Kawai T., Akira S. (2006). Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137. 10.1038/ni1303
    1. Kawai T., Akira S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384. 10.1038/ni.1863
    1. Kirkpatrick P. (2005). Oestrogen activates COX2 pathway Blocking the route to infection. Discovery 4, 485–487. 10.1126/science.1103333
    1. Kline J. N., Hunninghake G. M., He B., Monick M. M., Hunninghake G. W. (1998). Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp. Lung Res. 24, 3–14.
    1. Konson A., Mahajna J. A., Danon A., Rimon G., Agbaria R. (2006). The involvement of nuclear factor-kappa β in cyclooxygenase-2 overexpression in murine colon cancer cells transduced with herpes simplex virus thymidine kinase gene. Cancer Gene Ther. 13, 1093–1104. 10.1038/sj.cgt.7700983
    1. Koonin E. V., Senkevich T. G., Dolja V. V. (2006). The ancient virus world and evolution of cells. Biol. Direct 1:29. 10.1186/1745-6150-1-29
    1. Krause P., Bruckner M., Uermösi C., Singer E., Groettrup M., Legler D. F. (2009). Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells. Blood 113, 2451–2460. 10.1182/blood-2008-05-157123
    1. Kuno S., Ueno R., Hayaishi O., Nakashima H., Harada S., Yamamoto N. (1986). Prostaglandin E2, a seminal constituent, facilitates the replication of acquired immune deficiency syndrome virus in vitro. Proc. Natl. Acad. Sci. U.S.A. 83, 3487–3490.
    1. Legler D. F., Krause P., Scandella E., Singer E., Groettrup M. (2006). Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J. Immunol. 176, 966–973. 10.4049/jimmunol.176.2.966
    1. Leslie C. C. (2004). Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot. Essent. Fatty Acids 4, 373–376. 10.1016/j.plefa.2003.12.012
    1. Litman G. W., Cannon J. P., Dishaw L. J. (2005). Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol. 5, 866–879. 10.1038/nri1712
    1. Liu L., Cao Z., Chen J., Li R., Cao Y., Zhu C., et al. . (2012). Influenza A virus induces interleukin-27 through cyclooxygenase-2 and protein kinase A signaling. J. Biol. Chem. 287, 11899–11910. 10.1074/jbc.M111.308064
    1. Liu T., Zaman W., Kaphalia B. S., Ansari G. A. S., Garofalo R. P., Casola A. (2005). RSV-induced prostaglandin E2 production occurs via cPLA2 activation: role in viral replication. Virology 343, 12–24. 10.1016/j.virol.2005.08.012
    1. Luczak M., Giymulka W., Szlviigielski S., Koi~becki M. (1975). Inhibition of multiplieation of parainfluenza 3 virus in prostaglandin-treated WISH cells. Arch. Virol. 49, 377–380.
    1. Mackay I. R., Rosen F. S., Medzhitov R., Janeway C. (2000). Innate immunity. N. Engl. J. Med. 343, 338–344. 10.1056/NEJM200008033430506
    1. MacKenzie K. F., Clark K., Naqvi S., McGuire V. A., Nöehren G., Kristariyanto Y., et al. (2013). PGE2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J. Immunol. 190, 565–577. 10.4049/jimmunol.1202462
    1. Mahic M., Yaqub S., Johansson C. C., Tasken K., Aandahl E. M. (2006). FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J. Immunol. 177, 246–254. 10.4049/jimmunol.177.1.246
    1. Mailliard R. B., Alber S. M., Shen H., Watkins S. C. (2005). IL-18–induced CD83+ CCR7+ NK helper cells. October 202, 941–953. 10.1084/jem.20050128
    1. Murakami M., Kudo I. (2004). Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog. Lipid Res. 43, 3–35. 10.1016/S0163-7827(03)00037-7
    1. Murakami M., Kudo I. (2006). Prostaglandin E synthase: a novel drug target for inflammation and cancer. Curr. Pharm. Des. 12, 943–954. 10.2174/138161206776055912
    1. Muthuswamy R., Urban J., Lee J.-J., Reinhart T. A., Bartlett D., Kalinski P. (2008). Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 68, 5972–5978. 10.1158/0008-5472.CAN-07-6818
    1. Napolitani G., Acosta-Rodriguez E. V., Lanzavecchia A., Sallusto F. (2009). Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-γ production by memory CD4+ T cells. Eur. J. Immunol. 39, 1301–1312. 10.1002/eji.200838969
    1. Nasrallah R., Hassouneh R., Hebert R. L. (2014). Chronic kidney disease: targeting prostaglandin E2 receptors. Am. J. Physiol. Ren. Physiol. 307, F243–F250. 10.1152/ajprenal.00224.2014
    1. Nishigaki N., Negishi M., Ichikawa A. (1996). Two Gs-coupled prostaglandin E receptor subtypes, EP2 and EP4, differ in desensitization and sensitivity to the metabolic inactivation of the agonist. Mol. Pharmacol. 50, 1031–1037. 10.1254/fpj.108.supplement_65
    1. Nokta M. A., Hassan M. I., Loesch K., Pollard R. B. (1996). Human cytomegalovirus-induced immunosuppression relationship to and prostaglandin E2 in human monocytes. J. Clin. Invest 97, 2635–2641.
