Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids

Ana Arpón, Fermín I Milagro, Cristina Razquin, Dolores Corella, Ramón Estruch, Montserrat Fitó, Amelia Marti, Miguel A Martínez-González, Emilio Ros, Jordi Salas-Salvadó, José-Ignacio Riezu-Boj, J Alfredo Martínez, Ana Arpón, Fermín I Milagro, Cristina Razquin, Dolores Corella, Ramón Estruch, Montserrat Fitó, Amelia Marti, Miguel A Martínez-González, Emilio Ros, Jordi Salas-Salvadó, José-Ignacio Riezu-Boj, J Alfredo Martínez

Abstract

DNA methylation could be reversible and mouldable by environmental factors, such as dietary exposures. The objective was to analyse whether an intervention with two Mediterranean diets, one rich in extra-virgin olive oil (MedDiet + EVOO) and the other one in nuts (MedDiet + nuts), was influencing the methylation status of peripheral white blood cells (PWBCs) genes. A subset of 36 representative individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED-Navarra) trial, with three intervention groups in high cardiovascular risk volunteers: MedDiet + EVOO, MedDiet + nuts, and a low-fat control group. Methylation was assessed at baseline and at five-year follow-up. Ingenuity pathway analysis showed routes with differentially methylated CpG sites (CpGs) related to intermediate metabolism, diabetes, inflammation, and signal transduction. Two CpGs were specifically selected: cg01081346-CPT1B/CHKB-CPT1B and cg17071192-GNAS/GNASAS, being associated with intermediate metabolism. Furthermore, cg01081346 was associated with PUFAs intake, showing a role for specific fatty acids on epigenetic modulation. Specific components of MedDiet, particularly nuts and EVOO, were able to induce methylation changes in several PWBCs genes. These changes may have potential benefits in health; especially those changes in genes related to intermediate metabolism, diabetes, inflammation and signal transduction, which may contribute to explain the role of MedDiet and fat quality on health outcomes.

Keywords: DNA methylation; Mediterranean diet; blood cells; nuts; olive oil.

Conflict of interest statement

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Representation of significant methylation changes of cg01081346. (a) Methylation mean and SD of each dietary group at baseline and at 5 years. Statistical analysis was performed by a Student-t test between 5 years and baseline for each diet. (b) Methylation changes (Mean and SD) for each participant and diet. Statistical analysis of differences in methylation changes among diets was performed by ANOVA (+Tukey’s multiple comparison test). Significance is considered * p < 0.05, *** p < 0.001. (c) Regression graph representing the relation between methylation changes and nuts intake at 5 years. Dot lines on both sides of the solid line (linear regression line) represent 95% confidence band. MedDiet: Mediterranean diet.
Figure 2
Figure 2
Representation of significant methylation changes of cg17071192. (a) Methylation mean and SD of each dietary group at baseline and at 5 years. Statistical analysis was performed by a Student-t test between 5 years and baseline for each diet. (b) Methylation changes (Mean and SD) for each participant and diet. Statistical analysis of differences in methylation changes among diets was performed by ANOVA (+Tukey’s multiple comparison test) or Kruskal-Wallis (+Mann-Whitney’s U), when appropriate. Significance is considered * p < 0.05, ** p < 0.01. EVOO: extra-virgin olive oil; MedDiet: Mediterranean diet.
Figure 3
Figure 3
Regression graph between cg01081346 methylation and polyunsaturated fatty acids (PUFA) consumption at five years. Dot lines on both sides of the solid line (linear regression line) represent 95% confidence band.

