Topical citicoline and vitamin B12 versus placebo in the treatment of diabetes-related corneal nerve damage: a randomized double-blind controlled trial

Paolo Fogagnolo, Ettore Melardi, Laura Tranchina, Luca Rossetti, Paolo Fogagnolo, Ettore Melardi, Laura Tranchina, Luca Rossetti

Abstract

Background: To evaluate the effects of topical citicoline and vitamin B12 (Cit-B12: OMK2, Omikron Italia srl, Italy) on corneal innervation of patients with diabetic neuropathy.

Methods: This prospective, randomized, double blind, placebo-controlled study included 30 patients randomised with a 2:1 ratio to Cit-B12 or placebo 3 times daily for 18 months. At baseline and at months 4, 8, 12, 18 patients underwent the Ocular Surface Disease Index questionnaire (OSDI), tear break-up time, evaluation of corneal and conjunctival staining, Schirmer I test, Cochet-Bonnet esthesiometry, and confocal biomicroscopy of corneal sub-basal plexus (SBP). Fiber lenght density (FLD) was calculated using NeuronJ and expressed in mm/mm2. Raw data and differences from baseline were analysed in the two groups.

Results: 29/30 patients concluded the study. The two groups had similar FLD at baseline; it progressively improved up to month 18 in both groups (Cit-B12, p < 0.0001; controls, < 0.0001-0.03); improvement at month 18 vs baseline was higher in Cit-B12 than placebo (33% vs 15%, p = 0.04). A progressive amelioration of corneal sensitivity (baseline, 28 ± 18 mm; month 18, 52 ± 10 mm, p < 0.0001), conjunctival staining (P = 0.04) and OSDI questionnaire (P = 0.05) were shown on Cit-B12 group alone. Both treatments were well tolerated and adherence during the study was high.

Conclusions: Cit-B12 ameliorated both morphology and function of corneal nerves in patients with diabetes, thus suggesting a neuroregenerative effect.

Trial registration: Trial registration NCT03906513 , retrospectively registered on 08 April 2019.

Keywords: Citicoline; Cornea innervation; Corneal sensitivity; Diabetes; Dry eye disease; Vitamin B12.

Conflict of interest statement

The authors have no financial interest in the material or products discussed in the article. Paolo Fogagnolo and Luca Rossetti are Editors of BMC Ophthalmology.

Figures

Fig. 1
Fig. 1
An example of the effects of Cit-B12 during the study. Confocal images of the central cornea at a) baseline (FLD 7.1 mm/m2) and b) 18 months (FLD 10.3 mm/mm2)
Fig. 2
Fig. 2
Changes of the frequency of stages of the Ocular Surface Disease Index at baseline vs month 18 in the two groups (Cit-B12, P = 0.05). Normal, OSDI = 12 or less; mild, OSDI between 13 and 22; moderate, OSDI between 23 and 32
Fig. 3
Fig. 3
Changes of conjunctival staining according to Van Bijelsterveld scale at baseline vs month 18 in the two groups (Cit-B12, P = 0.04)

