Brain serotonin synthesis capacity in obsessive-compulsive disorder: effects of cognitive behavioral therapy and sertraline

Jennifer I Lissemore, Debbie Sookman, Paul Gravel, Alexandre Berney, Amir Barsoum, Mirko Diksic, Thomas E Nordahl, Gilbert Pinard, Igor Sibon, Jean Cottraux, Marco Leyton, Chawki Benkelfat, Jennifer I Lissemore, Debbie Sookman, Paul Gravel, Alexandre Berney, Amir Barsoum, Mirko Diksic, Thomas E Nordahl, Gilbert Pinard, Igor Sibon, Jean Cottraux, Marco Leyton, Chawki Benkelfat

Abstract

Cognitive behavioral therapy (CBT) and selective serotonin reuptake inhibitors (SSRIs) are both effective treatments for some patients with obsessive-compulsive disorder (OCD), yet little is known about the neurochemical changes related to these treatment modalities. Here, we used positron emission tomography and the α-[11C]methyl-L-tryptophan tracer to examine the changes in brain regional serotonin synthesis capacity in OCD patients following treatment with CBT or SSRI treatment. Sixteen medication-free OCD patients were randomly assigned to 12 weeks of either CBT or sertraline treatment. Pre-to-post treatment changes in the α-[11C]methyl-L-tryptophan brain trapping constant, K* (ml/g/min), were assessed as a function of symptom response, and correlations with symptom improvement were examined. Responders/partial responders to treatment did not show significant changes in relative regional tracer uptake; rather, in responders/partial responders, 12 weeks of treatment led to serotonin synthesis capacity increases that were brain-wide. Irrespective of treatment modality, baseline serotonin synthesis capacity in the raphe nuclei correlated positively with clinical improvement. These observations suggest that, for some patients, successful remediation of OCD symptoms might be associated with greater serotonergic tone.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1. OCD symptom improvement over time…
Fig. 1. OCD symptom improvement over time with CBT or sertraline treatment.
Change in mean Y-BOCS scores during 12 weeks of CBT or sertraline treatment, as measured approximately every 2 weeks. Y-BOCS Yale-Brown Obsessive Compulsive Scale, CBT cognitive behavioral therapy, SSRI selective serotonin re-uptake inhibitor
Fig. 2. Pre–post treatment increases in serotonin…
Fig. 2. Pre–post treatment increases in serotonin synthesis capacity in responders/partial responders and non-responders.
Maximum intensity projections of the t-values, showing brain regions where absolute K* values (K*Absolute) were higher post-treatment compared to pre-treatment in clinical response sub-groups. a Responders and partial responders to either CBT or SSRI treatment (n = 9) demonstrated widespread pre–post treatment increases in absolute regional K* values. b Non-responders (n = 6) did not show any significant pre–post changes in absolute regional K* values. For visualization purposes, the displayed t-map threshold was T8 = 3.4 for responders/partial responders and T5 = 4.0 for non-responders, with p = 0.005 and an extent threshold of 50 voxels
Fig. 3. Positive correlation between baseline K…
Fig. 3. Positive correlation between baseline K* values and OCD symptom improvement.
Statistical parametric maps (SPM12), with an anatomical MRI overlay, demonstrating brain regions where pre-treatment K* values correlated positively with ΔY-BOCS in the whole sample of OCD patients (n = 15). The t-map threshold was 3.85, with p = 0.001 and an extent threshold of 50 voxels. A significant cluster was found in the right rostral raphe nuclei (t13 = 6.66, k = 67 voxels, coordinates x, y, z = 6, −20, −22 mm)
Fig. 4. Changes in global K *…
Fig. 4. Changes in global K* values vs. changes in OCD symptom severity.