    1. Obermajer N., Muthuswamy R., Lesnock J., Edwards R. P., Kalinski P. (2011). Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118, 5498–5505. 10.1182/blood-2011-07-365825
    1. Olivier M., Tremblay M. J. (1998). Prostaglandin E2 up-regulates HIV-1 long terminal repeat-driven gene activity in T cCells via NFκB-dependent and -independent signaling pathways. Mol. Biol. 273, 27306–27314.
    1. Orange J. S. (2002). Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4, 1545–1558. 10.1016/S1286-4579(02)00038-2
    1. Owaki T., Asakawa M., Morishima N., Mizoguchi I., Fukai F., Takeda K., et al. (2008). STAT3 is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. J. Immunol. 180, 2903–2911. 10.4049/jimmunol.180.5.2903
    1. Park J. H., Park E. B., Lee J. Y., Min J. Y. (2016). Identification of novel membrane-associated prostaglandin E synthase-1 (mPGES-1) inhibitors with anti-influenza activities in vitro. Biochem. Biophys. Res. Commun. 469, 848–855. 10.1016/j.bbrc.2015.11.129
    1. Park J. Y., Pillinger M. H., Abramson S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol. 119, 229–240. 10.1016/j.clim.2006.01.016
    1. Pasare C., Medzhitov R. (2004). Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382–1387. 10.1016/j.micinf.2004.08.018
    1. Phipps R. P., Stein S. H., Roper R. L. (1991). A new view of prostaglandin E regulation of the immune response. Immunol. Today 12, 349–352. 10.1016/0167-5699(91)90064-Z
    1. Reid G., Wielinga P., Zelcer N., van der Heijden I., Kuil A., de Haas M., et al. . (2003). The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl. Acad. Sci. U.S.A. 100, 9244–9249. 10.1073/pnas.1033060100
    1. Ricciotti E., FitzGerald G. A. (2011). Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000. 10.1161/ATVBAHA.110.207449
    1. Rodríguez L.-S., Barreto A., Franco M. A., Angel J. (2009). Immunomodulators released during rotavirus infection of polarized Caco-2 cells. Viral Immunol. 22, 163–172. 10.1089/vim.2008.0110
    1. Romagnani S. (1992). Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int. J. Clin. Lab. Res. 21, 152–158. 10.1007/BF02591635
    1. Rossen J. W. A., Bouma J., Raatgeep R. H. C., Büller H. A., Einerhand A. W. C. (2004). Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step. J. Virol. 78, 9721–9730. 10.1128/JVI.78.18.9721-9730.2004
    1. Rouse B. T., Sehrawat S. (2010). Immunity and immunopathology to viruses: what decides the outcome? Nat. Rev. Immunol. 10, 514–526. 10.1038/nri2802
    1. Russel F. G. M., Koenderink J. B., Masereeuw R. (2008). Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci. 29, 200–207. 10.1016/j.tips.2008.01.006
    1. Samikkannu T., Rao K. V. K., Ding H., Agudelo M., Raymond A. D., Yoo C., et al. . (2014). Immunopathogenesis of HIV infection in cocaine users: Role of arachidonic acid. PLoS ONE 9:e106348. 10.1371/journal.pone.0106348
    1. Samuel C. E. (2001). Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809. 10.1128/CMR.14.4.778-809.2001
    1. Sant A. J., McMichael A. (2012). Revealing the role of CD4+ T cells in viral immunity. J. Exp. Med. 209, 1391–1395. 10.1084/jem.20121517
    1. Schröer J., Shenk T. (2008). Inhibition of cyclooxygenase activity blocks cell-to-cell spread of human cytomegalovirus. Proc. Natl. Acad. Sci. U.S.A. 105, 19468–19473. 10.1073/pnas.0810740105
    1. Schuster V. L. (2002). Prostaglandin transport. Prostaglandins Other Lipid Mediat. 68–69, 633–647. 10.1016/S0090-6980(02)00061-8
    1. Serezani C. H., Chung J., Ballinger M. N., Moore B. B., Aronoff D. M., Peters-Golden M. (2007). Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase. Am. J. Respir. Cell Mol. Biol. 37, 562–570. 10.1165/rcmb.2007-0153OC
    1. Serhan C. N., Levy B. (2003). Success of prostaglandin E2 in structure-function is a challenge for structure-based therapeutics. Proc. Natl. Acad. Sci. U.S.A. 100, 8609–8611. 10.1073/pnas.1733589100
    1. Sharma S., Yang S.-C., Zhu L., Reckamp K., Gardner B. (2005). Tumor cyclooxygenase-2 / prostaglandin E 2 − dependent promotion of FOXP3 expression and CD4 + CD25 + T regulatory cell activities in lung cancer. Cancer Res. 65, 5211–5220. 10.1158/0008-5472.CAN-05-0141
    1. Simkin N. J., Jelinek D. F., Lipsky P. E. (1987). Inhibition of human B cell responsiveness by prostaglandin E2. J. Immunol. 138, 1074–1081.
