Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment

Krzysztof Bonek, Leszek Roszkowski, Magdalena Massalska, Wlodzimierz Maslinski, Marzena Ciechomska, Krzysztof Bonek, Leszek Roszkowski, Magdalena Massalska, Wlodzimierz Maslinski, Marzena Ciechomska

Abstract

Rheumatoid arthritis (RA) affects around 1.2% of the adult population. RA is one of the main reasons for work disability and premature retirement, thus substantially increasing social and economic burden. Biological disease-modifying antirheumatic drugs (bDMARDs) were shown to be an effective therapy especially in those rheumatoid arthritis (RA) patients, who did not adequately respond to conventional synthetic DMARD therapy. However, despite the proven efficacy, the high cost of the therapy resulted in limitation of the widespread use and unequal access to the care. The introduction of biosimilars, which are much cheaper relative to original drugs, may facilitate the achievement of the therapy by a much broader spectrum of patients. In this review we present the properties of original biologic agents based on cytokine-targeted (blockers of TNF, IL-6, IL-1, GM-CSF) and cell-targeted therapies (aimed to inhibit T cells and B cells properties) as well as biosimilars used in rheumatology. We also analyze the latest update of bDMARDs' possible influence on DNA methylation, miRNA expression and histone modification in RA patients, what might be the important factors toward precise and personalized RA treatment. In addition, during the COVID-19 outbreak, we discuss the usage of biologicals in context of effective and safe COVID-19 treatment. Therefore, early diagnosing along with therapeutic intervention based on personalized drugs targeting disease-specific genes is still needed to relieve symptoms and to improve the quality of life of RA patients.

Keywords: COVID-19; bDMARDs; biologics; biosimilars; epigenetics; genetics; rheumatoid arthritis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pathogenesis of RA (Rheumatoid arthritis) and main targets of biological therapy. ACPA – Anti CCP Ab: Anti-Citrullinated Protein Antibodies; GM-CSF: Granulocyte-Macrophage Colony Stimulating Factor; TNF: Tumor Necrosis Factor; IL: Interleukin.

References

    1. Smolen J.S., Van Der Heijde D., Machold K.P., Aletaha D., Landewé R.B. Proposal for a new nomenclature of disease-modifying antirheumatic drugs: Table 1. Ann. Rheum. Dis. 2013;73:3–5. doi: 10.1136/annrheumdis-2013-204317.
    1. Charles P., Elliott M.J., Davis D., Potter A., Kalden J.R., Antoni C., Breedveld F.C., Smolen J.S., Eberl G., DeWoody K., et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J. Immunol. 1999;163:1521–1528.
    1. López-Pedrera C., Barbarroja N., Patiño-Trives A.M., Luque-Tévar M., Collantes-Estevez E., Escudero-Contreras A., Pérez-Sánchez C. Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int. J. Mol. Sci. 2020;21:9067. doi: 10.3390/ijms21239067.
    1. Wright H.L., Bucknall R.C., Moots R., Edwards S.W. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatol. 2011;51:451–459. doi: 10.1093/rheumatology/ker338.
    1. Smolen J.S., Goncalves J., Quinn M., Benedetti F., Lee J.Y. Era of biosimilars in rheumatology: Reshaping the healthcare environment. RMD Open. 2019;5:e000900. doi: 10.1136/rmdopen-2019-000900.
    1. IQVIA The Impact of Biosimilar Competition in Europe. [(accessed on 31 July 2018)]; Available online: .
    1. Andrew W., Mulcahy J.P.H., Spencer R. Case. Biosimilar Cost Savings in the United States Initial Experience and Future Potential. [(accessed on 31 July 2018)];2017 Available online: .
    1. The NHS Saves £324 Million in a Year by Switching to Better Value Medicines. [(accessed on 31 July 2018)]; Available online:
    1. Bergstra S.A., Cunha-Branco J., Vega-Morales D., Salomon-Escoto K., Govind N., Allaart C.F., Landewé R.B.M. Inequity in access to bDMARD care and how it influences disease outcomes across countries worldwide: Results from the METEOR-registry. Ann. Rheum. Dis. 2018;77:1413–1420. doi: 10.1136/annrheumdis-2018-213289.
    1. Kaló Z., Vokó Z., Östör A., Clifton-Brown E., Vasilescu R., Battersby A., Gibson E. Patient access to reimbursed biological disease-modifying antirheumatic drugs in the European region. J. Mark Access Health Policy. 2017;5:1345580. doi: 10.1080/20016689.2017.1345580.
    1. Rezaeepoor M., Pourjafar M., Tahamoli-Roudsari A., Basiri Z., Hajilooi M., Solgi G. Altered expression of microRNAs may predict therapeutic response in rheumatoid arthritis patients. Int. Immunopharmacol. 2020;83:106404. doi: 10.1016/j.intimp.2020.106404.
    1. Hammaker D., Firestein G.S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 2018;30:188–196. doi: 10.1097/BOR.0000000000000471.
    1. Kim K., Bang S.-Y., Lee H.-S., Bae S.-Y.B.H.-S.L.S.-C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 2017;13:13–24. doi: 10.1038/nrrheum.2016.176.
    1. Generali E., Ceribelli A., Stazi M.A., Selmi C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J. Autoimmun. 2017;83:51–61. doi: 10.1016/j.jaut.2017.04.005.
    1. Farrugia M., Baron B. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells. J. Clin. Transl. Res. 2016;2:84–90. doi: 10.18053/jctres.02.201603.005.
    1. Perez C., Albert I., Defay K., Zachariades N., Gooding L., Kriegler M. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell. 1990;63:251–258. doi: 10.1016/0092-8674(90)90158-B.
    1. Davignon J., Rauwel B., Degboé Y., Constantin A., Boyer J.-F., Kruglov A., Cantagrel A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: A review. Arthritis Res. 2018;20:1–9. doi: 10.1186/s13075-018-1725-6.
    1. Holbrook J., Lara-Reyna S., Jarosz-Griffiths H., McDermott M.F. Tumour necrosis factor signalling in health and disease. F1000Research. 2019;8:111. doi: 10.12688/f1000research.17023.1.
    1. Manara M., Sinigaglia L. Bone and TNF in rheumatoid arthritis: Clinical implications. RMD Open. 2015;1:e000065. doi: 10.1136/rmdopen-2015-000065.
    1. Smolen J.S., Landewé R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., Van Vollenhoven R.F., De Wit M., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020;79:685–699. doi: 10.1136/annrheumdis-2019-216655.
    1. Singh J.A., Saag K.G., Bridges S.L., Jr., Akl E.A., Bannuru R.R., Sullivan M.C., E Vaysbrot E., McNaughton C., Osani M., Shmerling R.H., et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016;68:1–26. doi: 10.1002/art.39480.
    1. Lau C.-S., Chia F., Dans L., Harrison A., Hsieh T.Y., Jain R., Jung S.M., Kishimoto M., Kumar A., Leong K.P., et al. 2018 update of the APLAR recommendations for treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 2019;22:357–375. doi: 10.1111/1756-185X.13513.
    1. Heiberg M.S., Rodevand E., Mikkelsen K., Kaufmann C., Didriksen A., Mowinckel P., Kvien T.K. Adalimumab and methotrexate is more effective than adalimumab alone in patients with established rheumatoid arthritis: Results from a 6-month longitudinal, observational, multicentre study. Ann. Rheum. Dis. 2006;65:1379–1383. doi: 10.1136/ard.2006.051540.
    1. Neovius M., Arkema E.V., Olsson H., Eriksson J.K., Kristensen L.E., Simard J.F., Askling J. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann. Rheum. Dis. 2013;74:354–360. doi: 10.1136/annrheumdis-2013-204128.
    1. Papadopoulos C.G., Gartzonikas I.K., Pappa T.K., E Markatseli T., Migkos M.P., Voulgari P.V., A Drosos A. Eight-year survival study of first-line tumour necrosis factor α inhibitors in rheumatoid arthritis: Real-world data from a university centre registry. Rheumatol. Adv. Pract. 2019;3:rkz007. doi: 10.1093/rap/rkz007.
    1. Poiroux L., Allanore Y., Kahan A., Avouac J. All-cause Mortality Associated with TNF-α Inhibitors in Rheumatoid Arthritis: A Meta-Analysis of Randomized Controlled Trials. Am. J. Med. 2015;128:1367–1373.e1. doi: 10.1016/j.amjmed.2015.07.020.