Pre–post treatment changes in global K* values (ΔK*global) correlated positively with % decrease in Y-BOCS scores (rs = 0.46, p = 0.08). Notably, there was a clear outlier in this correlation (with the outlier removed, rs = 0.67, p = 0.009); the outlier (red circle) was not included in the least-squares linear fit to the data shown here. Patients treated with sertraline are represented by triangles, and patients treated with CBT are represented by circles. The ΔY-BOCS score cut-off for responder/partial responder and non-responder subgroups is indicated with the dashed vertical line. Y-BOCS Yale-Brown Obsessive-Compulsive Scale, rs Spearman’s rank correlation coefficient

References

    1. Öst LG, Havnen A, Hansen B, Kvale G. Cognitive behavioral treatments of obsessive–compulsive disorder. A systematic review and meta-analysis of studies published 1993–2014. Clin. Psychol. Rev. 2015;40:156–169. doi: 10.1016/j.cpr.2015.06.003.
    1. Bloch MH, McGuire J, Landeros-Weisenberger A, Leckman JF, Pittenger C. Meta-analysis of the dose-response relationship of SSRI in obsessive-compulsive disorder. Mol. Psychiatry. 2010;15:850–855. doi: 10.1038/mp.2009.50.
    1. Benkelfat C, et al. Clomipramine in obsessive-compulsive disorder: further evidence for a serotonergic mechanism of action. Arch. Gen. Psychiatry. 1989;46:23. doi: 10.1001/archpsyc.1989.01810010025004.
    1. Murphy DL, Pato MT, Pigott TA. Obsessive-compulsive disorder: treatment with serotonin-selective uptake inhibitors, azapirones, and other agents. J. Clin. Psychopharmacol. 1990;10:91S–100S. doi: 10.1097/00004714-199006001-00016.
    1. Aouizerate B, et al. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog. Neurobiol. 2004;72:195–221. doi: 10.1016/j.pneurobio.2004.02.004.
    1. Benkelfat C, et al. Local cerebral glucose metabolic rates in obsessive-compulsive disorder: patients treated with clomipramine. Arch. Gen. Psychiatry. 1990;47:840–848. doi: 10.1001/archpsyc.1990.01810210048007.
    1. Baxter LR, et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch. Gen. Psychiatry. 1992;49:681–689. doi: 10.1001/archpsyc.1992.01820090009002.
    1. Apostolova I, et al. Effects of behavioral therapy or pharmacotherapy on brain glucose metabolism in subjects with obsessive-compulsive disorder as assessed by brain FDG PET. Psychiatry Res. 2010;184:105–116. doi: 10.1016/j.pscychresns.2010.08.012.
    1. Stengler-Wenzke K, Müller U, Angermeyer MC, Sabri O, Hesse S. Reduced serotonin transporter-availability in obsessive-compulsive disorder (OCD) Eur. Arch. Psychiatry Clin. Neurosci. 2004;254:252–255. doi: 10.1007/s00406-004-0489-y.
    1. Matsumoto R, et al. Reduced serotonin transporter binding in the insular cortex in patients with obsessive-compulsive disorder: a [11C]DASB PET study. Neuroimage. 2010;49:121–126. doi: 10.1016/j.neuroimage.2009.07.069.
    1. Perani D, et al. In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage. 2008;42:306–314. doi: 10.1016/j.neuroimage.2008.04.233.
    1. Pogarell O, et al. Elevated brain serotonin transporter availability in patients with obsessive-compulsive disorder. Biol. Psychiatry. 2003;54:1406–1413. doi: 10.1016/S0006-3223(03)00183-5.
    1. Simpson HB, et al. Serotonin transporters in obsessive-compulsive disorder: a positron emission tomography study with [(11)C]McN 5652. Biol. Psychiatry. 2003;54:1414–1421. doi: 10.1016/S0006-3223(03)00544-4.
    1. Simpson HB, et al. Serotonin 2A receptors in obsessive-compulsive disorder: a positron emission tomography study with [11C]MDL 100907. Biol. Psychiatry. 2011;70:897–904. doi: 10.1016/j.biopsych.2011.06.023.