    1. Smith W. L. (1989). The eicosanoids and their biochemical mechanisms of action. Biochem. J. 259, 315–324. 10.1042/bj2590315
    1. Snijdewint F. G., Kaliński P., Wierenga E. A., Bos J. D., Kapsenberg M. L. (1993). Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol. 150, 5321–5329.
    1. Sonnenfeld G., Merigan T. C. (1979). The role of interferon in viral infections. Springer Semin. Immunopathol. 338, 311–338.
    1. Soontrapa K., Honda T., Sakata D., Yao C., Hirata T., Hori S., et al. . (2011). Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc. Natl. Acad. Sci. U.S.A. 108, 6668–6673. 10.1073/pnas.1018625108
    1. Stavnezer J., Amemiya C. T. (2004). Evolution of isotype switching. Semin. Immunol. 16, 257–275. 10.1016/j.smim.2004.08.005
    1. Steinman R. M. (2003). Some interfaces of dendritic cell biology. APMIS 111, 675–697. 10.1034/j.1600-0463.2003.11107802.x
    1. Sugimoto Y., Nambas T., Honda A., Hayashis Y., Negishi M., Ichikawa A., et al. . (1992). Cloning and expression of a cDNA for mouse prostaglandin E Receptor EP3 Subtype. J. Biol. Chem. 267, 6463–6466.
    1. Sugimoto Y., Narumiya S. (2007). Prostaglandin E receptors. J. Biol. Chem. 282, 11613–11617. 10.1074/jbc.R600038200
    1. Sugimoto Y., Narumiya S., Ichikawa A. (2000). Distribution and function of prostanoid receptors: studies from knockout mice. Prog. Lipid Res. 39, 289–314. 10.1016/S0163-7827(00)00008-4
    1. Sun H. Q., Zhang J. Y., Zhang H., Zou Z. S., Wang F. S., Jia J. H. (2012). Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J. Viral Hepat. 19, 396–403. 10.1111/j.1365-2893.2011.01561.x
    1. Tai H. H., Ensor C. M., Tong M., Zhou H., Yan F. (2002). Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat. 68–69, 483–493. 10.1016/S0090-6980(02)00050-3
    1. Takeuchi O., Akira S. (2009). Innate immunity to virus infection. Immunol. Rev. 227, 75–86. 10.1111/j.1600-065X.2008.00737.x
    1. Thiry E., Mignon B., Thalasso F., Pastoret P. P. (1985). Effect of prostaglandins PGE2 and PGF2α on the mean plaque size of bovine herpesvirus 1. Ann. Rech. Vet. 16, 80–85.
    1. Thivierge M., Le Gouill C., Tremblay M. J., Stanková J., Rola-Pleszczynski M. (1998). Prostaglandin E2 induces resistance to human immunodeficiency virus-1 infection in monocyte-derived macrophages: downregulation of CCR5 expression by cyclic adenosine monophosphate. Blood 92, 40–45.