References

    1. Milagro F.I., Campion J., Garcia-Diaz D.F., Goyenechea E., Paternain L., Martinez J.A. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J. Physiol. Biochem. 2009;65:1–9. doi: 10.1007/BF03165964.
    1. Corella D., Ordovás J.M. Biomarkers: Background, classification and guidelines for applications in nutritional epidemiology. Nutrición Hospitalaria. 2015;31:177–188. doi: 10.3305/nh.2015.31.sup3.8765.
    1. Choi S.W., Friso S. Epigenetics: A new bridge between nutrition and health. Adv. Nutr. 2010;1:8–16. doi: 10.3945/an.110.1004.
    1. Goni L., Cuervo M., Milagro F.I., Martinez J.A. Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J. Nutr. 2016;146:905S–912S. doi: 10.3945/jn.115.218354.
    1. Barres R., Zierath J.R. DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 2011;93:897S–900S. doi: 10.3945/ajcn.110.001933.
    1. Tremblay J., Hamet P. Impact of genetic and epigenetic factors from early life to later disease. Metabolism. 2008;57(Suppl. 2):S27–S31. doi: 10.1016/j.metabol.2008.07.012.
    1. Kohlmeier M., De Caterina R., Ferguson L.R., Gorman U., Allayee H., Prasad C., Kang J.X., Nicoletti C.F., Martinez J.A. Guide and position of the international society of nutrigenetics/nutrigenomics on personalized nutrition: Part 2—Ethics, challenges and endeavors of precision nutrition. J. Nutrigenet. Nutrigenom. 2016;9:28–46. doi: 10.1159/000446347.
    1. Estruch R., Martinez-Gonzalez M.A., Corella D., Salas-Salvado J., Ruiz-Gutierrez V., Covas M.I., Fiol M., Gomez-Gracia E., Lopez-Sabater M.C., Vinyoles E., et al. Effects of a mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006;145:1–11. doi: 10.7326/0003-4819-145-1-200607040-00004.
    1. Martinez-Gonzalez M.A., Salas-Salvado J., Estruch R., Corella D., Fito M., Ros E., Predimed I. Benefits of the mediterranean diet: Insights from the predimed study. Prog Cardiovasc. Dis. 2015;58:50–60. doi: 10.1016/j.pcad.2015.04.003.
    1. Mitjavila M.T., Fandos M., Salas-Salvado J., Covas M.I., Borrego S., Estruch R., Lamuela-Raventos R., Corella D., Martinez-Gonzalez M.A., Sanchez J.M., et al. The mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial. Clin. Nutr. 2013;32:172–178. doi: 10.1016/j.clnu.2012.08.002.
    1. Corella D., Ordovas J., Sorli J., Asensio E., Ortega C., Carrasco P., Portoles O., Coltell O. Effect of the mediterranean diet on DNA methylation of selected genes in the predimed-valencia intervention trial. FASEB J. 2015;29:LB242.
    1. Arpón A., Riezu-Boj J.I., Milagro F.I., Marti A., Razquin C., Martinez-Gonzalez M.A., Corella D., Estruch R., Casas R., Fito M., et al. Adherence to mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J. Physiol. Biochem. 2017;73:445–455. doi: 10.1007/s13105-017-0552-6.
    1. Rodriguez-Miguel C., Moral R., Escrich R., Vela E., Solanas M., Escrich E. The role of dietary extra virgin olive oil and corn oil on the alteration of epigenetic patterns in the rat DMBA-induced breast cancer model. PLoS ONE. 2015;10:e0138980. doi: 10.1371/journal.pone.0138980.
    1. Poulose S., Bielinski D., Crott J., Roe A., Thangthaeng N., Shukitt-Hale B. Effects of aging and walnut-rich diet on DNA methylation and expression of immediate-early genes in critical brain regions. FASEB J. 2015;29:749.7.
    1. Estruch R., Ros E., Salas-Salvado J., Covas M.I., Corella D., Aros F., Gomez-Gracia E., Ruiz-Gutierrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a mediterranean diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. Martinez-Gonzalez M.A., Corella D., Salas-Salvado J., Ros E., Covas M.I., Fiol M., Warnberg J., Aros F., Ruiz-Gutierrez V., Lamuela-Raventos R.M., et al. Cohort profile: Design and methods of the predimed study. Int. J. Epidemiol. 2012;41:377–385. doi: 10.1093/ije/dyq250.
    1. Fernandez-Ballart J.D., Pinol J.L., Zazpe I., Corella D., Carrasco P., Toledo E., Perez-Bauer M., Martinez-Gonzalez M.A., Salas-Salvado J., Martin-Moreno J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly mediterranean population of spain. Br. J. Nutr. 2010;103:1808–1816. doi: 10.1017/S0007114509993837.
    1. Touleimat N., Tost J. Complete pipeline for infinium(®) human methylation 450k beadchip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4:325–341. doi: 10.2217/epi.12.21.
    1. Smyth G.K. Limma: Linear Models for Microarray Data. In: Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S., editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer; New York, NY, USA: 2005. pp. 397–420.