    1. Thorén P, et al. Clomipramine treatment of obsessive-compulsive disorder: II. Biochemical aspects. Arch. Gen. Psychiatry. 1980;37:1289–1294. doi: 10.1001/archpsyc.1980.01780240087010.
    1. Insel TR, Mueller EA, Alterman I, Linnoila M, Murphy DL. Obsessive-compulsive disorder and serotonin: is there a connection? Biol. Psychiatry. 1985;20:1174–1188. doi: 10.1016/0006-3223(85)90176-3.
    1. Zitterl W, et al. Changes in thalamus-hypothalamus serotonin transporter availability during clomipramine administration in patients with obsessive-compulsive disorder. Neuropsychopharmacology. 2008;33:3126–3134. doi: 10.1038/npp.2008.35.
    1. Descarries L, Soucy JP, Laeaille F, Mrini A, Tanguay R. Evaluation of three transporter ligands as quantitative markers of serotonin innervation density in rat brain. Synapse. 1995;21:131–139. doi: 10.1002/syn.890210206.
    1. Diksic M, Young SN. Study of the brain serotonergic system with labeled α-methyl-L-tryptophan. J. Neurochem. 2001;78:1185–1200. doi: 10.1046/j.1471-4159.2001.00536.x.
    1. Chugani DC, Muzik O. α[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J. Cereb. Blood. Flow. Metab. 2000;20:2–9. doi: 10.1097/00004647-200001000-00002.
    1. Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J. Cereb. Blood Flow Metab. 1990;10:1–12. doi: 10.1038/jcbfm.1990.1.
    1. Chugani DC, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 2001;45:287–295. doi: 10.1002/1531-8249(199903)45:3<287::AID-ANA3>;2-9.
    1. Leyton M, et al. Brain regional α-[11C]methyl-L-tryptophan trapping in impulsive subjects with borderline personality disorder. Am. J. Psychiatry. 2001;158:775–782. doi: 10.1176/appi.ajp.158.5.775.
    1. Rosa-Neto P, et al. Measurement of brain regional α-[11C]methyl-L-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch. Gen. Psychiatry. 2004;61:556–563. doi: 10.1001/archpsyc.61.6.556.
    1. Berney A, et al. Brain regional α-[11C]methyl-L-tryptophan trapping in medication-free patients with obsessive-compulsive disorder. Arch. Gen. Psychiatry. 2011;68:732–741. doi: 10.1001/archgenpsychiatry.2011.16.
    1. First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. Structured clinical interview for DSM-IV axis I disorders (SCID I/P, Version2.0). 1995.
    1. Sookman D. Specialized Cognitive Behavior Therapy for Obsessive Compulsive Disorder: An Expert Clinician Guidebook. New York (NY): Routledge; 2016.
    1. Fernstrom JD, et al. Diurnal variations in plasma concentrations of tryptophan, tryosine, and other neutral amino acids: effect of dietary protein intake. Am. J. Clin. Nutr. 1979;32:1912–1922. doi: 10.1093/ajcn/32.9.1912.
    1. Maswood S, Truitt W, Hotema M, Caldarola-Pastuszka M, Uphouse L. Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors. Brain. Res. 1999;831:146–154. doi: 10.1016/S0006-8993(99)01439-0.
    1. Jovanovic H, et al. PET study of 5-HT1A receptors at different phases of the menstrual cycle in women with premenstrual dysphoria. Psychiatry Res. Neuroimaging. 2006;148:185–193. doi: 10.1016/j.pscychresns.2006.05.002.
    1. Mzengeza S, Venkatachalam TK, Diksic M. Asymmetric radiosynthesis of α-[11C]methyl-L-tryptophan for PET studies. Nucl. Med. Biol. 1995;22:303–307. doi: 10.1016/0969-8051(94)00116-2.
    1. Nishizawa S, et al. Validation of a less-invasive method for measurement of serotonin synthesis rate with α-[11C]methyl-tryptophan. J. Cereb. Blood. Flow. Metab. 1998;18:1121–1129. doi: 10.1097/00004647-199810000-00009.