    1. Cantini F., Niccoli L., Goletti D. Adalimumab, Etanercept, Infliximab, and the Risk of Tuberculosis: Data from Clinical Trials, National Registries, and Postmarketing Surveillance. J. Rheumatol. Suppl. 2014;91:47–55. doi: 10.3899/jrheum.140102.
    1. Kristjansdottir S.R., Steingrimsdottir T., Grondal G., Bjarnadottir R.I., Einarsdottir K., Gudbjornsson B. [Pregnancy outcomes in Icelandic female patients with inflammatory arthritides. Nationwide results from the ICEBIO and the Icelandic Medical Birth Register] Laeknabladid. 2019;105:267–275.
    1. Förger F., Bandoli G., Luo Y., Robinson L., Johnson D.L., Chambers C.D. No Association of Discontinuing Tumor Necrosis Factor Inhibitors Before Gestational Week Twenty in Well-Controlled Rheumatoid Arthritis and Juvenile Idiopathic Arthritis With a Disease Worsening in Late Pregnancy. Arthritis Rheumatol. 2019;71:901–907. doi: 10.1002/art.40821.
    1. Puchner A., Grochenig H.P., Sautner J., Helmy-Bader Y., Juch H., Reinisch S., Hogenauer C., Koch R., Hermann J., Studnicka-Benke A. Immunosuppressives and biologics during pregnancy and lactation: A consensus report issued by the Austrian Societies of Gastroenterology and Hepatology and Rheumatology and Rehabilitation. Wien Klin. Wochenschr. 2019;131:29–44. doi: 10.1007/s00508-019-1448-y.
    1. Clowse M.E.B., Scheuerle A.E., Chambers C., Afzali A., Kimball A.B., Cush J.J., Cooney M., Shaughnessy L., Vanderkelen M., Forger F. Pregnancy Outcomes After Exposure to Certolizumab Pegol: Updated Results From a Pharmacovigilance Safety Database. Arthritis Rheumatol. 2018;70:1399–1407. doi: 10.1002/art.40508.
    1. Skorpen C.G., Hoeltzenbein M., Tincani A., Fischer-Betz R., Elefant E., Chambers C., Da Silva J., Nelson-Piercy C., Cetin I., Costedoat-Chalumeau N., et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 2016;75:795–810. doi: 10.1136/annrheumdis-2015-208840.
    1. Rubbert-Roth A., Atzeni F., Masala I.F., Caporali R., Montecucco C., Sarzi-Puttini P. TNF inhibitors in rheumatoid arthritis and spondyloarthritis: Are they the same? Autoimmun. Rev. 2018;17:24–28. doi: 10.1016/j.autrev.2017.11.005.
    1. Emery P., Vlahos B., Szczypa P., Thakur M., Jones H., Woolcott J., Estrella P.V.S., Rolland C., Gibofsky A., Citera G., et al. Longterm Drug Survival of Tumor Necrosis Factor Inhibitors in Patients with Rheumatoid Arthritis. J. Rheumatol. 2019;47:493–501. doi: 10.3899/jrheum.181398.
    1. Cantini F., Benucci M. Focus on biosimilar etanercept – bioequivalence and interchangeability. Biol. Targets Ther. 2018;12:87–95. doi: 10.2147/BTT.S126854.
    1. Barbier L., Ebbers H.C., Declerck P., Simoens S., Vulto A.G., Huys I. The Efficacy, Safety, and Immunogenicity of Switching Between Reference Biopharmaceuticals and Biosimilars: A Systematic Review. Clin. Pharmacol. Ther. 2020;108:734–755. doi: 10.1002/cpt.1836.
    1. Fleischmann R., Jairath V., Mysler E., Nicholls D., Declerck P. Nonmedical Switching From Originators to Biosimilars: Does the Nocebo Effect Explain Treatment Failures and Adverse Events in Rheumatology and Gastroenterology? Rheumatol. Ther. 2020;7:35–64. doi: 10.1007/s40744-019-00190-7.
    1. Mezones-Holguín E., Gamboa-Cardenas R.V., Sanchez-Felix G., Chávez-Corrales J., Helguero-Santin L.M., Seminario L.M.L., Burela-Prado P.A., Castro-Reyes M.M., Fiestas F. Efficacy and Safety in the Continued Treatment With a Biosimilar Drug in Patients Receiving Infliximab: A Systematic Review in the Context of Decision-Making From a Latin-American Country. Front. Pharmacol. 2019;10:1010. doi: 10.3389/fphar.2019.01010.
    1. Boone N.W., Liu L., Romberg-Camps M.J., Duijsens L., Houwen C., Van Der Kuy P.H.M., Janknegt R., Peeters R., Landewé R.B.M., Winkens B., et al. The nocebo effect challenges the non-medical infliximab switch in practice. Eur. J. Clin. Pharmacol. 2018;74:655–661. doi: 10.1007/s00228-018-2418-4.
    1. Tarallo M., Onishchenko K., Alexopoulos S.T. Costs associated with non-medical switching from originator to biosimilar etanercept in patients with rheumatoid arthritis in the UK. J. Med Econ. 2019;22:1162–1170. doi: 10.1080/13696998.2019.1652183.
    1. Zhao S., Mysler E., Moots R. Etanercept for the treatment of rheumatoid arthritis. Immunotherapy. 2018;10:433–445. doi: 10.2217/imt-2017-0155.
    1. Yamanaka H., Hirose T., Endo Y., Sugiyama N., Fukuma Y., Morishima Y., Sugiyama N., Yoshii N., Miyasaka N., Koike T. Three-year safety and two-year effectiveness of etanercept in patients with rheumatoid arthritis in Japan: Results of long-term postmarketing surveillance. Mod. Rheumatol. 2018;29:737–746. doi: 10.1080/14397595.2018.1510759.
    1. Ramiro S., Szumski A., Koenig A.S., Jones T.V., Marshall L. Predictors of remission with etanercept-methotrexate induction therapy and loss of remission with etanercept maintenance, reduction, or withdrawal in moderately active rheumatoid arthritis: Results of the PRESERVE trial. Arthritis Res. 2018;20:1–17. doi: 10.1186/s13075-017-1484-9.
    1. Jensen T.B., Bartels D., Sædder E.A., Poulsen B.K., Andersen S.E., Christensen M.M.H., Nielsen L., Christensen H.R. The Danish model for the quick and safe implementation of infliximab and etanercept biosimilars. Eur. J. Clin. Pharmacol. 2020;76:35–40. doi: 10.1007/s00228-019-02765-3.
    1. Smolen J.S., Kang Y.M., Yoo W.-H., Emery P., Weinblatt M.E., Keystone E.C., Genovese M.C., Myung G., Baek I., Ghil J. Radiographic progression based on baseline characteristics from TNF inhibitor biosimilar studies in patients with rheumatoid arthritis. Arthritis Res. 2020;22:1–9. doi: 10.1186/s13075-020-02267-z.
    1. Agca R., Heslinga S.C., Rollefstad S., Heslinga M., McInnes I.B., Peters M.J., Kvien T.K., Dougados M., Radner H., Atzeni F., et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017;76:17–28. doi: 10.1136/annrheumdis-2016-209775.
    1. Kameda H., Uechi E., Atsumi T., Abud-Mendoza C., Kamei K., Matsumoto T., De Leon D.P., Rehman M.I., Zhang M., Radominski S.C. A comparative study of PF-06438179/GP1111 (an infliximab biosimilar) and reference infliximab in patients with moderate to severe active rheumatoid arthritis: A subgroup analysis. Int. J. Rheum. Dis. 2020;23:876–881. doi: 10.1111/1756-185X.13846.
    1. Müskens W.D., Dartel S.A.A.R.-V., Teerenstra S., Adang E.M.M., Van Riel P.L.C.M. One-year results after transitioning from etanercept originator to biosimilar in a setting promoting shared decision-making in rheumatology. Rheumatol. Adv. Pr. 2020;4:042. doi: 10.1093/rap/rkaa042.
    1. Glintborg B., Loft A.G., Omerovic E., Hendricks O., Linauskas A., Espesen J., Danebod K., Jensen D.V., Nordin H., Dalgaard E.B., et al. To switch or not to switch: Results of a nationwide guideline of mandatory switching from originator to biosimilar etanercept. One-year treatment outcomes in 2061 patients with inflammatory arthritis from the DANBIO registry. Ann. Rheum. Dis. 2019;78:192–200. doi: 10.1136/annrheumdis-2018-213474.
