Isolation and characterization of circulating pro-vascular progenitor cell subsets from human whole blood samples

Daniella C Terenzi, Ehab Bakbak, Justin Z Trac, Mohammad Al-Omran, Adrian Quan, Hwee Teoh, Subodh Verma, David A Hess, Daniella C Terenzi, Ehab Bakbak, Justin Z Trac, Mohammad Al-Omran, Adrian Quan, Hwee Teoh, Subodh Verma, David A Hess

Abstract

The examination of circulating pro-vascular progenitor cell frequency and function is integral in understanding aberrant blood vessel homeostasis in individuals with cardiometabolic disease. Here, we outline the characterization of progenitor cell subsets from peripheral blood using high aldehyde dehydrogenase (ALDH) activity, an intracellular detoxification enzyme previously associated with pro-vascular progenitor cell status. Using this protocol, cells can be examined by flow cytometry for ALDH activity and lineage restricted cell surface markers simultaneously. For complete details on the use and execution of this protocol, please refer to Terenzi et al. (2019) and Hess et al. (2019, 2020).

Keywords: Cell biology; Cell isolation; Flow cytometry/mass cytometry; Stem cells.

Conflict of interest statement

H.T. reports receiving honorarium from Boehringer Ingelheim and writing fees for unrelated diabetes-related manuscripts from Merck and Servier. S.V. holds a Tier 1 Canada Research Chair in Cardiovascular Surgery and reports receiving research grants and/or speaking honoraria from Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, EOCI Pharmacomm Ltd, HLS Therapeutics, Janssen, Merck, Novartis, Novo Nordisk, PhaseBio, Sanofi, Sun Pharmaceuticals, and the Toronto Knowledge Translation Working Group. He is the President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization.

© 2021 The Author(s).

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
High aldehyde dehydrogenase (ALDH) expression simulates progenitor cell differentiation
Figure 3
Figure 3
Visual representation of sample preparation
Figure 2
Figure 2
Mononuclear cell isolation and staining for ALDH activity and lineage restricted cell surface markers
Figure 4
Figure 4
Sample workflow of precursor cell analyses by flow cytometry

References

    1. Capoccia B.J., Robson D.L., Levac K.D., Maxwell D.J., Hohm S.A., Neelamkavil M.J., Bell G.I., Xenocostas A., Link D.C., Piwnica-Worms D. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113:5340–5351.
    1. Cooper T.T., Sherman S.E., Kuljanin M., Bell G.I., Lajoie G.A., Hess D.A. Inhibition of aldehyde dehydrogenase-activity expands multipotent myeloid progenitor cells with vascular regenerative function. Stem Cells. 2018;36:723–736.
    1. Fadini G.P., Miorin M., Facco M., Bonamico S., Baesso I., Grego F., Menegolo M., de Kreutzenberg S.V., Tiengo A., Agostini C. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J. Am. Coll. Cardiol. 2005;45:1449–1457.
    1. Fadini G.P., Sartore S., Albiero M., Baesso I., Murphy E., Menegolo M., Grego F., Vigili de Kreutzenberg S., Tiengo A., Agostini C. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler. Thromb. Vasc. Biol. 2006;26:2140–2146.
    1. Hess D., Wirthlin L., Craft T.P., Herrbrich P.E., Hohm S.A., Lahey R., Eades W.C., Creer M.H., Nolta J.A. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107:2162–2169.
    1. Hess D.A., Meyerrose T.E., Wirthlin L., Craft T.P., Herrbrich P.E., Creer M.H., Nolta J.A. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104:1648–1655.
    1. Hess D.A., Trac J.Z., Glazer S.A., Terenzi D.C., Quan A., Teoh H., Al-Omran M., Bhatt D.L., Mazer C.D., Rotstein O.D. Vascular risk reduction in obesity through reduced granulocyte burden and improved angiogenic monocyte content following bariatric surgery. Cell Rep. Med. 2020;1:100018.
    1. Hess D.A., Terenzi D.C., Trac J.Z., Quan A., Mason T., Al-Omran M., Bhatt D.L., Dhingra N., Rotstein O.D., Leiter L.A. SGLT2 inhibition with empagliflozin increases circulating provascular progenitor cells in people with type 2 diabetes mellitus. Cell Metab. 2019;30:609–613.
    1. Hur J., Yoon C.H., Kim H.S., Choi J.H., Kang H.J., Hwang K.K., Oh B.H., Lee M.M., Park Y.B. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 2004;24:288–293.
    1. Isner J.M., Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 1999;103:1231–1236.
    1. Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–958.
    1. Putman D. Expansion of umbilical cord blood aldehyde dehydrogenase expressing cells generates myeloid progenitor cells that stimulate limb revascularization. Stem Cells Transl. Med. 2017;6:1607–1619.
    1. Putman D.M., Liu K.Y., Broughton H.C., Bell G.I., Hess D.A. Umbilical cord blood-derived aldehyde dehydrogenase-expressing progenitor cells promote recovery from acute ischemic injury. Stem Cells. 2012;30:2248–2260.
    1. Storms R.W., Trujillo A.P., Springer J.B., Shah L., Colvin O.M., Ludeman S.M., Smith C. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc. Natl. Acad. Sci. U S A. 1999;96:9118–9123.
    1. Terenzi D.C., Al-Omran M., Quan A., Teoh H., Verma S., Hess D.A. Circulating pro-vascular progenitor cell depletion during type 2 diabetes: translational insights into the prevention of ischemic complications in diabetes. JACC Basic Transl. Sci. 2019;4:98–112.

Source: PubMed

3
Subskrybuj