Clinical practice guidelines for laboratory diagnosis of epidermolysis bullosa

C Has, L Liu, M C Bolling, A V Charlesworth, M El Hachem, M J Escámez, I Fuentes, S Büchel, R Hiremagalore, G Pohla-Gubo, P C van den Akker, K Wertheim-Tysarowska, G Zambruno, C Has, L Liu, M C Bolling, A V Charlesworth, M El Hachem, M J Escámez, I Fuentes, S Büchel, R Hiremagalore, G Pohla-Gubo, P C van den Akker, K Wertheim-Tysarowska, G Zambruno

Abstract

Linked Comment: https://doi.org/10.1111/bjd.18377.

https://doi.org/10.1111/bjd.18829 available online

Figures

Figure 1
Figure 1
Schematic representation of intraepidermal and dermoepidermal adhesion structures with proteins relevant to epidermolysis bullosa.
Figure 2
Figure 2
Flowchart of laboratory diagnosis of epidermolysis bullosa (EB). Schematic representation of the steps required to achieve a molecular diagnosis of EB. Steps shown in green lead to a clear diagnosis of the EB type or subtype, while steps shown in red may require individualized strategies in a research setting. IFM, immunofluorescence mapping; MLPA, multiplex ligation‐dependent probe amplification; NGS, next‐generation sequencing; qPCR, quantitative polymerase chain reaction; TEM, transmission electron microscopy; WES, whole‐exome sequencing.

References

    1. Zeng X, Zhang Y, Kwong JSW et al The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta‐analysis, and clinical practice guideline: a systematic review. J Evid Based Med 2015; 8:2–10.
    1. Health Improvement Scotland . SIGN100: a handbook for patient and carer representatives. Available at: (last accessed 2 July 2019).
    1. Has C, Fischer J. Inherited epidermolysis bullosa: new diagnostics and new clinical phenotypes. Exp Dermatol 2019; 10.1111/exd.13668.
    1. Yenamandra VK, Moss C, Sreenivas V et al Development of a clinical diagnostic matrix for characterizing inherited epidermolysis bullosa. Br J Dermatol 2017; 176:1624–32.
    1. Almaani N, Liu L, Dopping‐Hepenstal PJC et al Identical glycine substitution mutations in type VII collagen may underlie both dominant and recessive forms of dystrophic epidermolysis bullosa. Acta Derm Venereol 2011; 91:262–6.
    1. Fine JD, Bruckner‐Tuderman L, Eady RA et al Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol 2014; 70:1103–26.
    1. Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. J Am Acad Dermatol 2009; 61:367–84.
    1. Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J Am Acad Dermatol 2009; 61:387–402.
    1. Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J. Phenotypic spectrum of epidermolysis bullosa, the paradigm of syndromic versus non‐syndromic skin fragility disorders. J Invest Dermatol 2019; 139:522–7.
    1. Schwieger‐Briel A, Fuentes I, Castiglia D et al Epidermolysis bullosa simplex with KLHL24 mutations is associated with dilated cardiomyopathy. J Invest Dermatol 2019; 139:244–9.
    1. Has C, Spartà G, Kiritsi D et al Integrin α3 mutations with kidney, lung, and skin disease. N Engl J Med 2012; 366:1508–14.
    1. Vahidnezhad H, Youssefian L, Saeidian AH et al Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa‐like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019; 81:91–106.
    1. Vahidnezhad H, Youssefian L, Saeidian AH et al Recessive mutation in tetraspanin CD151 causes Kindler syndrome‐like epidermolysis bullosa with multi‐systemic manifestations including nephropathy. Matrix Biol 2018; 66:22–33.
    1. Has C, Bruckner‐Tuderman L. The genetics of skin fragility. Annu Rev Genomics Hum Genet 2014; 15:245–68.
    1. McGrath JA. Recently identified forms of epidermolysis bullosa. Ann Dermatol 2015; 27:658–66.
    1. Feinstein JA, Jambal P, Peoples K et al Assessment of the timing of milestone clinical events in patients with epidermolysis bullosa from North America. JAMA Dermatol 2019; 155:196–203.
    1. Henneman L, Borry P, Chokoshvili D et al Responsible implementation of expanded carrier screening. Eur J Hum Genet 2016; 24:e1.