    1. Goncalves J., Myung G., Park M., Jeong D., Ghil J. SB5 shows cross-immunogenicity to adalimumab but not infliximab: Results in patients with inflammatory bowel disease or rheumatoid arthritis. Ther. Adv. Gastroenterol. 2019;12:1756284819891081. doi: 10.1177/1756284819891081.
    1. Remsima, INN-infliximab-European Medicines Agency. [(accessed on 31 July 2018)]; [cited 2019 November 22]; EMA. Available online: .
    1. Jani R.H., Gupta R., Bhatia G., Rathi G., Kumar P.A., Sharma R., Kumar U., Gauri L.A., Jadhav P., Bartakke G., et al. A prospective, randomized, double-blind, multicentre, parallel-group, active controlled study to compare efficacy and safety of biosimilar adalimumab (Exemptia; ZRC-3197) and adalimumab (Humira) in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2015;19:1157–1168. doi: 10.1111/1756-185X.12711.
    1. Curtis J.R., Xie F., Kay J., Kallich J.D. Will savings from biosimilars offset increased costs related to dose escalation? A comparison of infliximab and golimumab for rheumatoid arthritis. Arthritis Res. 2019;21:1–10. doi: 10.1186/s13075-019-2022-8.
    1. Kim T.-H., Lee S.-S., Park W., Song Y.W., Suh C.-H., Kim S., Lee Y.N., Yoo D.-H. A 5-year Retrospective Analysis of Drug Survival, Safety, and Effectiveness of the Infliximab Biosimilar CT-P13 in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis. Clin. Drug Investig. 2020;40:541–553. doi: 10.1007/s40261-020-00907-5.
    1. Glintborg B., Sørensen I.J., Loft A.G., Lindegaard H., Linauskas A., Hendricks O., Hansen I.M.J., Jensen D.V., Manilo N., Espesen J., et al. A nationwide non-medical switch from originator infliximab to biosimilar CT-P13 in 802 patients with inflammatory arthritis: 1-year clinical outcomes from the DANBIO registry. Ann. Rheum. Dis. 2017;76:1426–1431. doi: 10.1136/annrheumdis-2016-210742.
    1. Goll G.L., Jørgensen K.K., Sexton J., Olsen I.C., Bolstad N., Haavardsholm E.A., Lundin K.E.A., Tveit K.S., Lorentzen M., Berset I.P., et al. Long-term efficacy and safety of biosimilar infliximab (CT-P13) after switching from originator infliximab: Open-label extension of the NOR-SWITCH trial. J. Intern. Med. 2019;285:653–669. doi: 10.1111/joim.12880.
    1. Cohen S.B., Genovese M.C., Choy E., Perez-Ruiz F., Matsumoto A., Pavelka K., Pablos J.L., Rizzo W., Hrycaj P., Zhang N., et al. Efficacy and safety of the biosimilar ABP 501 compared with adalimumab in patients with moderate to severe rheumatoid arthritis: A randomised, double-blind, phase III equivalence study. Ann. Rheum. Dis. 2017;76:1679–1687. doi: 10.1136/annrheumdis-2016-210459.
    1. Jamshidi A., Gharibdoost F., Vojdanian M., Soroosh S.G., Soroush M., Ahmadzadeh A., Nazarinia M.A., Mousavi M., Karimzadeh H., Shakibi M.R., et al. A phase III, randomized, two-armed, double-blind, parallel, active controlled, and non-inferiority clinical trial to compare efficacy and safety of biosimilar adalimumab (CinnoRA(R)) to the reference product (Humira(R)) in patients with active rheumatoid arthritis. Arthritis Res. Ther. 2017;19:168.
    1. Kang J., Eudy-Byrne R.J., Mondick J., Knebel W., Jayadeva G., Liesenfeld K. Population pharmacokinetics of adalimumab biosimilar adalimumab-adbm and reference product in healthy subjects and patients with rheumatoid arthritis to assess pharmacokinetic similarity. Br. J. Clin. Pharmacol. 2020;86:2274–2285. doi: 10.1111/bcp.14330.
    1. Genovese M.C., Kellner H., Arai Y., Muniz R., Alten R. Long-term safety, immunogenicity and efficacy comparing FKB327 with the adalimumab reference product in patients with active rheumatoid arthritis: Data from randomised double-blind and open-label extension studies. RMD Open. 2020;6:e000987. doi: 10.1136/rmdopen-2019-000987.
    1. Sinha S., Ghosh B., Bandyopadhyay S., Fatima F., Bandi V.K., Thakur P., Reddy B., Chary S., Talluri L., Gupta A., et al. Comparative evaluation of efficacy, pharmacodynamics, and safety of Hetero’s adalimumab (Mabura®, Hetero Biopharma Ltd.) and reference adalimumab (Humira®, Abbvie Inc.) in patients with active rheumatoid arthritis on concomitant methotrexate therapy. BMC Rheumatol. 2020;4:24. doi: 10.1186/s41927-020-00124-9.
    1. Mariette X., Förger F., Abraham B., Flynn A.D., Moltó A., Flipo R.-M., Van Tubergen A., Shaughnessy L., Simpson J., Teil M., et al. Lack of placental transfer of certolizumab pegol during pregnancy: Results from CRIB, a prospective, postmarketing, pharmacokinetic study. Ann. Rheum. Dis. 2018;77:228–233. doi: 10.1136/annrheumdis-2017-212196.
    1. Janke K., Biester K., Krause D., Richter B., Schürmann C., Hirsch K., Hörn H., Kerekes M.F., Kohlepp P., Wieseler B. Comparative effectiveness of biological medicines in rheumatoid arthritis: Systematic review and network meta-analysis including aggregate results from reanalysed individual patient data. BMJ. 2020;370:m2288. doi: 10.1136/bmj.m2288.
    1. Berkhout L.C., Vogelzang E.H., Hart M.M., Loeff F.C., Dijk L., Derksen N.I.L., Wieringa R., Van Leeuwen W.A., Krieckaert C.L.M., De Vries A., et al. The effect of certolizumab drug concentration and anti-drug antibodies on TNF neutralisation. Clin. Exp. Rheumatol. 2019;38:306–313.
    1. Curtis J.R., Mariette X., Gaujoux-Viala C., Blauvelt A., Kvien T.K., Sandborn W.J., Winthrop K., De Longueville M., Huybrechts I., Bykerk V.P. Long-term safety of certolizumab pegol in rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis, psoriasis and Crohn’s disease: A pooled analysis of 11 317 patients across clinical trials. RMD Open. 2019;5:e000942. doi: 10.1136/rmdopen-2019-000942.
    1. Michelsen B., Sexton J., Wierød A., Bakland G., Rødevand E., Krøll F., Kvien T.K. Four-year follow-up of inflammatory arthropathy patients treated with golimumab: Data from the observational multicentre NOR-DMARD study. Semin. Arthritis Rheum. 2020;50:12–16. doi: 10.1016/j.semarthrit.2019.07.003.
    1. Flipo R.M., Tubach F., Goupille P., Lespessailles E., Harid N., Sequeira S., Bertin P., Fautrel B. Real-life persistence of golimumab in patients with chronic inflammatory rheumatic diseases: Results of the 2-year observational GO-PRACTICE study. Clin. Exp. Rheumatol. 2020
    1. Iannone F., Favalli E.G., Caporali R., D’Angelo S., Cantatore F.P., Sarzi-Puttini P., Foti R., Conti F., Carletto A., Gremese E., et al. Golimumab effectiveness in biologic inadequate responding patients with rheumatoid arthritis, psoriatic arthritis and spondyloarthritis in real-life from the Italian registry GISEA. Jt. Bone Spine. 2020:105062. doi: 10.1016/j.jbspin.2020.07.011.
    1. Rahman P., Baer P., Keystone E., Choquette D., Thorne C., Haraoui B., Chow A., Faraawi R., Olszynski W., Kelsall J., et al. Long-term effectiveness and safety of infliximab, golimumab and golimumab-IV in rheumatoid arthritis patients from a Canadian prospective observational registry. BMC Rheumatol. 2020;4:1–14. doi: 10.1186/s41927-020-00145-4.
    1. Drugs and Lactation Database (LactMed) [Internet][Tarallo, 2019 #2144] National Library of Medicine; Bethesda, MD, USA: 2020. Golimumab.
    1. Rose-John S., Winthrop K., Calabrese L. The role of IL-6 in host defence against infections: Immunobiology and clinical implications. Nat. Rev. Rheumatol. 2017;13:399–409. doi: 10.1038/nrrheum.2017.83.
    1. Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8.
