Acute Effects of Caffeine on Heart Rate Variability, Blood Pressure and Tidal Volume in Paraplegic and Tetraplegic Compared to Able-Bodied Individuals: A Randomized, Blinded Trial

Joelle Leonie Flueck, Fabienne Schaufelberger, Martina Lienert, Daniela Schäfer Olstad, Matthias Wilhelm, Claudio Perret, Joelle Leonie Flueck, Fabienne Schaufelberger, Martina Lienert, Daniela Schäfer Olstad, Matthias Wilhelm, Claudio Perret

Abstract

Caffeine increases sympathetic nerve activity in healthy individuals. Such modulation of nervous system activity can be tracked by assessing the heart rate variability. This study aimed to investigate the influence of caffeine on time- and frequency-domain heart rate variability parameters, blood pressure and tidal volume in paraplegic and tetraplegic compared to able-bodied participants. Heart rate variability was measured in supine and sitting position pre and post ingestion of either placebo or 6 mg caffeine in 12 able-bodied, 9 paraplegic and 7 tetraplegic participants in a placebo-controlled, randomized and double-blind study design. Metronomic breathing was applied (0.25 Hz) and tidal volume was recorded during heart rate variability assessment. Blood pressure, plasma caffeine and epinephrine concentrations were analyzed pre and post ingestion. Most parameters of heart rate variability did not significantly change post caffeine ingestion compared to placebo. Tidal volume significantly increased post caffeine ingestion in able-bodied (p = 0.021) and paraplegic (p = 0.036) but not in tetraplegic participants (p = 0.34). Systolic and diastolic blood pressure increased significantly post caffeine in able-bodied (systolic: p = 0.003; diastolic: p = 0.021) and tetraplegic (systolic: p = 0.043; diastolic: p = 0.042) but not in paraplegic participants (systolic: p = 0.09; diastolic: p = 0.33). Plasma caffeine concentrations were significantly increased post caffeine ingestion in all three groups of participants (p<0.05). Plasma epinephrine concentrations increased significantly in able-bodied (p = 0.002) and paraplegic (p = 0.032) but not in tetraplegic participants (p = 0.63). The influence of caffeine on the autonomic nervous system seems to depend on the level of lesion and the extent of the impairment. Therefore, tetraplegic participants may be less influenced by caffeine ingestion.

Trial registration: ClinicalTrials.gov NCT02083328.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Participant recruitment flowchart.
Fig 1. Participant recruitment flowchart.
Fig 2. Tidal volume in supine position…
Fig 2. Tidal volume in supine position pre and post ingestion of caffeine.
* = outlier; § = significant difference between pre and post (p

Fig 3. Differences in tidal volume (supine…

Fig 3. Differences in tidal volume (supine position) from pre to post ingestion between placebo…

Fig 3. Differences in tidal volume (supine position) from pre to post ingestion between placebo and caffeine trial.
° = outlier; * = extreme outlier; § = significant difference between the change from pre to post caffeine compared to placebo ingestion (p

Fig 4

Changes in plasma epinephrine (a),…

Fig 4

Changes in plasma epinephrine (a), norepinephrine (b) and caffeine (c) concentrations from pre…
Fig 4
Changes in plasma epinephrine (a), norepinephrine (b) and caffeine (c) concentrations from pre to post ingestion of the supplement illustrated for all three groups. Dashed line represents placebo trail, bold line represents caffeine trial; ●, ○ = able-bodied, ■, □ = paraplegic and ▲, Δ = tetraplegic group.
Similar articles
Cited by
References
    1. Krassioukov A, West C. The role of autonomic function on sport performance in athletes with spinal cord injury. PM R. 2014;6(8 Suppl):S58–65. Epub 2014/08/20. 10.1016/j.pmrj.2014.05.023 . - DOI - PubMed
    1. Schantz P, Sjoberg B, Widebeck AM, Ekblom B. Skeletal muscle of trained and untrained paraplegics and tetraplegics. Acta Physiol Scand. 1997;161(1):31–9. Epub 1997/10/06. 10.1046/j.1365-201X.1997.201371000.x - DOI - PubMed
    1. Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990;20(3):330–5. Epub 1990/06/01. . - PubMed
    1. Cruz CD, Cruz F. Spinal cord injury and bladder dysfunction: new ideas about an old problem. Scie World J. 2011;11:214–34. Epub 2011/01/25. 10.1100/tsw.2011.26 . - DOI - PMC - PubMed
    1. Fynne L, Worsoe J, Gregersen T, Schlageter V, Laurberg S, Krogh K. Gastric and small intestinal dysfunction in spinal cord injury patients. Acta Neurol Scand. 2012;125(2):123–8. Epub 2011/03/25. 10.1111/j.1600-0404.2011.01508.x . - DOI - PubMed
Show all 48 references
Publication types
MeSH terms
Associated data
Grant support
The authors received no specific funding for this work.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 3. Differences in tidal volume (supine…
Fig 3. Differences in tidal volume (supine position) from pre to post ingestion between placebo and caffeine trial.
° = outlier; * = extreme outlier; § = significant difference between the change from pre to post caffeine compared to placebo ingestion (p