    1. Edgar R., Domrachev M., Lash A.E. Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207.
    1. Volkmar M., Dedeurwaerder S., Cunha D.A., Ndlovu M.N., Defrance M., Deplus R., Calonne E., Volkmar U., Igoillo-Esteve M., Naamane N., et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012;31:1405–1426. doi: 10.1038/emboj.2011.503.
    1. Burdge G.C., Hoile S.P., Lillycrop K.A. Epigenetics: Are there implications for personalised nutrition? Curr. Opin. Clin. Nutr. Metab. Care. 2012;15:442–447. doi: 10.1097/MCO.0b013e3283567dd2.
    1. Casas R., Sacanella E., Urpi-Sarda M., Corella D., Castaner O., Lamuela-Raventos R.M., Salas-Salvado J., Martinez-Gonzalez M.A., Ros E., Estruch R. Long-term immunomodulatory effects of a mediterranean diet in adults at high risk of cardiovascular disease in the prevencion con dieta mediterranea (predimed) randomized controlled trial. J. Nutr. 2016;146:1684–1693. doi: 10.3945/jn.115.229476.
    1. Haynie K.R., Vandanmagsar B., Wicks S.E., Zhang J., Mynatt R.L. Inhibition of carnitine palymitoyltransferase1b induces cardiac hypertrophy and mortality in mice. Diabetes Obes. Metab. 2014;16:757–760. doi: 10.1111/dom.12248.
    1. He L., Kim T., Long Q., Liu J., Wang P., Zhou Y., Ding Y., Prasain J., Wood P.A., Yang Q. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation. 2012;126:1705–1716. doi: 10.1161/CIRCULATIONAHA.111.075978.
    1. Kulkarni S.S., Salehzadeh F., Fritz T., Zierath J.R., Krook A., Osler M.E. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism. 2012;61:175–185. doi: 10.1016/j.metabol.2011.06.014.
    1. Cress A.P., Fraker P.J., Bieber L.L. Carnitine and acylcarnitine levels of human peripheral blood lymphocytes and mononuclear phagocytes. Biochim. Biophys. Acta. 1989;992:135–139. doi: 10.1016/0304-4165(89)90001-9.
    1. Weinstein L.S., Xie T., Zhang Q.H., Chen M. Studies of the regulation and function of the Gsα gene Gnas using gene targeting technology. Pharmacol. Ther. 2007;115:271–291. doi: 10.1016/j.pharmthera.2007.03.013.
    1. Tobi E.W., Heijmans B.T., Kremer D., Putter H., Delemarre-van de Waal H.A., Finken M.J., Wit J.M., Slagboom P.E. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics. 2011;6:171–176. doi: 10.4161/epi.6.2.13516.
    1. Burdge G.C., Lillycrop K.A. Bridging the gap between epigenetics research and nutritional public health interventions. Genome Med. 2010;2:80. doi: 10.1186/gm201.
    1. Crujeiras A.B., Diaz-Lagares A., Sandoval J., Milagro F.I., Navas-Carretero S., Carreira M.C., Gomez A., Hervas D., Monteiro M.P., Casanueva F.F., et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: A genome-wide analysis from non-obese and obese patients. Sci. Rep. 2017;7:41903. doi: 10.1038/srep41903.
    1. Covas M.I. Olive oil and the cardiovascular system. Pharmacol. Res. 2007;55:175–186. doi: 10.1016/j.phrs.2007.01.010.
    1. Solà-Alberich R., Godàs-Bonfill G., Salas-Salvadó J. Nutritional Value-Tree Nuts and Health: Effects of Tree Nuts on Cholesterol and Cardiovascular Diseases. Northern Nut Growers Association (NNGA); Notre Dame, IN, USA: 2011. [(accessed on 9 November 2016)]. Available online: .
    1. Voisin S., Almen M.S., Moschonis G., Chrousos G.P., Manios Y., Schioth H.B. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of greek preadolescents. Eur. J. Hum. Genet. 2015;23:654–662. doi: 10.1038/ejhg.2014.139.
    1. Konstantinidou V., Covas M.I., Munoz-Aguayo D., Khymenets O., de la Torre R., Saez G., Tormos Mdel C., Toledo E., Marti A., Ruiz-Gutierrez V., et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the mediterranean diet: A randomized controlled trial. FASEB J. 2010;24:2546–2557. doi: 10.1096/fj.09-148452.
    1. De la Puerta R., Ruiz Gutierrez V., Hoult J.R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharma. 1999;57:445–449. doi: 10.1016/S0006-2952(98)00320-7.
    1. Visioli F., Galli C. Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr. 2002;42:209–221. doi: 10.1080/10408690290825529.
    1. Di Francesco A., Falconi A., Di Germanio C., Micioni Di Bonaventura M.V., Costa A., Caramuta S., Del Carlo M., Compagnone D., Dainese E., Cifani C., et al. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J. Nutr. Biochem. 2015;26:250–258. doi: 10.1016/j.jnutbio.2014.10.013.

Source: PubMed

3
Subskrybuj