    1. Tanaka T., Kishimoto T. The Biology and Medical Implications of Interleukin-6. Cancer Immunol. Res. 2014;2:288–294. doi: 10.1158/2326-6066.CIR-14-0022.
    1. Kimura A., Kishimoto T. IL-6: Regulator of Treg/Th17 balance. Eur. J. Immunol. 2010;40:1830–1835. doi: 10.1002/eji.201040391.
    1. Biggioggero M., Crotti C., Becciolini A., Favalli E.G. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des. Dev. Ther. 2018;13:57–70. doi: 10.2147/DDDT.S150580.
    1. Manfredi A., Cassone G., Furini F., Gremese E., Venerito V., Atzeni F., Arrigoni E., Della Casa G., Cerri S., Govoni M., et al. Tocilizumab therapy in rheumatoid arthritis with interstitial lung disease: A multicentre retrospective study. Intern. Med. J. 2019;50:1085–1090. doi: 10.1111/imj.14670.
    1. Burmester G.R., Choy E., Kivitz A., Ogata A., Bao M., Nomura A., Lacey S., Pei J., Reiss W., Pethoe-Schramm A., et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017;76:1078–1085. doi: 10.1136/annrheumdis-2016-210297.
    1. Kivitz A.J., Olech E., Borofsky M., Zazueta B.M., Navarro-Sarabia F., Radominski S.C., Merrill J.T., Rowell L., Nasmyth-Miller C., Bao M., et al. Subcutaneous Tocilizumab Versus Placebo in Combination With Disease-Modifying Antirheumatic Drugs in Patients With Rheumatoid Arthritis. Arthritis Rheum. 2014;66:1653–1661. doi: 10.1002/acr.22384.
    1. Burmester G.R., Rubbert-Roth A., Cantagrel A., Hall S., Leszczynski P., Feldman D., Rangaraj M.J., Roane G., Ludivico C., Lu P., et al. A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study) Ann. Rheum. Dis. 2014;73:69–74. doi: 10.1136/annrheumdis-2013-203523.
    1. Burmester G.-R., Rigby W.F., Van Vollenhoven R.F., Kay J., Rubbert-Roth A., Blanco R., Kadva A., Dimonaco S. Tocilizumab combination therapy or monotherapy or methotrexate monotherapy in methotrexate-naive patients with early rheumatoid arthritis: 2-year clinical and radiographic results from the randomised, placebo-controlled FUNCTION trial. Ann. Rheum. Dis. 2017;76:1279–1284. doi: 10.1136/annrheumdis-2016-210561.
    1. Jones G., Sebba A., Alvarez-Rodríguez L., Lowenstein M.B., Calvo-Alen J., Gomez-Reino J.J., A Siri D., Tomšič M., Alecock E., Woodworth T., et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION study. Ann. Rheum. Dis. 2009;69:88–96. doi: 10.1136/ard.2008.105197.
    1. Kremer J.M., Blanco R., Brzosko M., Burgos-Vargas R., Halland A.M., Vernon E., Ambs P., Fleischmann R. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum. 2011;63:609–621.
    1. Emery P., Keystone E., Tony H.P., Cantagrel A., Van Vollenhoven R., Sanchez A., Alecock E., Lee J., Kremer J. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 2008;67:1516–1523. doi: 10.1136/ard.2008.092932.
    1. Choy E.H., Bernasconi C., Aassi M., Molina J.F., Epis O.M. Treatment of Rheumatoid Arthritis With Anti-Tumor Necrosis Factor or Tocilizumab Therapy as First Biologic Agent in a Global Comparative Observational Study. Arthritis Rheum. 2017;69:1484–1494. doi: 10.1002/acr.23303.
    1. Gabay C., Emery P., Van Vollenhoven R., Dikranian A., Alten R., Pavelka K., Klearman M., Musselman D., Agarwal S., Green J., et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): A randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381:1541–1550. doi: 10.1016/S0140-6736(13)60250-0.
    1. Genovese M.C., Fleischmann R., Kivitz A.J., Rell-Bakalarska M., Martincova R., Fiore S., Rohane P., Van Hoogstraten H., Garg A., Stefano F., et al. Sarilumab Plus Methotrexate in Patients With Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015;67:1424–1437. doi: 10.1002/art.39093.
    1. Choy E., Freemantle N., Proudfoot C., Chen C.-I., Pollissard L., Kuznik A., Van Hoogstraten H., Mangan E., Carita P., Huynh T.-M.-T. Evaluation of the efficacy and safety of sarilumab combination therapy in patients with rheumatoid arthritis with inadequate response to conventional disease-modifying antirheumatic drugs or tumour necrosis factor α inhibitors: Systematic literature review and network meta-analyses. RMD Open. 2019;5:e000798. doi: 10.1136/rmdopen-2018-000798.
    1. Burmester G.-R., Lin Y., Patel R., Van Adelsberg J., Mangan E.K., Graham N.M.H., Van Hoogstraten H., Bauer D., Vargas J.I., Lee E.B. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): A randomised, double-blind, parallel-group phase III trial. Ann. Rheum. Dis. 2016;76:840–847. doi: 10.1136/annrheumdis-2016-210310.
    1. Genovese M., Fleischmann R., Furst D., Janssen N., Carter J., Dasgupta B., Bryson J., Duncan B., Zhu W., Pitzalis C., et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: Outcomes of a randomised Phase IIb study. Ann. Rheum. Dis. 2014;73:1607–1615. doi: 10.1136/annrheumdis-2013-204760.
    1. Weinblatt M., Mease P.J., Mysler E., Takeuchi T., Drescher E., Berman A., Xing J., Zilberstein M., Banerjee S., Emery P. The Efficacy and Safety of Subcutaneous Clazakizumab in Patients With Moderate-to-Severe Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results From a Multinational, Phase IIb, Randomized, Double-Blind, Placebo/Active-Controlled, Dose-Ra. Arthritis Rheumatol. 2015;67:2591–2600. doi: 10.1002/art.39249.
    1. Dörner T., Weinblatt M., Van Beneden K., Dombrecht E.J., De Beuf K., Schoen P., Zeldin R.K. Results of a phase 2b study of vobarilizumab, an anti-interleukin-6 receptor nanobody, as monotherapy in patients with moderate to severe rheumatoid arthritis. Ann. Rheum. Dis. 2017 doi: 10.1136/annrheumdis-2017-eular.3746.
    1. Arthritis Advisory Committee PLIVENSIA™ (Sirukumab) [(accessed on 31 July 2018)]; [cited 2017 June 28]; Janssen Research & Development, LLC. Available online: .
    1. Rooney M., Symons J.A., Duff G.W. Interleukin 1 beta in synovial fluid is related to local disease activity in rheumatoid arthritis. Rheumatol. Int. 1990;10:217–219. doi: 10.1007/BF02274836.
    1. Fong K.Y., Boey M.L., Koh W.H., Feng P.H. Cytokine concentrations in the synovial fluid and plasma of rheumatoid arthritis patients: Correlation with bony erosions. Clin. Exp. Rheumatol. 1994;12:55–58.
    1. Furst D.E., Keystone E.C., So A.K., Braun J., Breedveld F.C., Burmester G.R., De Benedetti F., Dorner T., Emery P., Fleischmann R., et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases. Ann. Rheum. Dis. 2012;72(Suppl. 2):ii2–ii34. doi: 10.1136/annrheumdis-2013-203348.
    1. Salliot C., Dougados M., Gossec L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: Meta-analyses of randomised placebo-controlled trials. Ann. Rheum. Dis. 2008;68:25–32. doi: 10.1136/ard.2007.083188.
    1. Alten R., Gómez-Reino J., Durez P., Beaulieu A., Sebba A., Krammer G., Preiss R., Arulmani U., Widmer A., Gitton X., et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: Results of a 12-week, phase II, dose-finding study. BMC Musculoskelet. Disord. 2011;12:153. doi: 10.1186/1471-2474-12-153.
    1. Stahl N., Radin A., Mellis S. Rilonacept--CAPS and beyond. Ann. N. Y. Acad. Sci. 2009;1182:124–134. doi: 10.1111/j.1749-6632.2009.05074.x.
    1. Dokoupilová E., Aelion J., Takeuchi T., Malavolta N., Sfikakis P.P., Wang Y., Rohrer S., Richards H.B. Secukinumab after anti-tumour necrosis factor-α therapy: A phase III study in active rheumatoid arthritis. Scand. J. Rheumatol. 2018;47:276–281. doi: 10.1080/03009742.2017.1390605.