    1. Klausegger A, Pulkkinen L, Pohla‐Gubo G et al Is screening of the candidate gene necessary in unrelated partners of members of families with Herlitz junctional epidermolysis bullosa? J Invest Dermatol 2001; 116:474–5.
    1. Vahidnezhad H, Youssefian L, Saeidian AH et al Multigene next‐generation sequencing panel identifies pathogenic variants in patients with unknown subtype of epidermolysis bullosa: subclassification with prognostic implications. J Invest Dermatol 2017; 137:2649–52.
    1. Has C, Küsel J, Reimer A et al The position of targeted next‐generation sequencing in epidermolysis bullosa diagnosis. Acta Derm Venereol 2018; 98:437–40.
    1. Lucky AW, Dagaonkar N, Lammers K et al A comprehensive next‐generation sequencing assay for the diagnosis of epidermolysis bullosa. Pediatr Dermatol 2018; 35:188–97.
    1. Vahidnezhad H, Youssefian L, Zeinali S et al Dystrophic epidermolysis bullosa: COL7A1 mutation landscape in a multi‐ethnic cohort of 152 extended families with high degree of customary consanguineous marriages. J Invest Dermatol 2017; 137:660–9.
    1. Takeichi T, Liu L, Fong K et al Whole‐exome sequencing improves mutation detection in a diagnostic epidermolysis bullosa laboratory. Br J Dermatol 2015; 172:94–100.
    1. Yenamandra VK, Vellarikkal SK, Kumar M et al Application of whole exome sequencing in elucidating the phenotype and genotype spectrum of junctional epidermolysis bullosa: a preliminary experience of a tertiary care centre in India. J Dermatol Sci 2017; 86:30–6.
    1. Matthijs G, Souche E, Alders M et al Guidelines for diagnostic next‐generation sequencing. Eur J Hum Genet 2016; 24:2–5.
    1. Rehm HL, Berg JS, Plon SE. ClinGen and ClinVar – enabling genomics in precision medicine. Hum Mutat 2018; 39:1473–5.
    1. Landrum MJ, Kattman BL. ClinVar at five years: delivering on the promise. Hum Mutat 2018; 39:1623–30.
    1. Tenedini E, Artuso L, Bernardis I et al Amplicon‐based next‐generation sequencing: an effective approach for the molecular diagnosis of epidermolysis bullosa. Br J Dermatol 2015; 173:731–8.
    1. Jónsson H, Sulem P, Arnadottir GA et al Multiple transmissions of de novo mutations in families. Nat Genet 2018; 50:1674–80.
    1. Lin Z, Li S, Feng C et al Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat Genet 2016; 48:1508–16.
    1. McGrath JA, Stone KL, Begum R et al Germline mutation in EXPH5 implicates the Rab27B effector protein Slac2‐b in inherited skin fragility. Am J Hum Genet 2012; 91:1115–21.
    1. He Y, Maier K, Leppert J et al Monoallelic mutations in the translation initiation codon of KLHL24 cause skin fragility. Am J Hum Genet 2016; 99:1395–404.
    1. Vahidnezhad H, Youssefian L, Saeidian AH et al Next generation sequencing identifies double homozygous mutations in two distinct genes (EXPH5 and COL17A1) in a patient with concomitant simplex and junctional epidermolysis bullosa. Hum Mutat 2018; 39:1349–54.
    1. Mayer B, Silló P, Mazán M et al A unique LAMB3 splice‐site mutation with founder effect from the Balkans causes lethal epidermolysis bullosa in several European countries. Br J Dermatol 2016; 175:721–7.
    1. Youssefian L, Vahidnezhad H, Barzegar M et al The Kindler syndrome: a spectrum of FERMT1 mutations in Iranian families. J Invest Dermatol 2015; 135:1447–50.
    1. Takeichi T, Nanda A, Liu L et al Founder mutation in dystonin‐e underlying autosomal recessive epidermolysis bullosa simplex in Kuwait. Br J Dermatol 2015; 172:527–31.
    1. Szczecinska W, Nesteruk D, Wertheim‐Tysarowska K et al Under‐recognition of acral peeling skin syndrome: 59 new cases with 15 novel mutations. Br J Dermatol 2014; 171:1206–10.
