The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia

Marianna Riello, Andreia V Faria, Bronte Ficek, Kimberly Webster, Chiadi U Onyike, John Desmond, Constantine Frangakis, Kyrana Tsapkini, Marianna Riello, Andreia V Faria, Bronte Ficek, Kimberly Webster, Chiadi U Onyike, John Desmond, Constantine Frangakis, Kyrana Tsapkini

Abstract

Despite the common assumption that atrophy in a certain brain area would compromise the function that it subserves, this is not always the case, especially in complex clinical syndromes such as primary progressive aphasia (PPA). Clinical and demographic information may contribute to PPA phenotypes and explain the manifested impairments better than atrophy. In the present study, we asked how much variance of the object and action naming impairments observed in PPA may be attributed to atrophy in the language network alone vs. additional clinical and demographic factors including language severity and education. Thirty-nine participants with PPA underwent magnetic resonance imaging (MRI) for volumetric analysis and a complete neuropsychological examination, including standardized tests of object and action naming. We used stepwise regression models to compare atrophy (volumetric model) to clinical/demographic variables (clinical-demographic model) for naming objects and actions. The clinical-demographic model was the best-fit model that explained the largest amount of variance in both object and action naming. Brain volume measurements alone explained little variance in both object and action naming. Clinical factors, particularly language severity, and demographic factors, particularly education, need to be considered in conjunction with brain volumes in PPA. The present study emphasizes the complexity of PPA as a syndrome and provides an example of how volumetric, clinical and demographic factors may interact in determining naming performance/deterioration.

Keywords: action naming; atlas-based analysis; education; gray matter volumes; language severity; object naming; primary progressive aphasia; severity.

Figures

Figure 1
Figure 1
Cerebral areas involved in naming objects (Boston Naming Test, BNT) and actions (Hopkins Assessment on Naming Actions, HANA) before (volumetric modelA) and after controlling for demographic and clinical features (clinical-demographic modelB): (A) sagittal view of the left inferior frontal gyrus pars orbitalis (Or IFG) in orange and the left inferior temporal gyrus (ITG) in green; (B) sagittal view of the left middle temporal gyrus (L MTG) in pink; according to the multi-atlas labeling of one representative case.

