Electromagnetic image guidance in gynecology: prospective study of a new laparoscopic imaging and targeting technique for the treatment of symptomatic uterine fibroids

Donald I Galen, Donald I Galen

Abstract

Background: Uterine fibroids occur singly or as multiple benign tumors originating in the myometrium. Because they vary in size and location, the approach and technique for their identification and surgical management vary. Reference images, such as ultrasound images, magnetic resonance images, and sonohystograms, do not provide real-time intraoperative findings.

Methods: Electromagnetic image guidance, as incorporated in the Acessa Guidance System, has been cleared by the FDA to facilitate targeting and ablation of uterine fibroids during laparoscopic surgery. This is the first feasibility study to verify the features and usefulness of the guidance system in targeting symptomatic uterine fibroids-particularly hard-to-reach intramural fibroids and those abutting the endometrium. One gynecologic surgeon, who had extensive prior experience in laparoscopic ultrasound-guided identification of fibroids, treated five women with symptomatic uterine fibroids using the Acessa Guidance System. The surgeon evaluated the system and its features in terms of responses to prescribed statements; the responses were analyzed prospectively.

Results: The surgeon strongly agreed (96 %) or agreed (4 %) with statements describing the helpfulness of the transducer and handpiece's dynamic animation in targeting each fibroid, reaching the fibroid quickly, visualizing the positions of the transducer and handpiece within the pelvic cavity, and providing the surgeon with confidence when targeting the fibroid even during "out-of-plane" positioning of the handpiece.

Conclusions: The surgeon's positive user experience was evident in the guidance system's facilitation of accurate handpiece tip placement during targeting and ablation of uterine fibroids. Continued study of electromagnetic image guidance in the laparoscopic identification and treatment of fibroids is warranted. ClinicalTrials.gov Identifier: NCT01842789.

Figures

Fig. 1
Fig. 1
Surgeon’s view of real-time operative screens (from left-to-right): laparoscopic view of radiofrequency ablation handpiece inserted into a large intramural fibroid, Acessa Guidance screens, and Acessa System screen prior to deployment of electrode array
Fig. 2
Fig. 2
Acessa Guidance screens. (Left) Laparoscopic ultrasound view of Acessa handpiece tip entering fibroid from left to right within the two (purple) virtual tracking lines of the target zone; (right) computer-generated view of the relationship of the ultrasound beam and trajectory of the handpiece tip into uterus and fibroid

References

    1. Day Baird D, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188:100–107. doi: 10.1067/mob.2003.99.
    1. Ghant MS, Sengoba KS, Recht H, Cameron KA, Lawson AK, Marsh EE. Beyond the physical: a qualitative assessment of the burden of symptomatic uterine fibroids on women’s emotional and psychosocial health. J Psychosom Res. 2015;78:499–503. doi: 10.1016/j.jpsychores.2014.12.016.
    1. Borah BJ, Nicholson WK, Bradley L, Stewart EA. The impact of uterine leiomyomas: a national survey or affected women. Am J Obstet Gynecol. 2013;209:319.e1–319.e20. doi: 10.1016/j.ajog.2013.07.017.
    1. Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Women’s Health. 2012;12:6. doi: 10.1186/1472-6874-12-6.
    1. Schirmer BD. Intra-operative and laparoscopic ultrasound. In: Holzheimer RG, Mannick JA, editors. Surgical treatment: evidence-based and problem-oriented. Munich: W. Zuckschwerdt Berlag GmbH; 2001.
    1. Aziz O, Ashrafian H, Jones C, Harling L, Kumar S, Garas G, et al. Laparoscopic ultrasonography versus intra-operative cholangiogram for the detection of common bile duct stones during laparoscopic cholecystectomy: a meta-analysis of diagnostic accuracy. Int J Surg. 2014;12:712–719. doi: 10.1016/j.ijsu.2014.05.038.
    1. Angioli R, Battista C, Terranova C, Zullo MA, Sereni MI, Cafa EV, et al. Intraoperative contact ultrasonography during open myomectomy for uterine fibroids. Fertil Steril. 2010;94:1487–1490. doi: 10.1016/j.fertnstert.2009.08.015.
    1. Levine DJ, Berman JM, Harris M, Chudnoff SG, Whaley FS, Palmer SL. Sensitivity of myoma imaging using laparoscopic ultrasound compared with magnetic resonance imaging and transvaginal ultrasound. J Minim Invasive Gynecol. 2013;20:770–774. doi: 10.1016/j.jmig.2013.04.015.
    1. Brown WL, Cassera MA, Jutric Z, Hansen PD, Hammill C. Novel device for targeting tumors in laparoscopic radiofrequency ablation: a learning curve study. in: Presented at the annual meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) Nashville, TN April 12–18, 2015.
    1. Mohamed R, Raman M, Anderson J, McLaughlin K, Rostom A, Coderre S. Validation of the national aeronautics and space administration task load index as a tool to evaluate the learning curve for endoscopy training. Can J Gastroenterol Hepatol. 2014;28:155–160.
    1. Slater M, Usoh M, Steed A. Taking steps: the influence of a walking technique on presence in virtual reality. ACM TOCHI. 1995;2:201–219. doi: 10.1145/210079.210084.
    1. Nixon MA, McCallum BC, Fright WR, Price NB. The effects of metals and interfering fields on electromagnetic trackers. Presence. 1998;7:204–218. doi: 10.1162/105474698565587.
    1. Liu TJ, Ko AT, Tang YB, Chien HF, Hsieh TM. Clinical application of different surgical navigation systems in complex craniomaxillofacial surgery: the use of multisurface 3-dimensional images and a 2-plane reference system. Ann Plast Surg. 2015. [Epub ahead of print].
    1. Ward TJ, Goldman RE, Weintraub JL. Electromagnetic navigation with multimodal image fusion for image-guided percutaneous interventions. Tech Vasc Interv Radiol. 2013;16:177–181. doi: 10.1053/j.tvir.2013.02.013.
    1. Galen DI, Isaacson KB, Lee BB. Does menstrual bleeding decrease after ablation of intramural myomas? A retrospective study. J Minim Invasive Gynecol. 2013;20:830–835. doi: 10.1016/j.jmig.2013.05.007.

Source: PubMed

3
Subskrybuj