    1. Ramiro S., Agarwal S.K., Ilivanova E., Xu X.L., Miao Y., Zhuang Y., Nnane I., Radziszewski W., Greenspan A., Beutler A., et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 2017;76:831–839. doi: 10.1136/annrheumdis-2016-209831.
    1. Nair J.R., Edwards S.W., Moots R.J. Mavrilimumab, a human monoclonal GM-CSF receptor-α antibody for the management of rheumatoid arthritis: A novel approach to therapy. Expert Opin. Biol. Ther. 2012;12:1661–1668. doi: 10.1517/14712598.2012.732062.
    1. Lukens J.R., Barr M.J., Chaplin D.D., Chi H., Kanneganti T.D. Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4(+) T cells and gammadelta T cells. J. Immunol. 2012;188:3107–3115. doi: 10.4049/jimmunol.1103308.
    1. Burmester G.R., McInnes I., Kremer J., Miranda P., Korkosz M., Vencovsky J., Rubbert-Roth A., Mysler E., A Sleeman M., Godwood A., et al. A randomised phase IIb study of mavrilimumab, a novel GM–CSF receptor alpha monoclonal antibody, in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 2017;76:1020–1030. doi: 10.1136/annrheumdis-2016-210624.
    1. Weinblatt M.E., McInnes I.B., Kremer J.M., Miranda P., Vencovsky J., Guo X., White W.I., Ryan P.C., Godwood A., Albulescu M., et al. A Randomized Phase IIb Study of Mavrilimumab and Golimumab in Rheumatoid Arthritis. Arthritis Rheumatol. 2018;70:49–59. doi: 10.1002/art.40323.
    1. Burmester G.R., McInnes I.B., Kremer J.M., Miranda P., Vencovsky J., Godwood A., Albulescu M., Michaels M.A., Guo X., Close D., et al. Mavrilimumab, a Fully Human Granulocyte-Macrophage Colony-Stimulating Factor Receptor alpha Monoclonal Antibody: Long-Term Safety and Efficacy in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2018;70:679–689. doi: 10.1002/art.40420.
    1. Kivitz A., Hazan L., Hoffman K., Wallin B. FRI0209 MORAb-022, An Anti-Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Monoclonal Antibody (MAB): Results of The First Study in Patients with Mild-To-Moderate Rheumatoid Arthritis (RA): Table 1. Ann. Rheum. Dis. 2016;75:507.2-507. doi: 10.1136/annrheumdis-2016-eular.3186.
    1. Behrens F., Tak P.P., Østergaard M., Stoilov R., Wiland P., Huizinga T.W., Berenfus V.Y., Vladeva S., Rech J., Rubbert-Roth A., et al. MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: Results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann. Rheum. Dis. 2014;74:1058–1064. doi: 10.1136/annrheumdis-2013-204816.
    1. Crotti C., Agape E., Becciolini A., Biggioggero M., Favalli E.G. Targeting Granulocyte-Monocyte Colony-Stimulating Factor Signaling in Rheumatoid Arthritis: Future Prospects. Drugs. 2019;79:1741–1755. doi: 10.1007/s40265-019-01192-z.
    1. Tak P.P., A Van Der Lubbe P., Cauli A., Daha M.R., Smeets T.J.M., Kluin P.M., E Meinders A., Yanni G., Panayi G.S., Breedveld F.C. Reduction of synovial inflammation after anti-CD4 monoclonal antibody treatment in early rheumatoid arthritis. Arthritis Rheum. 1995;38:1457–1465. doi: 10.1002/art.1780381012.
    1. Scarsi M., Paolini L., Ricotta D., Pedrini A., Piantoni S., Caimi L., Tincani A., Airó P. Abatacept Reduces Levels of Switched Memory B Cells, Autoantibodies, and Immunoglobulins in Patients with Rheumatoid Arthritis. J. Rheumatol. 2014;41:666–672. doi: 10.3899/jrheum.130905.
    1. Weisman M.H., Durez P., Hallegua D., Aranda R., Becker J.-C., Nuamah I., Vratsanos G., Zhou Y., Moreland L.W. Reduction of inflammatory biomarker response by abatacept in treatment of rheumatoid arthritis. J. Rheumatol. 2006;33:2162–2166.
    1. Bonelli M., Göschl L., Blüml S., Karonitsch T., Hirahara K., Ferner E., Steiner G., Steiner G., Ramiro S., Scheinecker C. Abatacept (CTLA-4Ig) treatment reduces T cell apoptosis and regulatory T cell suppression in patients with rheumatoid arthritis. Rheumatol. 2015;55:710–720. doi: 10.1093/rheumatology/kev403.
    1. Orencia. [(accessed on 1 June 2017)]; [cited 2019 April 12]; EMA. Available online: .
    1. Kremer J.M., Westhovens R.R., Leon M., Di Giorgio E.E., Alten R., Steinfeld S., Russell A., Dougados M.M., Emery P., Nuamah I.F., et al. Treatment of Rheumatoid Arthritis by Selective Inhibition of T-Cell Activation with Fusion Protein CTLA4Ig. N. Engl. J. Med. 2003;349:1907–1915. doi: 10.1056/NEJMoa035075.
    1. Westhovens R., Robles M., Ximenes A.C., Nayiager S., Wollenhaupt J., Durez P., Gomez-Reino J., Grassi W., Haraoui B., Shergy W., et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann. Rheum. Dis. 2009;68:1870–1877. doi: 10.1136/ard.2008.101121.
    1. Peterfy C., Burmester G.R., Bykerk V.P., Combe B.G., Dicarlo J.C., E Furst D., Huizinga T.W.J., A Wong D., Conaghan P.G., Emery P. Sustained improvements in MRI outcomes with abatacept following the withdrawal of all treatments in patients with early, progressive rheumatoid arthritis. Ann. Rheum. Dis. 2016;75:1501–1505. doi: 10.1136/annrheumdis-2015-208258.
    1. Weinblatt M., Schiff M., Valente R., Van Der Heijde D., Citera G., Zhao C., Maldonado M., Fleischmann R. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: Findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheum. 2012;65:28–38. doi: 10.1002/art.37711.
    1. Schiff M., Keiserman M., Codding C., Songcharoen S., Berman A., Nayiager S., Saldate C., Li T., Aranda R., Becker J.-C., et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: A phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann. Rheum. Dis. 2008;67:1096–1103. doi: 10.1136/ard.2007.080002.
    1. Nüßlein H.G., Alten R., Galeazzi M., Lorenz H.-M., Nurmohamed M., Bensen W.G., Burmester G.-R., Peter H.-H., Peichl P., Pavelka K., et al. Efficacy and prognostic factors of treatment retention with intravenous abatacept for rheumatoid arthritis: 24-month results from an international, prospective, real-world study. Clin. Exp. Rheumatol. 2016;34:489–499.
    1. Al-Laith M., Jasenecova M., Abraham S., Bosworth A., Bruce I.N., Buckley C.D., Ciurtin C., D’Agostino M.-A., Emery P., Gaston H., et al. Arthritis prevention in the pre-clinical phase of RA with abatacept (the APIPPRA study): A multi-centre, randomised, double-blind, parallel-group, placebo-controlled clinical trial protocol. Trials. 2019;20:1–15. doi: 10.1186/s13063-019-3403-7.
    1. De Germay S., Bagheri H., Despas F., Rousseau V., Montastruc F. Abatacept in rheumatoid arthritis and the risk of cancer: A world observational post-marketing study. Rheumatology. 2019;59:2360–2367. doi: 10.1093/rheumatology/kez604.
    1. Cagnotto G., Willim M., Nilsson J.-Å., Compagno M., Jacobsson L.T.H., Saevarsdottir S., Turesson C. Abatacept in rheumatoid arthritis: Survival on drug, clinical outcomes, and their predictors—data from a large national quality register. Arthritis Res. 2020;22:1–11. doi: 10.1186/s13075-020-2100-y.
    1. Gerlag D.M., Safy M., I Maijer K., Tang M.W., Tas S.W., Starmans-Kool M.J.F., Van Tubergen A., Janssen M., De Hair M., Hansson M., et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: The PRAIRI study. Ann. Rheum. Dis. 2019;78:179–185. doi: 10.1136/annrheumdis-2017-212763.
    1. Marston B., Palanichamy A., Anolik J.H. B cells in the pathogenesis and treatment of rheumatoid arthritis. Curr. Opin. Rheumatol. 2010;22:307–315. doi: 10.1097/BOR.0b013e3283369cb8.