References

    1. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf. 2017;15(1):15–47. doi: 10.1016/j.jtos.2016.09.004.
    1. Chan TCY, Wan KH, Shih KC, Jhanji V. Advances in dry eye imaging: the present and beyond. Br J Ophthalmol. 2018;102(3):295–301. doi: 10.1136/bjophthalmol-2017-310759.
    1. Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–2154. doi: 10.2337/db07-0285.
    1. Mehra S, Tavakoli M, Kallinikos PA, Efron N, Boulton AJ, Augustine T, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care. 2007;30:2608–2612. doi: 10.2337/dc07-0870.
    1. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, Fadavi H, Asghar O, Alam U, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62(1):254–560. doi: 10.2337/db12-0574.
    1. Bonini S, Lambiase A, Rama P, Filatori I, Allegretti M, Chao W, et al. REPARO study group. Phase I trial of recombinant human nerve growth factor for neurotrophic . Ophthalmology. 2018;125(9):1468–1471. doi: 10.1016/j.ophtha.2018.03.004.
    1. Bonini S, Lambiase A, Rama P, Sinigaglia F, Allegretti M, Chao W, et al. Phase II randomized, double-masked, vehicle-controlled trial of recombinant human nerve growth factor for neurotrophic keratitis. Ophthalmology. 2018;125(9):1332–1343. doi: 10.1016/j.ophtha.2018.02.022.
    1. Fogagnolo P, Sacchi M, Ceresara G, Paderni R, Lapadula P, Orzalesi N, et al. The effects of topical coenzyme Q10 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate after cataract surgery: a clinical and in vivo confocal study. Ophthalmologica. 2013;229(1):26–31. doi: 10.1159/000342196.
    1. Terzis JK, Dryer MM, Bodner BI. Corneal neurotization: a novel solution to neurotrophic keratopathy. Plast Reconstr Surg. 2009;123(1):112–120. doi: 10.1097/PRS.0b013e3181904d3a.
    1. Fogagnolo P, Giannaccare G, Bolognesi F, Digiuni M, Tranchina L, Rossetti L, et al. Direct Versus Indirect Corneal Neurotization for the Treatment of Neurotrophic Keratopahty: a Multicenter Prospective Comparative Study. Am J Ophthalmol. 2020:S0002-9394(20)30340-8. 10.1016/j.ajo.2020.07.003.
    1. Diederich K, Frauenknecht K, Minnerup J, Schneider BK, Schmidt A, Altach E, et al. Citicoline enhances neuroregenerative processes after experimental stroke in rats. Stroke. 2012;43:1931–1940. doi: 10.1161/STROKEAHA.112.654806.
    1. Okada K, Tanaka H. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 2010;222(2):191–203. doi: 10.1016/j.expneurol.2009.12.017.
    1. Yagihashi S. In vivo effect of methylcobalamin on the peripheral nerve structure in streptozotocin diabetic rats. Hom metab Res. 1982;14(9):10–13. doi: 10.1055/s-2007-1018908.
    1. Ottobelli L, Manni GL, Centofanti M, Iester M, Allevena F, Rossetti L. Citicoline oral solution in glaucoma: is there a role in slowing disease progression? Ophthalmologica. 2013;229(4):219–226. doi: 10.1159/000350496.
    1. Matteucci A, Varano M, Gaddini L, Mallozzi C, Villa M, Pricci F, et al. Neuroprotective effects of citicoline in in vitro models of retinal neurodegeneration. Int J Mol Sci. 2014;15(4):6286–6297. doi: 10.3390/ijms15046286.
    1. Bogdanov P, Sampedro J, Solà-Adell C, Simó-Servat O, Russo C, Varela-Sende L, et al. Effects of liposomal formulation of Citicoline in experimental diabetes-induced retinal neurodegeneration. Int J Mol Sci. 2018;19(8):E2458. doi: 10.3390/ijms19082458.
    1. Maestroni S, Preziosa C, Capuano V, Spinello A, Zucchiatti I, Gabellini D, et al. In vivo evaluation of retinal and choroidal structure in a mouse. Model of long-lasting diabetes. Effect of topical treatment with Citicoline. J Ocular Dis Ther. 2015;3:1–8. doi: 10.12974/2309-6136.2015.03.01.1.
    1. Parisi V, Centofanti M, Ziccardi L, Tanga L, Michelessi M, Roberti G, et al. Treatment with citicoline eye drops enhances retinal function and neural conduction along the visual pathways in open angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015;253:1327–1340. doi: 10.1007/s00417-015-3044-9.
    1. Rossetti L, Iester M, Tranchina L, Ottobelli L, Coco G, Calcatelli E, et al. Can treatment with Citicoline Eyedrops reduce progression in glaucoma? The results of a randomized placebo-controlled clinical trial. J Glaucoma. 2020;29(7):513. doi: 10.1097/IJG.0000000000001565.
    1. Parravano M, Scarinci F, Varano M. Citicoline and vitamin B 12 eye drops in type 1 diabetes: results of a 3-year pilot study evaluating Morpho-functional retinal changes. Adv Ther. 2020;37(4):1646–1663. doi: 10.1007/s12325-020-01284-3.
    1. Vagenas D, Pritchard N, Edwards K, Shahidi AM, Sampson GP, Russell AW, et al. Optimal image sample size for corneal nerve optometry. Optom Vis Sci. 2012;89:812–817. doi: 10.1097/OPX.0b013e31824ee8c9.
    1. Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: from basic science to clinical applications. Prog Retin Eye Res. 2019;72:100767. doi: 10.1016/j.preteyeres.2019.06.003.
    1. Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G, Manni G. Citicoline and retinal ganglion cells: effects on morphology and function. Curr Neuropharmacol. 2018;16:919–932. doi: 10.2174/1570159X15666170703111729.
    1. van de Lagemaat EE, de Groot L, van den Heuvel E. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients. 2019;25(2):482. doi: 10.3390/nu11020482.
    1. Prabhasawat P, Tesavibul N, Kasetsuwan N. Performance profile of sodium hyaluronate in patients with lipid tear deficiency: randomised, double-blind, controlled, exploratory study. Br J Ophthalmol. 2007;91(1):47–50. doi: 10.1136/bjo.2006.097691.
    1. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510. doi: 10.1016/j.jtos.2017.05.011.
    1. Ferdousi M, Petropoulos IN, Kalteniece A, Azmi S, Ponirakis G, Efron N, et al. No relation between the severity of corneal nerve, epithelial, and Keratocyte cell morphology with measures of dry eye disease in type 1 diabetes. Invest Ophthalmol Vis Sci. 2018;59:5525–5530. doi: 10.1167/iovs.18-25321.
    1. Lyu Y, Zeng X, Li F, Zhao S. The effect of the duration of diabetes on dry eye and corneal nerves. Cont Lens Anterior Eye. 2019;42:380. doi: 10.1016/j.clae.2019.02.011.
    1. Wang C, Peng Y, Pan S, Li L. IGF-1 can effectively accelerate the early repair of corneal surface ultrastructure and nerve regeneration - effect of insulin-like growth factor-1 on corneal surface ultrastructure and nerve regeneration of rabbit eyes after laser in situ keratomileusis. Neurosci Lett. 2014;558:169–174. doi: 10.1016/j.neulet.2013.10.063.
    1. Zou X, Lu L, Xu Y, Zhu J, He J, Zhang B, et al. Prevalence and clinical characteristics of dry eye disease in community-based type 2 diabetic patients: the Beixinjing eye study. BMC Ophthalmol. 2018;18:117. doi: 10.1186/s12886-018-0781-7.
    1. Achtsidis V, Eleftheriadou I, Kozanidou E, et al. Dry eye syndrome in subjects with diabetes and association with neuropathy. Diabetes Care. 2014;37:e210–e211. doi: 10.2337/dc14-0860.
    1. De Cillà S, Ranno S, Carini E, Fogagnolo P, Ceresara G, Orzalesi N, et al. Corneal subbasal nerves changes in patients with diabetic retinopathy: an in vivo confocal study. IOVS. 2009;50:5155–5158.
    1. Parissi M, Karanis G, Randjelovic S, et al. Standardized baseline human corneal subbasal nerve density for clinical investigations with laser-scanning in vivo confocal microscopy. IOVS. 2013;54:7091–7102.

Source: PubMed

3
Subskrybuj