    1. Tung W. H., Hsieh H. L., Yang C. M. (2010a). Enterovirus 71 induces COX-2 expression via MAPKs, NF-κB, and AP-1 in SK-N-SH cells: Role of PGE2 in viral replication. Cell. Signal. 22, 234–246. 10.1016/j.cellsig.2009.09.018
    1. Tung W. H., Hsieh H. L., Lee I. T., Yang C. M. (2011). Enterovirus 71 modulates a COX-2/PGE2/cAMP-dependent viral replication in human neuroblastoma cells: role of the c-Src/EGFR/p42/p44 MAPK/CREB signaling pathway. J. Cell. Biochem. 112, 559–570. 10.1002/jcb.22946
    1. Tung W. H., Lee I. T., Hsieh H. L., Yang C. M. (2010b). EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-κB in rat brain astrocytes. J. Cell. Physiol. 224, 376–386. 10.1002/jcp.22133
    1. van der Pouw Kraan T. C. (1995). Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J. Exp. Med. 181, 775–779. 10.1084/jem.181.2.775
    1. Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. (2008). Functions of natural killer cells. Nat. Immunol. 9, 503–510. 10.1038/ni1582
    1. Walker J. D., Sehgal I., Kousoulas K. G. (2011). Oncolytic herpes simplex virus 1 encoding 15-prostaglandin dehydrogenase mitigates immune suppression and reduces ectopic primary and metastatic breast cancer in mice. J. Virol. 85, 7363–7371. 10.1128/JVI.00098-11
    1. Walker W., Rotondo D. (2004). Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell interferon-γ synthesis. Immunology 111, 298–305. 10.1111/j.1365-2567.2004.01810.x
    1. Walsh P., Behrens N., Chaigneau F. R. C., McEligot H., Agrawal K., Newman J. W., et al. (2016). A randomized placebo controlled trial of Ibuprofen for respiratory syncytial virus infection in a bovine nodel. PLoS ONE 11:e0152913 10.1371/journal.pone.0152913
    1. Wang H., Zhang D., Ge M., Li Z., Jiang J., Li Y. (2015). Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE2 expression. Virol. J. 12, 35 10.1186/s12985-015-0264-x
    1. Xagorari A., Chlichlia K. (2008). Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol. J. 2, 49–59. 10.2174/1874285800802010049
    1. Xie H., Gao L., Chai N., Song J., Wang J., Song Z., et al. . (2009). Potent cell growth inhibitory effects in hepatitis B virus X protein positive hepatocellular carcinoma cells by the selective cyclooxygenase-2 inhibitor celecoxib. Mol. Carcinog. 48, 56–65. 10.1002/mc.20455
    1. Xie Y., Chen R., Zhang X., Yu Y., Yang Y., Zou Y., et al. . (2012). Blockade of interleukin-17A protects against coxsackievirus B3-induced myocarditis by increasing COX-2/PGE2 production in the heart. FEMS Immunol. Med. Microbiol. 64, 343–351. 10.1111/j.1574-695X.2011.00918.x
    1. Xu X. J., Reichner J. S., Mastrofrancesco B., Henry W. L., Albina J. E. (2008). Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN- production. J. Immunol. 180, 2125–2131. 10.4049/jimmunol.180.4.2125
    1. Xue-Song L., Cheng-Zhong L., Ying Z., Mo-Bin W. (2012). Changes of Treg and Th17 cells balance in the development of acute and chronic hepatitis B virus infection. BMC Gastroenterol. 12:43. 10.1186/1471-230X-12-43
    1. Yamashiro Y., Shimizu T., Oguchi T., Sato M. (1989). Prostaglandins in the plasma and stool of children with rotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 9, 322–327.
    1. Yang B., Wang Y., Zhao C., Yan W., Che H., Shen C., et al. . (2013). Increased Th17 cells and interleukin-17 contribute to immune activation and disease aggravation in patients with chronic hepatitis B virus infection. Immunol. Lett. 149, 41–49. 10.1016/j.imlet.2012.12.001
    1. Zambrano-Zaragoza J. F., Romo-Martínez E. J., Durán-Avelar M., de J., García-Magallanes N., Vibanco-Pérez N. (2014). Th17 Cells in Autoimmune and Infectious Diseases. Int. J. Inflam. 2014, 1–12. 10.1155/2014/651503
    1. Zhu H., Cong J.-P., Yu D., Bresnahan W. A., Shenk T. E. (2002). Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc. Natl. Acad. Sci. U.S.A. 99, 3932–3937. 10.1073/pnas.052713799
    1. Zijlstra R. T., McCracken B. A., Odle J., Donovan S. M., Gelberg H. B., Petschow B. W., et al. . (1999). Malnutrition modifies pig small intestinal inflammatory responses to rotavirus. J. Nutr. 129, 838–843.
    1. Zurier R. B. (2014). Prostaglandins, leukotrienes, and related compounds, in Encyclopedia of Medical Immunology, eds Mackey I. R., Rose N. R., Diamond B., Davidson A.(New York, NY: Springer New York; ), 905–916.

Source: PubMed

3
Subskrybuj