    1. Okazawa H, Leyton M, Benkelfat C, Mzengeza S, Diksic M. Statistical mapping analysis of serotonin synthesis images generated in healthy volunteers using positron-emission tomography and α-[11C]methyl-L-tryptophan. J. Psychiatry Neurosci. 2000;25:359–370.
    1. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 1983;3:1–7. doi: 10.1038/jcbfm.1983.1.
    1. Rosa-Neto P, Diksic M, Leyton M, Mzengeza S, Benkelfat C. Stability of α-[11C]methyl-L-tryptophan brain trapping in healthy male volunteers. Eur. J. Nucl. Med. Mol. Imaging. 2005;32:1199–1204. doi: 10.1007/s00259-005-1829-5.
    1. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 1994;18:192–205. doi: 10.1097/00004728-199403000-00005.
    1. Collins DL, Evans AC. Animal: validation and applications of nonlinear registration-based segmentation. Int. J. Pattern Recogn. 1997;11:1271–1294. doi: 10.1142/S0218001497000597.
    1. Collins, D. L, Zijdenbos, A. P., Baaré, W. F. & Evans, A. C. ANIMAL+INSECT: improved cortical structure segmentation. In Information Processing in Medical Imaging. IPMI 1999. Lecture Notes in Computer Science, Vol. 1613 (eds. Kuba, A., Šáamal, M. & Todd-Pokropek, A.) 210–223 (Springer, Berlin, Heidelberg, 1999).
    1. Mataix-Cols D, et al. Towards an international expert consensus for defining treatment response, remission, recovery and relapse in obsessive-compulsive disorder. World Psychiatry. 2016;15:80–81. doi: 10.1002/wps.20299.
    1. Dahlström A, Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl. 1964;232:1–55.
    1. Azmitia EC, Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 1978;179:641–667. doi: 10.1002/cne.901790311.
    1. Chaput Y, de Montigny C, Blier P. Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments: an in vivo electrophysiologic study in the rat. Neuropsychopharmacology. 1991;5:219–229.
    1. Briley M, Moret C. Neurobiological mechanisms involved in antidepressant therapies. Clin. Neuropharmacol. 1993;16:387–400. doi: 10.1097/00002826-199310000-00002.
    1. El Mansari M, Bouchard C, Blier P. Alteration of serotonin release in the guinea pig orbito-frontal cortex by selective serotonin reuptake inhibitors: relevance to treatment of obsessive-compulsive disorder. Neuropsychopharmacology. 1995;13:117–127. doi: 10.1016/0893-133X(95)00045-F.
    1. Kim SW, Park SY, Hwang O. Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline. Mol. Pharmacol. 2002;61:778–785. doi: 10.1124/mol.61.4.778.
    1. Mathews TA, et al. Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J. Neurosci. Methods. 2004;140:169–181. doi: 10.1016/j.jneumeth.2004.05.017.
    1. Zhao Z, Zhang HT, Bootzin E, Millan MJ, O’Donnell JM. Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Neuropsychopharmacology. 2008;34:1467–1481. doi: 10.1038/npp.2008.183.
    1. Kim E, et al. Altered serotonin transporter binding potential in patients with obsessive-compulsive disorder under escitalopram treatment: [11C]DASB PET study. Psychol. Med. 2016;46:357–366. doi: 10.1017/S0033291715001865.
    1. Berney A, et al. An index of 5-HT synthesis changes during early antidepressant treatment: α-[11C]methyl-l-tryptophan PET study. Neurochem. Int. 2008;52:701–708. doi: 10.1016/j.neuint.2007.08.021.
    1. Vahabzadeh A, Boutelle MG, Fillenz M. Effects of changes in rat brain glucose on serotonergic and noradrenergic neurons. Eur. J. Neurosci. 1995;7:175–179. doi: 10.1111/j.1460-9568.1995.tb01053.x.
    1. Denys D, Zohar J, Westenberg HG. The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. J. Clin. Psychiatry. 2004;65:11–17.