    1. Wertheim‐Tysarowska K, Ołdak M, Giza A et al Novel sporadic and recurrent mutations in KRT5 and KRT14 genes in Polish epidermolysis bullosa simplex patients: further insights into epidemiology and genotype–phenotype correlation. J Appl Genet 2016; 57:175–81.
    1. Kim EN, Harris AG, Bingham LJ et al A review of 52 pedigrees with epidermolysis bullosa simplex identifying ten novel mutations in KRT5 and KRT14 in Australia. Acta Derm Venereol 2017; 97:1114–19.
    1. Ben BA, Laroussi N, Mesrati H et al Genetic basis of dominant dystrophic epidermolysis bullosa in Tunisian families and co‐occurrence of dominant and recessive mutations. J Eur Acad Dermatol Venereol 2016; 30:155–7.
    1. Turczynski S, Titeux M, Pironon N et al Marked intrafamilial phenotypic heterogeneity in dystrophic epidermolysis bullosa caused by inheritance of a mild dominant glycine substitution and a novel deep intronic recessive COL7A1 mutation. Br J Dermatol 2016; 174:1122–5.
    1. Bolling MC, Jongbloed JDH, Boven LG et al Plectin mutations underlie epidermolysis bullosa simplex in 8% of patients. J Invest Dermatol 2014; 134:273–6.
    1. Kyrova J, Kopeckova L, Buckova H et al Epidermolysis bullosa simplex with muscular dystrophy. Review of the literature and a case report. J Dermatol Case Rep 2016; 10:39–48.
    1. Fuentes I, Campos M, Repetto G et al Molecular epidemiology of junctional epidermolysis bullosa: discovery of novel and frequent LAMB3 mutations in Chilean patients with diagnostic significance. Br J Dermatol 2017; 176:1090–2.
    1. Richards S, Aziz N, Bale S et al Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17:405–24.
    1. Pfendner EG, Nakanol A, Pulkkinen L et al Prenatal diagnosis for epidermolysis bullosa: a study of 144 consecutive pregnancies at risk. Prenat Diagn 2003; 23:447–56.
    1. Fassihi H, Eady RAJ, Mellerio JE et al Prenatal diagnosis for severe inherited skin disorders: 25 years’ experience. Br J Dermatol 2006; 154:106–13.
    1. den Dunnen JT, Dalgleish R, Maglott DR et al HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 2016; 37:564–9.
    1. Van den Akker PC, Jonkman MF, Rengaw T et al The international dystrophic epidermolysis bullosa patient registry: an online database of dystrophic epidermolysis bullosa patients and their COL7A1 mutations. Hum Mutat 2011; 32:1100–7.
    1. Szeverenyi I, Cassidy AJ, Cheuk WC et al The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 2008; 29:351–60.
    1. Has C, Castiglia D, del Rio M et al Kindler syndrome: extension of FERMT1 mutational spectrum and natural history. Hum Mutat 2011; 32:1204–12.
    1. Komori T, Dainichi T, Otsuka A et al Mild dystrophic epidermolysis bullosa associated with homozygous gene mutation c.6216+5G>T in type VII collagen ultrastructurally suggestive of the decreased number of anchoring fibrils. J Dermatol 2018; 45:e305–6.
    1. Vahidnezhad H, Youssefian L, Jazayeri A, Uitto J. Research techniques made simple: genome‐wide homozygosity/autozygosity mapping is a powerful tool for identifying candidate genes in autosomal recessive genetic diseases. J Invest Dermatol 2018; 138:1893–900.
    1. Vahidnezhad H, Youssefian L, Saeidian AH et al Genome‐wide single nucleotide polymorphism‐based autozygosity mapping facilitates identification of mutations in consanguineous families with epidermolysis bullosa. Exp Dermatol 2019; 10.1111/exd.13501.
    1. Mizrachi‐Koren M, Shemer S, Morgan M et al Homozygosity mapping as a screening tool for the molecular diagnosis of hereditary skin diseases in consanguineous populations. J Am Acad Dermatol 2006; 55:393–401.
    1. Bolling MC, Lemmink HH, Jansen GHL, Jonkman MF. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients. Br J Dermatol 2011; 164:637–44.