Fig 4

Changes in plasma epinephrine (a),…

Fig 4

Changes in plasma epinephrine (a), norepinephrine (b) and caffeine (c) concentrations from pre…
Fig 4
Changes in plasma epinephrine (a), norepinephrine (b) and caffeine (c) concentrations from pre to post ingestion of the supplement illustrated for all three groups. Dashed line represents placebo trail, bold line represents caffeine trial; ●, ○ = able-bodied, ■, □ = paraplegic and ▲, Δ = tetraplegic group.
Fig 4
Fig 4
Changes in plasma epinephrine (a), norepinephrine (b) and caffeine (c) concentrations from pre to post ingestion of the supplement illustrated for all three groups. Dashed line represents placebo trail, bold line represents caffeine trial; ●, ○ = able-bodied, ■, □ = paraplegic and ▲, Δ = tetraplegic group.

References

    1. Krassioukov A, West C. The role of autonomic function on sport performance in athletes with spinal cord injury. PM R. 2014;6(8 Suppl):S58–65. Epub 2014/08/20. 10.1016/j.pmrj.2014.05.023 .
    1. Schantz P, Sjoberg B, Widebeck AM, Ekblom B. Skeletal muscle of trained and untrained paraplegics and tetraplegics. Acta Physiol Scand. 1997;161(1):31–9. Epub 1997/10/06. 10.1046/j.1365-201X.1997.201371000.x
    1. Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990;20(3):330–5. Epub 1990/06/01. .
    1. Cruz CD, Cruz F. Spinal cord injury and bladder dysfunction: new ideas about an old problem. Scie World J. 2011;11:214–34. Epub 2011/01/25. 10.1100/tsw.2011.26 .
    1. Fynne L, Worsoe J, Gregersen T, Schlageter V, Laurberg S, Krogh K. Gastric and small intestinal dysfunction in spinal cord injury patients. Acta Neurol Scand. 2012;125(2):123–8. Epub 2011/03/25. 10.1111/j.1600-0404.2011.01508.x .
    1. Krogh K, Mosdal C, Laurberg S. Gastrointestinal and segmental colonic transit times in patients with acute and chronic spinal cord lesions. Spinal Cord. 2000;38(10):615–21. Epub 2000/11/28. .
    1. Currie KD, West CR, Hubli M, Gee CM, Krassioukov AV. Peak heart rates and sympathetic function in tetraplegic nonathletes and athletes. Med Sci Sports Exerc. 2015;47(6):1259–64. Epub 2014/09/12. 10.1249/MSS.0000000000000514 .
    1. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in physiology. 2013;4:26 Epub 2013/02/23. 10.3389/fphys.2013.00026
    1. Carter JB, Banister EW, Blaber AP. The effect of age and gender on heart rate variability after endurance training. Med Sci Sports Exerc. 2003;35(8):1333–40. Epub 2003/08/06. 10.1249/01.MSS.0000079046.01763.8F .
    1. Furlan R, Porta A, Costa F, Tank J, Baker L, Schiavi R, et al. Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation. 2000;101(8):886–92. Epub 2000/03/01. .
    1. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90(4):1826–31. Epub 1994/10/01. .
    1. Ditor DS, Kamath MV, Macdonald MJ, Bugaresti J, McCartney N, Hicks AL. Reproducibility of heart rate variability and blood pressure variability in individuals with spinal cord injury. Clin Auton Res. 2005;15(6):387–93. Epub 2005/12/20. 10.1007/s10286-005-0293-4 .
    1. Bunten DC, Warner AL, Brunnemann SR, Segal JL. Heart rate variability is altered following spinal cord injury. Clin Auton Res. 1998;8(6):329–34. Epub 1998/12/30. .
    1. Agiovlasitis S, Heffernan KS, Jae SY, Ranadive SM, Lee M, Mojtahedi MC, et al. Effects of paraplegia on cardiac autonomic regulation during static exercise. Am J Phys Med Rehabil. 2010;89(10):817–23. Epub 2010/09/22. 10.1097/PHM.0b013e3181f1b6e7 .
