A proposed approach to accelerate evidence generation for genomic-based technologies in the context of a learning health system

Christine Y Lu, Marc S Williams, Geoffrey S Ginsburg, Sengwee Toh, Jeff S Brown, Muin J Khoury, Christine Y Lu, Marc S Williams, Geoffrey S Ginsburg, Sengwee Toh, Jeff S Brown, Muin J Khoury

Abstract

Genomic technologies should demonstrate analytical and clinical validity and clinical utility prior to wider adoption in clinical practice. However, the question of clinical utility remains unanswered for many genomic technologies. In this paper, we propose three building blocks for rapid generation of evidence on clinical utility of promising genomic technologies that underpin clinical and policy decisions. We define promising genomic tests as those that have proven analytical and clinical validity. First, risk-sharing agreements could be implemented between payers and manufacturers to enable temporary coverage that would help incorporate promising technologies into routine clinical care. Second, existing data networks, such as the Sentinel Initiative and the National Patient-Centered Clinical Research Network (PCORnet) could be leveraged, augmented with genomic information to track the use of genomic technologies and monitor clinical outcomes in millions of people. Third, endorsement and engagement from key stakeholders will be needed to establish this collaborative model for rapid evidence generation; all stakeholders will benefit from better information regarding the clinical utility of these technologies. This collaborative model can create a multipurpose and reusable national resource that generates knowledge from data gathered as part of routine care to drive evidence-based clinical practice and health system changes.

References

    1. J Am Board Fam Med. 2014 Nov-Dec;27(6):750-8
    1. N Engl J Med. 2013 Dec 12;369(24):2283-93
    1. Med Care. 2014 Jul;52(7):664-8
    1. J Am Coll Cardiol. 2010 Jun 22;55(25):2804-12
    1. Public Health Genomics. 2009;12(3):163-9
    1. J Pharm Policy Pract. 2015 Feb 16;8(1):6
    1. Genet Med. 2009 Jan;11(1):3-14
    1. JAMA. 2016 May 10;315(18):1941-2
    1. Genet Med. 2017 Oct;19(10):1081-1091
    1. Genet Med. 2011 Oct;13(10):887-90
    1. Int J Technol Assess Health Care. 2010 Jan;26(1):79-85
    1. Med Care. 2013 Aug;51(8 Suppl 3):S4-10
    1. Pediatr Blood Cancer. 2015 May;62(5):759-65
    1. Pharmacoeconomics. 2010;28(2):153-62
    1. JAMA. 2013 Mar 27;309(12):1237-8
    1. Cancer Chemother Pharmacol. 2014 Oct;74(4):831-8
    1. Genet Med. 2013 Oct;15(10):761-71
    1. N Engl J Med. 2015 Jun 25;372(26):2473-5
    1. Health Aff (Millwood). 2014 Jul;33(7):1178-86
    1. Clin Pharmacol Ther. 2014 Apr;95(4):394-402
    1. Breast Cancer Res. 2006;8(3):R25
    1. N Engl J Med. 2015 Jun 4;372(23):2235-42
    1. Mol Diagn Ther. 2015 Apr;19(2):71-7
    1. Soc Sci Med. 2015 Jan;124:39-47
    1. Public Health Genomics. 2014;17(5-6):256-64
    1. Pharmacogenomics J. 2012 Jun;12(3):197-204
    1. JAMA Intern Med. 2013 May 13;173(9):817-9
    1. N Engl J Med. 2015 Jan 29;372(5):397-9
    1. J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82
    1. Genet Med. 2011 Aug;13(8):723-8
    1. Pharmacoepidemiol Drug Saf. 2013 Nov;22(11):1171-7
    1. Hum Genet. 2011 Jul;130(1):33-9
    1. Genet Med. 2016 Sep;18(9):906-13
    1. Genet Med. 2014 Mar;16(3):225-7
    1. Int J Clin Pract. 2014 Aug;68(8):936-40
    1. Value Health. 2012 May;15(3):570-9
    1. Clin Pharmacol Ther. 2010 Jun;87(6):635-8
    1. Science. 2014 Nov 28;346(6213):1054-5
    1. Health Aff (Millwood). 2008 Nov-Dec;27(6):1600-11
    1. BMC Med Genomics. 2016 Jan 05;9:1
    1. Arch Intern Med. 2012 Nov 12;172(20):1582-9
    1. Nature. 2014 Apr 24;508(7497):451-3

Source: PubMed

3
Subskrybuj