References

    1. Bedny M., Caramazza A., Grossman E., Pascual-Leone A., Saxe R. (2008). Concepts are more than percepts: the case of action verbs. J. Neurosci. 28, 11347–11353. 10.1523/jneurosci.3039-08.2008
    1. Benetello A., Finocchiaro C., Capasso R., Capitani E., Laiacona M., Magon S., et al. . (2016). The dissociability of lexical retrieval and morphosyntactic processes for nouns and verbs: a functional and anatomoclinical study. Brain Lang. 159, 11–22. 10.1016/j.bandl.2016.05.005
    1. Borod J. C., Goodglass H., Kaplan E. (1980). Normative data on the boston diagnostic aphasia examination, parietal lobe battery and the boston naming test. J. Clin. Neuropsychol. 2, 209–215. 10.1080/01688638008403793
    1. Breining B. L., Tippett D. C., Davis C., Posner J., Sebastian R., Oishie K., et al. (2015). “Assessing dissociations of object and action naming in acute stroke,” in Paper Presented at the Clinical Aphasiology Conference (Monterey, CA).
    1. Caramazza A. (1997). How many levels of processing are there in lexical access? Cogn. Neuropsychol. 14, 177–208. 10.1080/026432997381664
    1. Caramazza A., Hillis A. E. (1991). Lexical organization of nouns and verbs in the brain. Nature 349, 788–790. 10.1038/349788a0
    1. Damasio A. R., Tranel D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proc. Natl. Acad. Sci. U S A 90, 4957–4960. 10.1073/pnas.90.11.4957
    1. Daniele A., Giustolisi L., Silveri M. C., Colosimo C., Gainotti G. (1994). Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia 32, 1325–1341. 10.1016/0028-3932(94)00066-2
    1. González-Fernández M., Davis C., Molitoris J. J., Newhart M., Leigh R., Hillis A. E. (2011). Formal education, socioeconomic status and the severity of aphasia after stroke. Arch. Phys. Med. Rehabil. 92, 1809–1813. 10.1016/j.apmr.2011.05.026
    1. Gordon E., Rohrer J. D., Fox N. C. (2016). Advances in neuroimaging in frontotemporal dementia. J. Neurochem. 138, 193–210. 10.1111/jnc.13656
    1. Gorno-Tempini M. L., Dronkers N. F., Rankin K. P., Ogar J. M., Phengrasamy L., Rosen H. J., et al. . (2004). Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 55, 335–346. 10.1002/ana.10825
    1. Gorno-Tempini M. L., Hillis A. E., Weintraub S., Kertesz A., Mendez M., Cappa S. F., et al. . (2011). Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014. 10.1212/WNL.0b013e31821103e6
    1. Grossman M., Mickanin J., Onishi K., Hughes E., D’Esposito M., Ding X.-S., et al. . (1996). Progressive nonfluent aphasia: language, cognitive and pet measures contrasted with probable Alzheimer’s disease. J. Cogn. Neurosci. 8, 135–154. 10.1162/jocn.1996.8.2.135
    1. Hall J. R., Vo H. T., Johnson L. A., Wiechmann A., O’Bryant S. E. (2012). Boston naming test: gender differences in older adults with and without Alzheimer’s dementia. Psychology 03, 485– 488. 10.4236/psych.2012.36068
    1. Henry M. L., Wilson S. M., Babiak M. C., Mandelli M. L., Beeson P. M., Miller Z. A., et al. . (2015). Phonological processing in primary progressive aphasia. J. Cogn. Neurosci. 28, 210–222. 10.1162/jocn_a_00901
    1. Hillis A. E., Heidler-Gary J., Newhart M., Chang S., Ken L., Bak T. H. (2006a). Naming and comprehension in primary progressive aphasia: the influence of grammatical word class. Aphasiology 20, 246–256. 10.1080/02687030500473262
    1. Hillis A. E., Kleinman J. T., Newhart M., Heidler-Gary J., Gottesman R., Barker P. B., et al. . (2006b). Restoring cerebral blood flow reveals neural regions critical for naming. J. Neurosci. 26, 8069–8073. 10.1523/jneurosci.2088-06.2006
    1. Hillis A. E., Oh S., Ken L. (2004). Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann. Neurol. 55, 268–275. 10.1002/ana.10812
    1. Hillis A. E., Tuffiash E., Caramazza A. (2002a). Modality-specific deterioration in naming verbs in nonfluent primary progressive aphasia. J. Cogn. Neurosci. 14, 1099–1108. 10.1162/089892902320474544
    1. Hillis A. E., Tuffiash E., Wityk R. J., Barker P. B. (2002b). Regions of neural dysfunction associated with impaired naming of actions and objects in acute stroke. Cogn. Neuropsychol. 19, 523–534. 10.1080/02643290244000077
    1. Knopman D. S., Kramer J. H., Boeve B. F., Caselli R. J., Graff-Radford N. R., Mendez M. F., et al. . (2008). Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 131, 2957–2968. 10.1093/brain/awn234
    1. Levelt W. J. M. (1999). Models of word production. Trends Cogn. Sci. 3, 223–232. 10.1016/s1364-6613(99)01319-4
    1. Mack W. J., Freed D. M., Williams B. W., Henderson V. W. (1992). Boston naming test: shortened versions for use in Alzheimer’s disease. J. Gerontol. 47, P154–P158. 10.1093/geronj/47.3.p154
    1. Mesulam M. M. (2007). Primary progressive aphasia: a 25-year retrospective. Alzheimer Dis. Assoc. Disord. 21, S8–S11. 10.1097/wad.0b013e31815bf7e1
    1. Mesulam M. M., Wieneke C., Hurley R., Rademaker A., Thompson C. K., Weintraub S., et al. . (2013). Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain 136, 601–618. 10.1093/brain/aws336
    1. Miceli G., Silveri M. C., Nocentini U., Caramazza A. (1988). Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology 2, 351–358. 10.1080/02687038808248937
    1. Miller M. I., Beg M. F., Ceritoglu C., Stark C. (2005). Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping. Proc. Natl. Acad. Sci. U S A 102, 9685–9690. 10.1073/pnas.0503892102