    1. Chmel N, Danescu S, Gruler A et al a deep‐intronic FERMT1 mutation causes Kindler syndrome: an explanation for genetically unsolved cases. J Invest Dermatol 2015; 135:2876–9.
    1. Has C, Schumann H, Leppert J et al Monoallelic large intragenic KRT5 deletions account for genetically unsolved cases of epidermolysis bullosa simplex. J Invest Dermatol 2017; 137:2231–4.
    1. Chmel N, Bornert O, Hausser I et al Large deletions targeting the triple‐helical domain of collagen VII lead to mild acral dominant dystrophic epidermolysis bullosa. J Invest Dermatol 2018; 138:987–91.
    1. Fuchs‐Telem D, Nousbeck J, Singer A et al New intragenic and promoter region deletion mutations in FERMT1 underscore genetic homogeneity in Kindler syndrome. Clin Exp Dermatol 2014; 39:361–7.
    1. Gostyńska KB, Nijenhuis M, Lemmink H et al Mutation in exon 1a of PLEC, leading to disruption of plectin isoform 1a, causes autosomal‐recessive skin‐only epidermolysis bullosa simplex. Hum Mol Genet 2015; 24:3155–62.
    1. Yenamandra VK, Bhari N, Ray SB et al Diagnosis of inherited epidermolysis bullosa in resource‐limited settings: immunohistochemistry revisited. Dermatology 2017; 233:326–32.
    1. Leclerc‐Mercier S, Fraitag S. Histopathological diagnosis of inherited epidermolysis bullosa. Ann Dermatol Venereol 2011; 138:782–7.
    1. Has C, He Y. Research techniques made simple: immunofluorescence antigen mapping in epidermolysis bullosa. J Invest Dermatol 2016; 136:e65–71.
    1. Petronius D, Bergman R, Ben Izhak O et al A comparative study of immunohistochemistry and electron microscopy used in the diagnosis of epidermolysis bullosa. Am J Dermatopathol 2003; 25:198–203.
    1. Bergman R, Harel A, Sprecher E. Dyskeratosis as a histologic feature in epidermolysis bullosa simplex‐Dowling Meara. J Am Acad Dermatol 2007; 57:463–6.
    1. Schmutz JL, Trechot P. Note the irritant effect of Emla® cream potentially leading to diagnostic errors. Ann Dermatol Venereol 2012; 139:82–3.
    1. Kieliszak CR, Griffin JR, Pollinger TH, Junkins‐Hopkins JM. Pseudo‐bullous dermatosis induced by topical anesthetic agent – clues to this localized toxic reaction. Am J Dermatopathol 2017; 39:e19–22.
    1. Pohla‐Gubo G, Nischler E, Hintner H. Antigen mapping In: Life with Epidermolysis Bullosa (EB): Etiology, Diagnosis, Multidisciplinary Care and Therapy (Fine JD, Hintner H, eds). New York: Springer, 2009; 35–42.
    1. Intong LRA, Murrell DF. How to take skin biopsies for epidermolysis bullosa. Dermatol Clin 2010; 28:197–200.
    1. Pohla‐Gubo G, Cepeda‐Valdes R, Hintner H. Immunofluorescence mapping for the diagnosis of epidermolysis bullosa. Dermatol Clin 2010; 28:201–10.
    1. Pohla‐Gubo G, Kraus L, Hintner H. Role of immunofluorescence microscopy in dermatology. G Ital Dermatol Venereol 2011; 146:127–42.
    1. Barzegar M, Asadi‐Kani Z, Mozafari N et al Using immunofluorescence (antigen) mapping in the diagnosis and classification of epidermolysis bullosa: a first report from Iran. Int J Dermatol 2015; 54:e416–23.
    1. Michel B, Milner Y, David K. Preservation of tissue‐fixed immunoglobulins in skin biopsies of patients with lupus erythematosus and bullous diseases. J Invest Dermatol 1973; 59:449–52.
    1. Vaughan Jones SA, Palmer I, Bhogal BS et al The use of Michel's transport medium for immunofluorescence and immunoelectron microscopy in autoimmune bullous diseases. J Cutan Pathol 1995; 22:365–70.
    1. Cepeda‐Valdés R, Pohla‐Gubo G, Borbolla‐Escoboza JR et al Immunofluorescence mapping for diagnosis of congenital epidermolysis bullosa. Actas Dermosifiliogr 2010; 101:673–82.