    1. Ramsköld D., Parodis I., Lakshmikanth T., Sippl N., Khademi M., Chen Y., Zickert A., Mikeš J., Achour A., Amara K., et al. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine. 2019;40:517–527. doi: 10.1016/j.ebiom.2018.12.035.
    1. Alexander T., Cheng Q., Klotsche J., Khodadadi L., Waka A., Biesen R., Hoyer M.B.F., Burmester G.-R., Radbruch A., Hiepe F. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur. J. Immunol. 2018;48:1573–1579. doi: 10.1002/eji.201847492.
    1. Jin W., Luo Z., Yang H. Peripheral B Cell Subsets in Autoimmune Diseases: Clinical Implications and Effects of B Cell-Targeted Therapies. J. Immunol. Res. 2020;2020:9518137. doi: 10.1155/2020/9518137.
    1. Nakou M., Katsikas G., Sidiropoulos P., Bertsias G., Papadimitraki E.D., Raptopoulou A., Koutala E., Papadaki H.A., Kritikos H., Boumpas D.T. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: Depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 2009;11:R131. doi: 10.1186/ar2798.
    1. Koffas A., E Dolman G., Kennedy P.T.F. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: A practical guide for clinicians. Clin. Med. 2018;18:212–218. doi: 10.7861/clinmedicine.18-3-212.
    1. Porter D., Van Melckebeke J., Dale J., Messow C.M., McConnachie A., Walker A., Munro R., McLaren J., McRorie E., Packham J., et al. Tumour necrosis factor inhibition versus rituximab for patients with rheumatoid arthritis who require biological treatment (ORBIT): An open-label, randomised controlled, non-inferiority, trial. Lancet. 2016;388:239–247. doi: 10.1016/S0140-6736(16)00380-9.
    1. Emery P., E Gottenberg J., Rubbert-Roth A., Sarzi-Puttini P., Choquette D., Taboada V.M.M., Barile-Fabris L., Moots R.J., Ostor A., Andrianakos A., et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann. Rheum. Dis. 2014;74:979–984. doi: 10.1136/annrheumdis-2013-203993.
    1. Pascart T., Philippe P., Drumez E., Deprez X., Cortet B., Duhamel A., Houvenagel E., Flipo R. Comparative efficacy of tocilizumab, abatacept and rituximab after non-TNF inhibitor failure: Results from a multicentre study. Int. J. Rheum. Dis. 2016;19:1093–1102. doi: 10.1111/1756-185X.12845.
    1. Van Vollenhoven R.F., Emery P., Bingham C.O., Keystone E.C., Fleischmann R.M., Furst D.E., Tyson N., Collinson N., Lehane P.B. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 2013;72:1496–1502. doi: 10.1136/annrheumdis-2012-201956.
    1. Emery P., Furst D.E., Kirchner P., Melega S., Lacey S., Lehane P.B. Risk of Malignancies in Patients with Rheumatoid Arthritis Treated with Rituximab: Analyses of Global Postmarketing Safety Data and Long-Term Clinical Trial Data. Rheumatol. Ther. 2020;7:121–131. doi: 10.1007/s40744-019-00183-6.
    1. Das G., Damotte V., Gelfand J.M., Bevan C., Cree B.A.C., Do L., Green A.J., Hauser S.L., Bove R. Rituximab before and during pregnancy: A systematic review, and a case series in MS and NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 2018;5:e453. doi: 10.1212/NXI.0000000000000453.
    1. Haridas V., Katta R., Nalawade A., Kharkar S., Zhdan V., Garmish O., Lopez-Lazaro L., Batra S.S., Kankanwadi S. Pharmacokinetic Similarity and Comparative Pharmacodynamics, Safety, Efficacy, and Immunogenicity of DRL_RI Versus Reference Rituximab in Biologics-Naïve Patients with Moderate-to-Severe Rheumatoid Arthritis: A Double-Blind, Randomized, Three-Arm Study. BioDrugs. 2020;34:183–196. doi: 10.1007/s40259-020-00406-1.
    1. Smolen J.S., Cohen S.B., Tony H.-P., Scheinberg M., Kivitz A., Balanescu A., Gomez-Reino J., Cen L., Poetzl J., Shisha T., et al. Efficacy and safety of Sandoz biosimilar rituximab for active rheumatoid arthritis: 52-week results from the randomized controlled ASSIST-RA trial. Rheumatology. 2021;60:256–262. doi: 10.1093/rheumatology/keaa234.
    1. Burmester G.-R., Chien D., Chow V., Gessner M., Pan J., Cohen S. A Randomized, Double-Blind Study Comparing Pharmacokinetics and Pharmacodynamics of Proposed Biosimilar ABP 798 With Rituximab Reference Product in Subjects With Moderate to Severe Rheumatoid Arthritis. Clin. Pharmacol. Drug Dev. 2020;9:1003–1014. doi: 10.1002/cpdd.845.
    1. Shim S.C., Božić-Majstorović L., Kasay A.B., El-Khouri E.C., Irazoque-Palazuelos F., Molina F.F.C., Medina-Rodriguez F.G., Miranda P., Shesternya P., Chavez-Corrales J., et al. Efficacy and safety of switching from rituximab to biosimilar CT-P10 in rheumatoid arthritis: 72-week data from a randomized Phase 3 trial. Rheumatol. 2019;58:2193–2202. doi: 10.1093/rheumatology/kez152.
    1. Smolen J.S., Landewe R., Breedveld F.C., Buch M., Burmester G., Dougados M., Emery P., Gaujoux-Viala C., Gossec L., Nam J., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 2014;73:492–509. doi: 10.1136/annrheumdis-2013-204573.
    1. McCamish M., Woollett G. Worldwide experience with biosimilar development. mAbs. 2011;3:209–217. doi: 10.4161/mabs.3.2.15005.
    1. Mysler E., Pineda C., Horiuchi T., Singh E., Mahgoub E., Coindreau J., Jacobs I. Clinical and regulatory perspectives on biosimilar therapies and intended copies of biologics in rheumatology. Rheumatol. Int. 2016;36:613–625. doi: 10.1007/s00296-016-3444-0.
    1. Jørgensen K.K., Olsen I.C., Goll G.L., Lorentzen M., Bolstad N., A Haavardsholm E., E A Lundin K., Mørk C., Jahnsen J., Kvien T.K., et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): A 52-week, randomised, double-blind, non-inferiority trial. Lancet. 2017;389:2304–2316. doi: 10.1016/S0140-6736(17)30068-5.
    1. Doevendans E., Schellekens H. Immunogenicity of Innovative and Biosimilar Monoclonal Antibodies. Antibodies. 2019;8:21. doi: 10.3390/antib8010021.
    1. Biosimilars–Position Paper. Updatingposition statement from the European League Against Rheumatism (EULAR) Standing Committee of People with Arthritis/Rheumatism in Europe (PARE) [(accessed on 31 July 2018)]; [cited 2018 August]; EULAR. Available online: .
    1. Scheinberg M., Castañeda-Hernández G. Anti-tumor necrosis factor patent expiration and the risks of biocopies in clinical practice. Arthritis Res. Ther. 2014;16:501. doi: 10.1186/s13075-014-0501-5.
    1. Castañeda-Hernández G., González-Ramírez R., Kay J., A Scheinberg M. Biosimilars in rheumatology: What the clinician should know. RMD Open. 2015;1:e000010. doi: 10.1136/rmdopen-2014-000010.
    1. Hassett B., Scheinberg M., Castaneda-Hernandez G., Li M., Rao U.R.K., Singh E., Mahgoub E., Coindreau J., O’Brien J., Vicik S.M., et al. Variability of intended copies for etanercept (Enbrel(R)): Data on multiple batches of seven products. MAbs. 2018;10:166–176. doi: 10.1080/19420862.2017.1387346.
    1. Kowalski S.C., Benavides J.A., Roa P.A.B., Galarza-Maldonado C., Caballero-Uribe C.V., Soriano E.R., Pineda C., Azevedo V.F., Avila-Pedretti G., Babini A.M., et al. PANLAR consensus statement on biosimilars. Clin. Rheumatol. 2019;38:1485–1496. doi: 10.1007/s10067-019-04496-3.
    1. Dávila-Fajardo C.L., Márquez A., Pascual-Salcedo D., Ramos M.J.M., García-Portales R., Magro C., Alegre-Sancho J.J., Balsa A., Cabeza-Barrera J., Raya E., et al. Confirmation of −174G/C interleukin-6 gene promoter polymorphism as a genetic marker predicting antitumor necrosis factor treatment outcome. Pharmacogenetics Genom. 2014;24:1–5. doi: 10.1097/FPC.0000000000000013.