    1. Moore C. J., Price C. J. (1999). Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage 10, 181–192. 10.1006/nimg.1999.0450
    1. Mori S., Oishi K., Faria A. V., Miller M. I. (2013). Atlas-based neuroinformatics via MRI: harnessing information from past clinical cases and quantitative image analysis for patient care. Annu. Rev. Biomed. Eng. 15, 71–92. 10.1146/annurev-bioeng-071812-152335
    1. Mori S., Oishi K., Jiang H., Jiang L., Li X., Akhter K., et al. . (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40, 570–582. 10.1016/j.neuroimage.2007.12.035
    1. Mori S., Wu D., Ceritoglu C., Li Y., Kolasny A., Vaillant M. A., et al. (2016). MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service. Comput. Sci. Eng. 18, 21–35. 10.1109/mcse.2016.93
    1. Mummery C. J., Patterson K., Price C. J., Ashburner J., Frackowiak R. S. J., Hodges J. R. (2000). A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann. Neurol. 47, 36–45. 10.1002/1531-8249(200001)47:1<36::aid-ana8>;2-c
    1. Oishi K., Faria A., Jiang H., Li X., Akhter K., Zhang J., et al. . (2009). Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 46, 486–499. 10.1016/j.neuroimage.2009.01.002
    1. Perani D., Cappa S. F., Schnur T., Tettamanti M., Collina S., Rosa M. M., et al. . (1999). The neural correlates of verb and noun processing. Brain 122, 2337–2344. 10.1093/brain/122.12.2337
    1. Price C. J., Devlin J. T. (2003). The myth of the visual word form area. Neuroimage 19, 473–481. 10.1016/s1053-8119(03)00084-3
    1. Race D. S., Tsapkini K., Crinion J., Newhart M., Davis C., Gomez Y., et al. . (2013). An area essential for linking word meanings to word forms: evidence from primary progressive aphasia. Brain Lang. 127, 167–176. 10.1016/j.bandl.2013.09.004
    1. Randolph C., Lansing A. E., Ivnik R. J., Cullum C. M., Hermann B. P. (1999). Determinants of confrontation naming performance. Arch. Clin. Neuropsychol. 14, 489–496. 10.1016/s0887-6177(98)00023-7
    1. Rogalski E., Cobia D., Harrison T. M., Wieneke C., Thompson C. K., Weintraub S., et al. . (2011a). Anatomy of language impairments in primary progressive aphasia. J. Neurosci. 31, 3344–3350. 10.1523/JNEUROSCI.5544-10.2011
    1. Rogalski E., Cobia D., Harrison T. M., Wieneke C., Weintraub S., Mesulam M.-M. (2011b). Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 76, 1804–1810. 10.1212/wnl.0b013e31821ccd3c
    1. Rogalski E., Rademaker A., Weintraub S. (2007). Primary progressive aphasia: relationship between gender and severity of language impairment. Cogn. Behav. Neurol. 20, 38–43. 10.1097/WNN.0b013e31802e3bae
    1. Schwartz M. F., Kimberg D. Y., Walker G. M., Faseyitan O., Brecher A., Dell G. S., et al. . (2009). Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. Brain 132, 3411–3427. 10.1093/brain/awp284
    1. Sebastian R., Gomez Y., Leigh R., Davis C., Newhart M., Hillis A. E. (2014). The roles of occipitotemporal cortex in reading, spelling and naming. Cogn. Neuropsychol. 31, 511–528. 10.1080/02643294.2014.884060
    1. Tang X., Crocetti D., Kutten K., Ceritoglu C., Albert M. S., Mori S., et al. . (2015). Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles. Front. Neurosci. 9:61. 10.3389/fnins.2015.00061
    1. Thompson C. K., Lukic S., King M. C., Mesulam M. M., Weintraub S. (2012). Verb and noun deficits in stroke-induced and primary progressive aphasia: the northwestern naming battery. Aphasiology 26, 632–655. 10.1080/02687038.2012.676852
    1. Thompson C. K., Mack J. E. (2014). Grammatical impairments in PPA. Aphasiology 28, 1018–1037. 10.1080/02687038.2014.912744
    1. Tranel D., Adolphs R., Damasio H., Damasio A. R. (2001). A neural basis for the retrieval of words for actions. Cogn. Neuropsychol. 18, 655–674. 10.1080/02643290126377
    1. Tranel D., Damasio A. R., Damasio H. (1997). On The Neurology of Naming. Anomia: London Academic Press.
    1. Tranel D., Martin C., Damasio H., Grabowski T. J., Hichwa R. (2005). Effects of noun-verb homonymy on the neural correlates of naming concrete entities and actions. Brain Lang. 92, 288–299. 10.1016/j.bandl.2004.01.011
    1. Tsapkini K., Frangakis C. E., Hillis A. E. (2011). The function of the left anterior temporal pole: evidence from acute stroke and infarct volume. Brain 134, 3094–3105. 10.1093/brain/awr050
    1. Wang L., Beg F., Ratnanather T., Ceritoglu C., Younes L., Morris J. C., et al. . (2007). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26, 462–470. 10.1109/tmi.2006.887380
    1. Wang H., Suh J. W., Das S. R., Pluta J. B., Craige C., Yushkevich P. A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35, 611–623. 10.1109/TPAMI.2012.143
    1. Williams B. W., Mack W., Henderson V. W. (1989). Boston naming test in Alzheimer’s disease. Neuropsychologia 27, 1073–1079. 10.1016/0028-3932(89)90186-3
    1. Yokoyama S., Miyamoto T., Riera J., Kim J., Akitsuki Y., Iwata K., et al. . (2006). Cortical mechanisms involved in the processing of verbs: an fMRI study. J. Cogn. Neurosci. 18, 1304–1313. 10.1162/jocn.2006.18.8.1304
    1. Zhang Y., Zhang J., Oishi K., Faria A. V., Jiang H., Li X., et al. . (2010). Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52, 1289–1301. 10.1016/j.neuroimage.2010.05.049

Source: PubMed

3
Subskrybuj