    1. Yiasemides E, Walton J, Marr P et al A comparative study between transmission electron microscopy and immunofluorescence mapping in the diagnosis of epidermolysis bullosa. Am J Dermatopathol 2006; 28:387–94.
    1. Berk DR, Jazayeri L, Marinkovich MP et al Diagnosing epidermolysis bullosa type and subtype in infancy using immunofluorescence microscopy: the Stanford experience. Pediatr Dermatol 2013; 30:226–33.
    1. Hiremagalore R, Kubba A, Bansel S, Jerajani H. Immunofluorescence mapping in inherited epidermolysis bullosa: a study of 86 cases from India. Br J Dermatol 2015; 172:384–91.
    1. He Y, Balasubramanian M, Humphreys N et al Intronic ITGA3 mutation impacts splicing regulation and causes interstitial lung disease, nephrotic syndrome, and epidermolysis bullosa. J Invest Dermatol 2016; 136:1056–9.
    1. Yalcin EG, He Y, Orhan D et al Crucial role of posttranslational modifications of integrin α3 in interstitial lung disease and nephrotic syndrome. Hum Mol Genet 2015; 24:3679–88.
    1. Pearson RW. Studies on the pathogenesis of epidermolysis bullosa. J Invest Dermatol 1962; 39:551–75.
    1. Hashimoto I, Anton‐Lamprecht I, Gedde‐Dahl T, Schnyder UW. Ultrastructural studies in epidermolysis bullosa heriditaria. I. Dominant dystrophic type of Pasini. Arch Dermatol Res 1975; 252:167–78.
    1. Rodeck C, Eady RA, Gosden C. Prenatal diagnosis of epidermolysis bullosa letalis. Lancet 1980; 1:949–52.
    1. Eady RA, Dopping‐Hepenstal PJ. Transmission electron microscopy for the diagnosis of epidermolysis bullosa. Dermatol Clin 2010; 28:211–22.
    1. McGrath JA, Ishida‐Yamamoto A, Tidman MJ et al Epidermolysis bullosa simplex (Dowling‐Meara). A clinicopathological review. Br J Dermatol 1992; 126:421–30.
    1. Irvine AD, Rugg EL, Lane EB et al Molecular confirmation of the unique phenotype of epidermolysis bullosa simplex with mottled pigmentation. Br J Dermatol 2001; 144:40–5.
    1. Rugg E, McLean W, Lane E et al A functional ‘knockout’ of human keratin 14. Genes Dev 1994; 8:2563–73.
    1. Chan YM, Anton‐Lamprecht I, Yu QC et al A human keratin 14 ‘knockout’: the absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev 1994; 8:2574–87.
    1. Tidman MJ, Eady RA. Hemidesmosome heterogeneity in junctional epidermolysis bullosa revealed by morphometric analysis. J Invest Dermatol 1986; 86:51–6.
    1. McGrath JA, Gatalica B, Christiano AM et al Mutations in the 180‐kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat Genet 1995; 11:83–6.
    1. Nakano A, Chao SC, Pulkkinen L et al Laminin 5 mutations in junctional epidermolysis bullosa: molecular basis of Herlitz versus non‐Herlitz phenotypes. Hum Genet 2002; 110:41–51.
    1. Yuen WY, Lemmink HH, Van Dijk‐Bos KK et al Herlitz junctional epidermolysis bullosa: diagnostic features, mutational profile, incidence and population carrier frequency in the Netherlands. Br J Dermatol 2011; 165:1314–22.
    1. Nakano A, Pulkkinen L, Murrell D et al Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the β4 integrin gene (ITGB4) and genotype/phenotype correlations. Pediatr Res 2001; 49:618–26.
    1. Ruzzi L, Gagnoux‐Palacios L, Pinola M et al A homozygous mutation in the integrin α6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 1997; 99:2826–31.
    1. Jonkman MF, Pas HH, Nijenhuis M et al Deletion of a cytoplasmic domain of integrin β4 causes epidermolysis bullosa simplex. J Invest Dermatol 2002; 119:1275–81.