    1. Jančić I., Arsenović-Ranin N., Šefik-Bukilica M., Živojinović S., Damjanov N., Spasovski V., Srzentić S., Stanković B., Pavlović S. -174G/C interleukin-6 gene promoter polymorphism predicts therapeutic response to etanercept in rheumatoid arthritis. Rheumatol. Int. 2012;33:1481–1486. doi: 10.1007/s00296-012-2586-y.
    1. Damen M.S.M.A., Schraa K., Tweehuysen L., Broeder A.A.D., Netea M.G., Popa C.D., Joosten L.A. Genetic variant in IL-32 is associated with the ex vivo cytokine production of anti-TNF treated PBMCs from rheumatoid arthritis patients. Sci. Rep. 2018;8:14050. doi: 10.1038/s41598-018-32485-0.
    1. Marotte H., Arnaud B., Diasparra J., Zrioual S., Miossec P. Association between the level of circulating bioactive tumor necrosis factor α and the tumor necrosis factor α gene polymorphism at −308 in patients with rheumatoid arthritis treated with a tumor necrosis factor α inhibitor. Arthritis Rheum. 2008;58:1258–1263. doi: 10.1002/art.23430.
    1. Padyukov L., Lampa J., Heimbürger M., Ernestam S., Cederholm T., Lundkvist I., Andersson P., Hermansson Y., Harju A., Klareskog L., et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2003;62:526–529. doi: 10.1136/ard.62.6.526.
    1. Tolusso B., Pietrapertosa D., Morelli A., De Santis M., Gremese E., Farina G., Carniello S.G., Del Frate M., Ferraccioli G. IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: Relationship with protein plasma levels and response to therapy. Pharmacogenomics. 2006;7:683–695. doi: 10.2217/14622416.7.5.683.
    1. Canet L.M., Sánchez-Maldonado J.M., Cáliz R., Rodríguez-Ramos A., Lupiañez C.B., Canhão H., Martínez-Bueno M., Escudero A., Segura-Catena J., Sorensen S.B., et al. Polymorphisms at phase I-metabolizing enzyme and hormone receptor loci influence the response to anti-TNF therapy in rheumatoid arthritis patients. Pharmacogenomics J. 2018;19:83–96. doi: 10.1038/s41397-018-0057-x.
    1. Ferreiro-Iglesias A., Montes A., Perez-Pampin E., Cañete J.D., Raya E., Magro-Checa C., Vasilopoulos Y., Caliz R., Ferrer M.A., Joven B., et al. Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept. PLoS ONE. 2019;14:e0213073. doi: 10.1371/journal.pone.0213073.
    1. Bogunia-Kubik K., Wysoczańska B., Piątek D., Iwaszko M., Ciechomska M., Świerkot J. Significance of Polymorphism and Expression of miR-146a and NFkB1 Genetic Variants in Patients with Rheumatoid Arthritis. Arch. Immunol. et Ther. Exp. 2016;64:131–136. doi: 10.1007/s00005-016-0443-5.
    1. Liu M., Degner J., Davis J.W., Idler K.B., Nader A., Mostafa N.M., Waring J.F. Identification of HLA-DRB1 association to adalimumab immunogenicity. PLoS ONE. 2018;13:e0195325. doi: 10.1371/journal.pone.0195325.
    1. Radstake T.R.D.J., Svenson M., Eijsbouts A.M., Hoogen F.H.J.V.D., Enevold C., Van Riel P.L.C.M., Bendtzen K. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann. Rheum. Dis. 2008;68:1739–1745. doi: 10.1136/ard.2008.092833.
    1. Traylor M., Knevel R., Cui J., Taylor J., Harm-Jan W., Conaghan P.G., Cope A.P., Curtis C., Emery P., Newhouse S., et al. Genetic associations with radiological damage in rheumatoid arthritis: Meta-analysis of seven genome-wide association studies of 2775 cases. PLoS ONE. 2019;14:e0223246. doi: 10.1371/journal.pone.0223246.
    1. Pal I., Szamosi S., Hodosi K., Szekanecz Z., Varoczy L. Effect of Fcgamma-receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. RMD Open. 2017;3:e000485. doi: 10.1136/rmdopen-2017-000485.
    1. Lee Y.H., Bae S.-C., Song G.G. Functional FCGR3A 158 V/F and IL-6 −174 C/G polymorphisms predict response to biologic therapy in patients with rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2014;34:1409–1415. doi: 10.1007/s00296-014-3015-1.
    1. Talotta R., Bagnato G.L., Atzeni F., Ditto M.C., Bitto A., Squadrito F., Gullo A.L., Sarzi-Puttini P. Polymorphic alleles in exon 1 of the CTLA4 gene do not predict the response to abatacept. Clin. Exp. Rheumatol. 2013;31:813.
    1. Leng R.-X., Di D.-S., Ni J., Wu X.-X., Zhang L.-L., Wang X.-F., Liu R.-S., Huang Q., Fan Y.-G., Pan H.-F., et al. Identification of new susceptibility loci associated with rheumatoid arthritis. Ann. Rheum. Dis. 2020;79:1565–1571. doi: 10.1136/annrheumdis-2020-217351.
    1. Ciechomska M., O’Reilly S. Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediat. Inflamm. 2016;2016:1–11. doi: 10.1155/2016/9607946.
    1. Horsburgh S., Ciechomska M., O’Reilly S. CpG-specific methylation at rheumatoid arthritis diagnosis as a marker of treatment response. Epigenomics. 2017;9:595–597. doi: 10.2217/epi-2017-0011.
    1. Rodríguez-Ubreva J., De La Calle-Fabregat C., Li T., Ciudad L., Ballestar M.L., Català-Moll F., Morante-Palacios O., Garcia-Gomez A., Celis R., Humby F., et al. Inflammatory cytokines shape a changing DNA methylome in monocytes mirroring disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 2019;78:1505–1516. doi: 10.1136/annrheumdis-2019-215355.
    1. Ai R., Hammaker D., Boyle D.L., Morgan R., Walsh A.M., Fan S., Firestein G.S., Wang W. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 2016;7:11849. doi: 10.1038/ncomms11849.
    1. Ai R., Whitaker J.W., Boyle D.L., Tak P.P., Gerlag D.M., Wang W., Firestein G.S. DNA Methylome Signature in Synoviocytes From Patients With Early Rheumatoid Arthritis Compared to Synoviocytes From Patients With Longstanding Rheumatoid Arthritis. Arthritis Rheumatol. 2015;67:1978–1980. doi: 10.1002/art.39123.
    1. Chen Z.-Z., Zhang X.-D., Chen Y., Wu Y.-B. The role of circulating miR-146a in patients with rheumatoid arthritis treated by Tripterygium wilfordii Hook F. Med. 2017;96:e6775. doi: 10.1097/MD.0000000000006775.
    1. Liu Y., Han Y., Qu H., Fang J., Ye M., Yin W. Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. J. Clin. Lab. Anal. 2019;33:e22953. doi: 10.1002/jcla.22953.
    1. Ciechomska M., Bonek K., Merdas M., Zarecki P., Swierkot J., Gluszko P., Bogunia-Kubik K., Maśliński W. Changes in MiRNA-5196 Expression as a Potential Biomarker of Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis Patients. Arch. Immunol. Ther. Exp. 2018;66:389–397. doi: 10.1007/s00005-018-0513-y.
    1. Sode J., Krintel S.B., Carlsen A.L., Hetland M., Johansen J.S., Hørslev-Petersen K., Stengaard-Pedersen K., Ellingsen T., Burton M., Junker P., et al. Plasma MicroRNA Profiles in Patients with Early Rheumatoid Arthritis Responding to Adalimumab plus Methotrexate vs Methotrexate Alone: A Placebo-controlled Clinical Trial. J. Rheumatol. 2017;45:53–61. doi: 10.3899/jrheum.170266.
    1. Krintel S.B., Dehlendorff C., Hetland M., Hørslev-Petersen K., Andersen K.K., Junker P., Pødenphant J., Ellingsen T., Ahlquist P., Lindegaard H., et al. Prediction of treatment response to adalimumab: A double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. Pharm. J. 2015;16:141–146. doi: 10.1038/tpj.2015.30.