    1. Wu K, Hanna GL, Rosenberg DR, Arnold PD. The role of glutamate signaling in the pathogenesis and treatment of obsessive–compulsive disorder. Pharmacol. Biochem. Behav. 2012;100:726–735. doi: 10.1016/j.pbb.2011.10.007.
    1. Goodman WK, McDougle CJ, Price LH, Riddle MA. Beyond the serotonin hypothesis: a role for dopamine in some forms of obsessive compulsive disorder? J. Clin. Psychiatry. 1990;51(Suppl.):36–43.
    1. Sasaki-Adams DM, Kelley AE. Serotonin-dopamine interactions in the control of conditioned reinforcement and motor behavior. Neuropsychopharmacology. 2001;25:440–452. doi: 10.1016/S0893-133X(01)00240-8.
    1. Berridge KC, Aldridge JW, Houchard KR, Zhuang X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol. 2005;3:4. doi: 10.1186/1741-7007-3-4.
    1. Moresco RM, et al. Fluvoxamine treatment and D2 receptors: a PET study on OCD drug-naïve patients. Neuropsychopharmacology. 2007;32:197–205. doi: 10.1038/sj.npp.1301199.
    1. Dold M, Aigner M, Lanzenberger R, Kasper S. Antipsychotic augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: a meta-analysis of double-blind, randomized, placebo-controlled trials. Int. J. Neuropsychopharmacol. 2013;16:557–574. doi: 10.1017/S1461145712000740.
    1. Azmitia EC. Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 2001;56:413–424. doi: 10.1016/S0361-9230(01)00614-1.
    1. Santarelli L, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–809. doi: 10.1126/science.1083328.
    1. Alonso P, et al. Deep brain stimulation for obsessive-compulsive disorder: a meta-analysis of treatment outcome and predictors of response. PLoS ONE. 2015;10:e0133591. doi: 10.1371/journal.pone.0133591.
    1. Shoaf SE, et al. The suitability of [11C]-α-methyl-L-tryptophan as a tracer for serotonin synthesis: studies with dual administration of [11C] and [14C] labeled tracer. J. Cereb. Blood Flow Metab. 2000;20:244–252. doi: 10.1097/00004647-200002000-00004.
    1. Leyton M, Diksic M, Benkelfat C. Brain regional α-[11C]methyl-L-tryptophan trapping correlates with post-mortem tissue serotonin content and [11C]5-hydroxytryptophan accumulation. Int. J. Neuropsychopharmacol. 2005;8:1–2. doi: 10.1017/S1461145705005420.
    1. Diksic M, Tohyama Y, Takada A. Brain net unidirectional uptake of α-[14C]methyl-L-tryptophan (α-MTrp) and its correlation with regional serotonin synthesis, tryptophan incorporation into proteins, and permeability surface area products of tryptophan and α-MTrp. Neurochem. Res. 2000;25:1537–1546. doi: 10.1023/A:1026654116999.
    1. Diksic M. Labelled (alpha)-methyl-L-tryptophan as a tracer for the study of the brain serotonergic system. J. Psychiatry Neurosci. 2001;26:293.
    1. Tohyama Y, Takahashi S, Merid MF, Watanabe A, Diksic M. The inhibition of tryptophan hydroxylase, not protein synthesis, reduces the brain trapping of α-methyl-L-tryptophan: an autoradiographic study. Neurochem. Int. 2002;40:603–610. doi: 10.1016/S0197-0186(01)00132-2.
    1. Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT. Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J. Cereb. Blood Flow Metab. 1997;17:659–669. doi: 10.1097/00004647-199706000-00007.
    1. Chugani DC, Chugani HT. PET: mapping of serotonin synthesis. Adv. Neurol. 2000;83:165–171.
    1. Fenstermacher JD, Blasberg RG, Patlak CS. Methods for quantifying the transport of drugs across brain barrier systems. Pharmacol. Ther. 1981;14:217–248. doi: 10.1016/0163-7258(81)90062-0.

Source: PubMed

3
Subskrybuj