    1. Huber M, Frenk E, Hohl D et al Deletion of the cytoplasmatic domain of BP180/collagen XVII causes a phenotype with predominant features of epidermolysis bullosa simplex. J Invest Dermatol 2002; 118:185–92.
    1. McLean WI, Irvine AD, Hamill KJ et al An unusual N‐terminal deletion of the laminin α3a isoform leads to the chronic granulation tissue disorder laryngo‐onycho‐cutaneous syndrome. Hum Mol Genet 2003; 12:2395–409.
    1. Posteraro P, De Luca N, Meneguzzi G et al Laminin‐5 mutational analysis in an Italian cohort of patients with junctional epidermolysis bullosa. J Invest Dermatol 2004; 123:639–48.
    1. Yuen WY, Pas HH, Sinke RJ, Jonkman MF. Junctional epidermolysis bullosa of late onset explained by mutations in COL17A1 . Br J Dermatol 2011; 164:1280–4.
    1. Tidman MJ, Eady RA. Evaluation of anchoring fibrils and other components of the dermal‐epidermal junction in dystrophic epidermolysis bullosa by a quantitative ultrastructural technique. J Invest Dermatol 1985; 84:374–7.
    1. Hashimoto K, Matsumoto M, Iacobelli D. Transient bullous dermolysis of the newborn. Arch Dermatol 1985; 121:1429–38.
    1. Diociaiuti A, Castiglia D, Giancristoforo S et al Frequent occurrence of aplasia cutis congenita in bullous dermolysis of the newborn. Acta Derm Venereol 2016; 96:784–7.
    1. Heinecke G, Marinkovich MP, Rieger KE. Intraepidermal type VII collagen by immunofluorescence mapping: a specific finding for bullous dermolysis of the newborn. Pediatr Dermatol 2017; 34:308–14.
    1. Shimizu H, Sato M, Ban M et al Immunohistochemical, ultrastructural, and molecular features of Kindler syndrome distinguish it from dystrophic epidermolysis bullosa. Arch Dermatol 1997; 133:1111–17.
    1. Claustres M, Kožich V, Dequeker E et al Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic). Eur J Hum Genet 2014; 22:160–70.
    1. Hovnanian A, Rochat A, Bodemer C et al Characterization of 18 new mutations in COL7A1 in recessive dystrophic epidermolysis bullosa provides evidence for distinct molecular mechanisms underlying defective anchoring fibril formation. Am J Hum Genet 1997; 61:599–610.
    1. Escámez MJ, García M, Cuadrado‐Corrales N et al The first COL7A1 mutation survey in a large Spanish dystrophic epidermolysis bullosa cohort: c.6527insC disclosed as an unusually recurrent mutation. Br J Dermatol 2010; 163:155–61.
    1. Cuadrado‐Corrales N, Sánchez‐Jimeno C, García M et al A prevalent mutation with founder effect in Spanish recessive dystrophic epidermolysis bullosa families. BMC Med Genet 2010; 11:139.
    1. Sanchez‐Jimeno C, Cuadrado‐Corrales N, Aller E et al Recessive dystrophic epidermolysis bullosa: the origin of the c.6527insC mutation in the Spanish population. Br J Dermatol 2013; 168:226–9.
    1. Rodríguez FA, Gana MJ, Yubero MJ et al Novel and recurrent COL7A1 mutations in Chilean patients with dystrophic epidermolysis bullosa. J Dermatol Sci 2012; 65:149–52.
    1. Hammersen J, Has C, Naumann‐Bartsch N et al Genotype, clinical course, and therapeutic decision making in 76 infants with severe generalized junctional epidermolysis bullosa. J Invest Dermatol 2016; 136:2150–7.
    1. Schwieger‐Briel A, Weibel L, Chmel N et al A COL7A1 variant leading to in‐frame skipping of exon 15 attenuates disease severity in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2015; 173:1308–11.
    1. Shipman AR, Liu L, Lai‐Cheong JE et al Somatic forward (nonrevertant) mosaicism in recessive dystrophic epidermolysis bullosa. JAMA Dermatol 2014; 150:1025–7.
    1. Cserhalmi‐Friedman PB, Garzon MC, Guzman E et al Maternal germline mosaicism in dominant dystrophic epidermolysis bullosa. J Invest Dermatol 2001; 117:1327–8.

Source: PubMed

3
Subskrybuj