    1. Zamuner AR, Silva E, Teodori RM, Catai AM, Moreno MA. Autonomic modulation of heart rate in paraplegic wheelchair basketball players: Linear and nonlinear analysis. J Sports Sci. 2013;31(4):396–404. Epub 2012/10/24. 10.1080/02640414.2012.734917 .
    1. Takahashi M, Matsukawa K, Nakamoto T, Tsuchimochi H, Sakaguchi A, Kawaguchi K, et al. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia. J Appl Physiol (1985). 2007;103(5):1669–77. Epub 2007/09/01. 10.1152/japplphysiol.00503.2007 .
    1. Wecht JM, De Meersman RE, Weir JP, Spungen AM, Bauman WA. Cardiac autonomic responses to progressive head-up tilt in individuals with paraplegia. Clin Auton Res. 2003;13(6):433–8. Epub 2003/12/16. 10.1007/s10286-003-0115-5 .
    1. Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol. 1994;474(3):483–95. Epub 1994/02/01.
    1. Castiglioni P, Di Rienzo M, Veicsteinas A, Parati G, Merati G. Mechanisms of blood pressure and heart rate variability: an insight from low-level paraplegia. American journal of physiology Regulatory, integrative and comparative physiology. 2007;292(4):R1502–9. Epub 2006/11/24. 10.1152/ajpregu.00273.2006 .
    1. Grimm DR, De Meersman RE, Almenoff PL, Spungen AM, Bauman WA. Sympathovagal balance of the heart in subjects with spinal cord injury. Am J Physiol. 1997;272(2 Pt 2):H835–42. Epub 1997/02/01. .
    1. Teasell RW, Arnold JM, Krassioukov A, Delaney GA. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch Phys Med Rehabil. 2000;81(4):506–16. Epub 2000/04/18. 10.1053/mr.2000.3848 .
    1. Inoue K, Ogata H, Hayano J, Miyake S, Kamada T, Kuno M, et al. Assessment of autonomic function in traumatic quadriplegic and paraplegic patients by spectral analysis of heart rate variability. J Auton Nerv Syst. 1995;54(3):225–34. Epub 1995/09/05. .
    1. Van Soeren M, Mohr T, Kjaer M, Graham TE. Acute effects of caffeine ingestion at rest in humans with impaired epinephrine responses. J Appl Physiol. 1996;80(3):999–1005. Epub 1996/03/01. .
    1. Van Soeren MH, Sathasivam P, Spriet LL, Graham TE. Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J Appl Physiol. 1993;75(2):805–12. Epub 1993/08/01. .
    1. Tarnopolsky MA. Caffeine and creatine use in sport. Ann Nutr Metab. 2010;57 Suppl 2:1–8. Epub 2010/01/01. 000322696 [pii] 10.1159/000322696 .
    1. Tarnopolsky MA. Caffeine and endurance performance. Sports Med. 1994;18(2):109–25. Epub 1994/08/01. .
    1. Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):1319–34. Epub 2008/12/18. h08-130 [pii] 10.1139/H08-130 .
    1. Quintana DS, Heathers JA. Considerations in the assessment of heart rate variability in biobehavioral research. Frontiers in psychology. 2014;5:805 Epub 2014/08/08. 10.3389/fpsyg.2014.00805
    1. Kivity S, Ben Aharon Y, Man A, Topilsky M. The effect of caffeine on exercise-induced bronchoconstriction. Chest. 1990;97(5):1083–5. Epub 1990/05/01. .
    1. Flueck JL, Lienert M, Schaufelberger F, Krebs J, Perret C. Ergogenic Effects of Caffeine Consumption in a 3 min All-Out Arm Crank Test in Paraplegic and Tetraplegic Compared to Able-Bodied Individuals. Int J Sport Nutr Exerc Metab. 2015. Epub 2015/07/02. 10.1123/ijsnem.2015-0090 .
    1. Tarvainen MP, Ranta-Aho PO, Karjalainen PA. An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng. 2002;49(2):172–5. Epub 2002/06/18. 10.1109/10.979357 .
