Airway Eosinophilia on Bronchoalveolar Lavage and the Risk of Exacerbations in COPD

Chunman Germain Ho, Stephen Milne, Xuan Li, Chen Xi Yang, Fernando Sergio Leitao Filho, Chung Yan Cheung, Julia Shun Wei Yang, Ana I Hernández Cordero, Cheng Wei Tony Yang, Tawimas Shaipanich, Stephan F van Eeden, Janice M Leung, Stephen Lam, Don D Sin, Chunman Germain Ho, Stephen Milne, Xuan Li, Chen Xi Yang, Fernando Sergio Leitao Filho, Chung Yan Cheung, Julia Shun Wei Yang, Ana I Hernández Cordero, Cheng Wei Tony Yang, Tawimas Shaipanich, Stephan F van Eeden, Janice M Leung, Stephen Lam, Don D Sin

Abstract

The associations between airway eosinophilia, measured in sputum or peripheral blood, and acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are inconsistent. We therefore aimed to determine the association between eosinophilia in bronchoalveolar lavage (BAL) fluid and AECOPD in a clinical cohort. We analyzed differential cell counts from baseline BAL fluid in participants in the DISARM clinical trial (Clinicaltrials.gov #NCT02833480) and classified participants by the presence or absence of BAL eosinophilia (>1% of total leukocytes). We determined the association between BAL eosinophilia and AECOPD over 1 year of follow-up using negative binomial regression and Cox proportional hazards test. N = 63 participants were randomized, and N = 57 had BAL differential cell counts available. Participants with BAL eosinophilia (N = 21) had a significantly increased rate of acute exacerbations (unadjusted incidence rate ratio (IRR) 2.0, p = 0.048; adjusted IRR 2.24, p = 0.04) and a trend toward greater probability of acute exacerbation (unadjusted hazard ratio (HR) 1.74, p = 0.13; adjusted HR 2.3, p = 0.1) in the year of follow-up compared to participants without BAL eosinophilia (N = 36). These associations were not observed for BAL neutrophilia (N = 41 participants), BAL lymphocytosis (N = 27 participants) or peripheral blood eosinophilia at various threshold definitions (2%, N = 37; 3%, N = 27; 4%, N = 16). BAL may therefore be a sensitive marker of eosinophilic inflammation in the distal lung and may be of benefit for risk stratification or biomarker-guided therapy in COPD.

Keywords: biomarkers; bronchoscopy; chronic obstructive pulmonary disease; eosinophilia.

Conflict of interest statement

D.D.S. reports grants from AstraZeneca during the conduct of the study; personal fees from GSK and Boehringer-Ingelheim, and grants and personal fees from AstraZeneca outside the submitted work. C.G.H., S.M., X.L., C.X.Y., F.S.L.F., A.I.H.C., C.W.T.Y., C.Y.C., J.S.W.Y., T.S., S.F.v.E. and S.L. have nothing to disclose. The sponsor had no role in the design, execution, interpretation, or writing of the study.

Figures

Figure 1
Figure 1
Relationship between eosinophilia and AECOPD events in the DISARM trial. BAL eosinophilia (>1% of total BAL leukocytes) (A), but not peripheral blood eosinophilia (>3% of total blood leukocytes) (B), was associated with a higher rate of AECOPD events (incidence rate ratio 2.0, p = 0.048 vs. 1.0, p = 0.99). Abbreviations: AECOPD, acute exacerbations of chronic obstructive pulmonary disease; BAL, bronchoalveolar lavage.
Figure 2
Figure 2
Survival analysis of the effect of eosinophilia on AECOPD events in the DISARM trial. BAL eosinophilia (A), but not peripheral blood eosinophilia (B), was associated with a non-significant increased probability of an AECOPD event (Cox proportional hazards test unadjusted hazard ratio 1.74, p = 0.13 vs. 0.77, p = 0.5). Abbreviations: AECOPD, acute exacerbations of chronic obstructive pulmonary disease; BAL, bronchoalveolar lavage.
Figure 3
Figure 3
Relationship between BAL and peripheral blood eosinophil counts at baseline in the DISARM trial. There was no correlation between eosinophil proportions in the two compartments (Spearman’s rho 0.24, p = 0.09). Abbreviations: BAL, bronchoalveolar lavage.