    1. De La Rosa I.A., Perez-Sanchez C., Ruiz-Limon P., Patiño-Trives A., Torres-Granados C., Jimenez-Gomez Y., Abalos-Aguilera M.D.C., Cecchi I., Ortega R., Caracuel M.A., et al. Impaired microRNA processing in neutrophils from rheumatoid arthritis patients confers their pathogenic profile. Modulation by biological therapies. Haematologica. 2020;105:2250–2261. doi: 10.3324/haematol.2018.205047.
    1. Ikari Y., Isozaki T., Tsubokura Y., Kasama T. Peficitinib Inhibits the Chemotactic Activity of Monocytes via Proinflammatory Cytokine Production in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Cells. 2019;8:561. doi: 10.3390/cells8060561.
    1. Toussirot E., Wendling D., Herbein G. Biological treatments given in patients with rheumatoid arthritis or ankylosing spondylitis modify HAT/HDAC (histone acetyltransferase/histone deacetylase) balance. Jt. Bone Spine. 2014;81:544–545. doi: 10.1016/j.jbspin.2014.02.011.
    1. Lin Y.C., Lin Y.C., Wu C.C., Huang M.Y., Tsai W.C., Hung C.H., Kuo P.L. The immunomodulatory effects of TNF-alpha inhibitors on human Th17 cells via RORgammat histone acetylation. Oncotarget. 2017;8:7559–7571. doi: 10.18632/oncotarget.13791.
    1. Harrison C. Focus shifts to antibody cocktails for COVID-19 cytokine storm. Nat. Biotechnol. 2020;38:905–908. doi: 10.1038/s41587-020-0634-9.
    1. Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Chun-Quan China Medical Treatment Expert Group for Covid-19. He J.-X., Liu L., Shan H., Lei C.-L., Hui D.S., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Feldmann M., Maini R.N., Woody J.N., Holgate S.T., Winter G., Rowland M., Richards D., Hussell T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020;395:1407–1409. doi: 10.1016/S0140-6736(20)30858-8.
    1. Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA. 2020;117:10970–10975. doi: 10.1073/pnas.2005615117.
    1. Klopfenstein T., Zayet S., Lohse A., Selles P., Zahra H., Kadiane-Oussou N.J., Toko L., Royer P.-Y., Balblanc J.-C., Gendrin V., et al. Impact of tocilizumab on mortality and/or invasive mechanical ventilation requirement in a cohort of 206 COVID-19 patients. Int. J. Infect. Dis. 2020;99:491–495. doi: 10.1016/j.ijid.2020.08.024.
    1. Somers E.C., A Eschenauer G., Troost J.P., Golob J.L., Gandhi T.N., Wang L., Zhou N., A Petty L., Baang J.H., O Dillman N., et al. Tocilizumab for Treatment of Mechanically Ventilated Patients With COVID-19. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa954.
    1. Lan S.-H., Lai C.-C., Huang H.-T., Chang S.-P., Lu L.-C., Hsueh P.-R. Tocilizumab for severe COVID-19: A systematic review and meta-analysis. Int. J. Antimicrob. Agents. 2020;56:106103. doi: 10.1016/j.ijantimicag.2020.106103.
    1. Shinoda K., Tokoyoda K., Hanazawa A., Hayashizaki K., Zehentmeier S., Hosokawa H., Iwamura C., Koseki H., Tumes D.J., Radbruch A., et al. Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc. Natl. Acad. Sci. 2012;109:7409–7414. doi: 10.1073/pnas.1118539109.
    1. Nakamura H., Miyagi K., Otsuki M., Higure Y., Nishiyama N., Kinjo T., Nakamatsu M., Haranaga S., Tateyama M., Fujita J. Acute Hypertriglyceridaemia Caused by Tocilizumab in a Patient with Severe COVID-19. Intern. Med. 2020;59:2945–2949. doi: 10.2169/internalmedicine.5244-20.
    1. Stone J.H., Frigault M.J., Serling-Boyd N.J., Fernandes A.D., Harvey L., Foulkes A.S., Horick N.K., Healy B.C., Shah R., Bensaci A.M., et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N. Engl. J. Med. 2020;383:2333–2344. doi: 10.1056/NEJMoa2028836.
    1. COVID-19 Treatment Guidelines Panel Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. [(accessed on 3 November 2020)]; Available online: .
    1. Salama C., Han J., Yau L., Reiss W.G., Kramer B., Neidhart J.D., Criner G.J., Kaplan-Lewis E., Baden R., Pandit L., et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021;384:20–30. doi: 10.1056/NEJMoa2030340.
    1. The REMAP-CAP Investigators. Gordon A.C., Mouncey P.R., Al-Beidh F., Rowan K.M., Nichol A.D., Arabi Y.M., Annane R., Beane A., van Bentum-Puijk W., et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19–Preliminary report. medRxiv. 2021 doi: 10.1101/2021.01.07.21249390.
    1. Shakoory B., Carcillo J.A., Chatham W.W., Amdur R.L., Zhao H., Dinarello C.A., Cron R.Q., Opal S.M. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome. Crit. Care Med. 2016;44:275–281. doi: 10.1097/CCM.0000000000001402.
    1. Guilpain P., Le Bihan C., Foulongne V., Taourel P., Pansu N., Maria A.T.J., Jung B., Larcher R., Klouche K., Le Moing V. Response to: ‘Severe COVID-19 associated pneumonia in 3 patients with systemic sclerosis treated with rituximab’ by Avouac et al. Ann. Rheum. Dis. 2020 doi: 10.1136/annrheumdis-2020-217955.
    1. Guilpain P., Le Bihan C., Foulongne V., Taourel P., Pansu N., Maria A., Jung B., Larcher R., Klouche K., Le Moing V. Rituximab for granulomatosis with polyangiitis in the pandemic of covid-19: Lessons from a case with severe pneumonia. Ann. Rheum. Dis. 2021;80:e10. doi: 10.1136/annrheumdis-2020-217549.
    1. Schulze-Koops H., Krueger K., Vallbracht I., Hasseli R., Skapenko A. Increased risk for severe COVID-19 in patients with inflammatory rheumatic diseases treated with rituximab. Ann. Rheum. Dis. 2020 doi: 10.1136/annrheumdis-2020-218075.
    1. Tepasse P.R., Hafezi W., Lutz M., Kuhn J., Wilms C., Wiewrodt R., Sackarnd J., Keller M., Schmidt H.H., Vollenberg R. Persisting SARS-CoV-2 viraemia after rituximab therapy: Two cases with fatal outcome and a review of the literature. Br. J. Haematol. 2020;190:185–188. doi: 10.1111/bjh.16896.
    1. Haberman R., Axelrad J., Chen A., Castillo R., Yan D., Izmirly P., Neimann A., Adhikari S., Hudesman D., Scher J.U. Covid-19 in Immune-Mediated Inflammatory Diseases—Case Series from New York. N. Engl. J. Med. 2020;383:85–88. doi: 10.1056/NEJMc2009567.
    1. Favalli E.G., Bugatti S., Klersy C., Biggioggero M., Rossi S., De Lucia O., Bobbio-Pallavicini F., Murgo A., Balduzzi S., Caporali R., et al. Impact of corticosteroids and immunosuppressive therapies on symptomatic SARS-CoV-2 infection in a large cohort of patients with chronic inflammatory arthritis. Arthritis Res. Ther. 2020;22:290. doi: 10.1186/s13075-020-02395-6.
    1. Massalska M., Maslinski W., Ciechomska M. Small Molecule Inhibitors in the Treatment of Rheumatoid Arthritis and Beyond: Latest Updates and Potential Strategy for Fighting COVID-19. Cells. 2020;9:1876. doi: 10.3390/cells9081876.
    1. Stradner M.H., Dejaco C., Zwerina J., Fritsch-Stork R.D. Rheumatic Musculoskeletal Diseases and COVID-19 A Review of the First 6 Months of the Pandemic. Front. Med. 2020;7:562142. doi: 10.3389/fmed.2020.562142.
    1. Monti S., Balduzzi S., Delvino P., Bellis E., Quadrelli V.S., Montecucco C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum. Dis. 2020;79:667–668. doi: 10.1136/annrheumdis-2020-217424.
    1. EULAR Guidance for Patients COVID-19 Outbreak. [(accessed on 17 March 2020)]; Available online:
    1. Guiding Principles from the American College of Rheumatology for Scarce Resource Allocation During the COVID-19 Pandemic: The Case of IL-1 and IL-6 and JAK Antagonists. American College of Rheumatology; Atlanta, GA, USA: 2020.

Source: PubMed

3
Subskrybuj