    1. Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep. 2007;30(7):913–9. Epub 2007/08/09.
    1. Hibino G, Moritani T, Kawada T, Fushiki T. Caffeine enhances modulation of parasympathetic nerve activity in humans: quantification using power spectral analysis. J Nutr. 1997;127(7):1422–7. Epub 1997/07/01. .
    1. Monda M, Viggiano A, Vicidomini C, Iannaccone T, Tafuri D, De Luca B. Espresso coffee increases parasympathetic activity in young, healthy people. Nutr Neurosci. 2009;12(1):43–8. Epub 2009/01/31. 10.1179/147683009X388841 .
    1. Notarius CF, Floras JS. Caffeine Enhances Heart Rate Variability in Middle-Aged Healthy, But Not Heart Failure Subjects. Journal of caffeine research. 2012;2(2):77–82. Epub 2012/06/01. 10.1089/jcr.2012.0010
    1. Richardson T, Rozkovec A, Thomas P, Ryder J, Meckes C, Kerr D. Influence of caffeine on heart rate variability in patients with long-standing type 1 diabetes. Diabetes Care. 2004;27(5):1127–31. Epub 2004/04/28. .
    1. Rauh R, Burkert M, Siepmann M, Mueck-Weymann M. Acute effects of caffeine on heart rate variability in habitual caffeine consumers. Clin Physiol Funct Imaging. 2006;26(3):163–6. Epub 2006/04/28. 10.1111/j.1475-097X.2006.00663.x .
    1. Nurminen ML, Niittynen L, Korpela R, Vapaatalo H. Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr. 1999;53(11):831–9. Epub 1999/11/11. .
    1. Battram DS, Bugaresti J, Gusba J, Graham TE. Acute caffeine ingestion does not impair glucose tolerance in persons with tetraplegia. J Appl Physiol (1985). 2007;102(1):374–81. Epub 2006/10/28. 10.1152/japplphysiol.00901.2006 .
    1. Catz A, Mendelson L, Solzi P. Symptomatic postprandial hypotension in high paraplegia. Case report. Paraplegia. 1992;30(8):582–6. Epub 1992/08/01. 10.1038/sc.1992.118 .
    1. Graham-Paulson TS, Perret C, Watson P, Goosey-Tolfrey VL. Improvement of Sprint Performance in Wheelchair Sportsmen With Caffeine Supplementation. Int J Sports Physiol Perform. 2016;11(2):214–20. Epub 2015/07/17. 10.1123/ijspp.2015-0073 .
    1. Pianosi P, Grondin D, Desmond K, Coates AL, Aranda JV. Effect of caffeine on the ventilatory response to inhaled carbon dioxide. Respir Physiol. 1994;95(3):311–20. Epub 1994/03/01. .
    1. Kraaijenga JV, Hutten GJ, de Jongh FH, van Kaam AH. The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants. J Pediatr Adolesc Gynecol. 2015;167(1):70–5. Epub 2015/05/20. 10.1016/j.jpeds.2015.04.040 .
    1. Fredholm BB. On the mechanism of action of theophylline and caffeine. Acta Med Scand. 1985;217(2):149–53. Epub 1985/01/01. .
    1. Mohr T, Van Soeren M, Graham TE, Kjaer M. Caffeine ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Physiol. 1998;85(3):979–85. Epub 1998/09/08. .
    1. Steinberg LL, Lauro FA, Sposito MM, Tufik S, Mello MT, Naffah-Mazzacoratti MG, et al. Catecholamine response to exercise in individuals with different levels of paraplegia. Braz J Med Biol Res. 2000;33(8):913–8. Epub 2000/08/02. .
    1. Schmid A, Huonker M, Stahl F, Barturen JM, Konig D, Heim M, et al. Free plasma catecholamines in spinal cord injured persons with different injury levels at rest and during exercise. J Auton Nerv Syst. 1998;68(1–2):96–100. Epub 1998/04/08. .
    1. Poyhonen M, Syvaoja S, Hartikainen J, Ruokonen E, Takala J. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand. 2004;48(1):93–101. Epub 2003/12/17. .

Source: PubMed

3
Subskrybuj