References

    1. Donaldson G.C., Seemungal T.A.R., Bhowmik A., A Wedzicha J. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57:847–852. doi: 10.1136/thorax.57.10.847.
    1. Vestbo J., Edwards L.D., Scanlon P.D., Yates J.C., Agusti A., Bakke P., Calverley P.M., Celli B., Coxson H.O., Crim C., et al. Changes in Forced Expiratory Volume in 1 Second over Time in COPD. N. Engl. J. Med. 2011;365:1184–1192. doi: 10.1056/NEJMoa1105482.
    1. Soler-Cataluna J.J., Martínez-García M., Sánchez P.R., Salcedo E., Navarro M., Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60:925–931. doi: 10.1136/thx.2005.040527.
    1. Suissa S., Dell’Aniello S., Ernst P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax. 2012;67:957–963. doi: 10.1136/thoraxjnl-2011-201518.
    1. Vogelmeier C.F., Criner G.J., Martinez F.J., Anzueto A., Barnes P.J., Bourbeau J., Celli B.R., Chen R., Decramer M., Fabbri L.M., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur. Respir. J. 2017;49:1700214. doi: 10.1183/13993003.00214-2017.
    1. Singh D., Kolsum U., Brightling C., Locantore N., Agusti A., Tal-Singer R. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014;44:1697–1700. doi: 10.1183/09031936.00162414.
    1. Liu T., Xiang Z.-J., Hou X.-M., Chai J.-J., Yang Y.-L., Zhang X.-T. Blood eosinophil count-guided corticosteroid therapy and as a prognostic biomarker of exacerbations of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Ther. Adv. Chronic Dis. 2021;12:20406223211028768. doi: 10.1177/20406223211028768.
    1. Hastie A.T., Martinez F.J., Curtis J.L., Doerschuk C.M., Hansel N.N., Christenson S., Putcha N., Ortega V.E., Li X., Barr R.G., et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2017;5:956–967. doi: 10.1016/S2213-2600(17)30432-0.
    1. McDonough J.E., Yuan R., Suzuki M., Seyednejad N., Elliott W.M., Sanchez P.G., Wright A.C., Gefter W.B., Litzky L., Coxson H.O., et al. Small-Airway Obstruction and Emphysema in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2011;365:1567–1575. doi: 10.1056/NEJMoa1106955.
    1. Filho F.S.L., Takiguchi H., Akata K., Ra S.W., Moon J.-Y., Kim H.K., Cho Y., Yamasaki K., Milne S., Yang J., et al. Effects of Inhaled Corticosteroid/Long-Acting β2-Agonist Combination on the Airway Microbiome of Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial (DISARM) Am. J. Respir. Crit. Care Med. 2021;204:1143–1152. doi: 10.1164/rccm.202102-0289OC.
    1. National Center for Biotechnology Information NCBI Sequence Read Archive [Online Data Repository]. Effects of Inhaled Corticosteroid/Long Acting Beta-2 Agonist Combinations on the Airway Microbiome of Patients with COPD: A Randomised Controlled Trial (DISARM). BioProject Accession no. PRJNA685554. [(accessed on 22 April 2022)]; Available online:
    1. National Center for Biotechnology Information NCBI Gene Expression Omnibus [Online Data Repository]. The DISARM Study: Effects of Inhaled Corticosteroids on Bronchial Epithelial Cell Gene Expression in COPD. GEO Accession no. GSE162120. [(accessed on 22 April 2022)]; Available online: .
    1. Leung J.M., Yang C.X., Tam A., Shaipanich T., Hackett T.-L., Singhera G.K., Dorscheid D.R., Sin D.D. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur. Respir. J. 2020;55:2000688. doi: 10.1183/13993003.00688-2020.
    1. Meyer K.C., Raghu G., Baughman R.P., Brown K.K., Costabel U., Du Bois R.M., Drent M., Haslam P.L., Kim D.S., Nagai S., et al. An Official American Thoracic Society Clinical Practice Guideline: The Clinical Utility of Bronchoalveolar Lavage Cellular Analysis in Interstitial Lung Disease. Am. J. Respir. Crit. Care Med. 2012;185:1004–1014. doi: 10.1164/rccm.201202-0320ST.
    1. Bafadhel M., Pavord I.D., Russell R.E.K. Eosinophils in COPD: Just another biomarker? Lancet Respir. Med. 2017;5:747–759. doi: 10.1016/S2213-2600(17)30217-5.
    1. Brusselle G., Pavord I.D., Landis S., Pascoe S., Lettis S., Morjaria N., Barnes N., Hilton E. Blood eosinophil levels as a biomarker in COPD. Respir. Med. 2018;138:21–31. doi: 10.1016/j.rmed.2018.03.016.
    1. Hurst J.R., Vestbo J., Anzueto A., Locantore N., Müllerova H., Tal-Singer R., Miller B., Lomas D.A., Agusti A., MacNee W., et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2010;363:1128–1138. doi: 10.1056/NEJMoa0909883.
    1. Miller B.E., Tal-Singer R., Rennard S.I., Furtwaengler A., Leidy N., Lowings M., Martin U.J., Martin T.R., Merrill D.D., Snyder J., et al. Plasma Fibrinogen Qualification as a Drug Development Tool in Chronic Obstructive Pulmonary Disease. Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium. Am. J. Respir. Crit. Care Med. 2016;193:607–613. doi: 10.1164/rccm.201509-1722PP.
    1. Leigh R., Pizzichini M.M.M., Morris M.M., Maltais F., Hargreave F.E., Pizzichini E. Stable COPD: Predicting benefit from high-dose inhaled corticosteroid treatment. Eur. Respir. J. 2006;27:964–971. doi: 10.1183/09031936.06.00072105.
    1. Pizzichini E., Pizzichini M.M., Gibson P., Parameswaran K., Gleich G.J., Berman L., Dolovich J., Hargreave F.E. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am. J. Respir. Crit. Care Med. 1998;158:1511–1517. doi: 10.1164/ajrccm.158.5.9804028.
    1. Barnes P.J. Inflammatory endotypes in COPD. Allergy. 2019;74:1249–1256. doi: 10.1111/all.13760.

Source: PubMed

3
Subskrybuj