Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors

Milan Fedurco, Jana Gregorová, Kristýna Šebrlová, Jana Kantorová, Ondřej Peš, Roland Baur, Erwin Sigel, Eva Táborská, Milan Fedurco, Jana Gregorová, Kristýna Šebrlová, Jana Kantorová, Ondřej Peš, Roland Baur, Erwin Sigel, Eva Táborská

Abstract

The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α 1 β 2 γ 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 μM. However, (S)-reticuline behaved as positive allosteric modulator at the α 3, α 5, and α 6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S)-reticuline at the α 3 β 2 γ 2 and α 5 β 2 γ 2 GABAA receptors. Interestingly, α 1, α 3, and α 5 were not significantly affected by (R)-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine-suspected (S)-reticuline metabolites in the rodent brain.

Figures

Figure 1
Figure 1
Alkaloids identified in the aerial parts of Eschscholzia californica.
Figure 2
Figure 2
(a) LC UV chromatogram of Eschscholzia californica extract before fractionation. Peak identification: (1) reticuline; (2) caryachine; (3) N-methyllaurotetanine; (4) protopine; (5) californidine; (6) allocryptopine; (7) escholtzine; (8) sanguinarine; and (9) chelerythrine. (b) LC-MS trace of “NMT sample” containing 82% N-methyllaurotetanine, 10% reticuline, and 8% caryachine with traces of other alkaloids.
Figure 3
Figure 3
(a) (A) Electrospray ESI trace and (B) tandem MS/MS fragmentation pattern for selected ion m/z 354 corresponding to alkaloid protopine detected in a pharmacy capsule (300 mg) of E. californica (AMM 57426001) following alkaloid extraction and separation (Method A). (b) Electrospray ESI trace (A) and tandem MS/MS profile (B) for 6S,12S-neocaryachine-7-O-methyl ether N-metho salt detected in the same AMM 57426001 sample. Note that m/z 354 for this pavine alkaloid is practically identical to that of protopine; however, it gives quite different fragmentation pattern.
Figure 4
Figure 4
Modulation of recombinant GABAA receptors of different subunit composition by (S)-reticuline. Receptors were expressed in Xenopus oocytes and concentration dependent modulation was determined using electrophysiological techniques. Each curve is the average of three to four determinations (data points ± standard deviation).
Figure 5
Figure 5
Effect of a benzodiazepine antagonist on the potentiation of α5β2γ2 GABAA receptors by (S)-reticuline. Application of 0.5 μM GABA was followed by application of 0.5 μM GABA/10 μM (S)-reticuline and subsequently by 0.5 μM GABA/10 μM (S)-reticuline/1 μM Ro15-1788. Providing (S)-reticuline would act at the benzodiazepine site elicited currents would be expected to go back to the size elicited by GABA alone. Instead, a potentiation was observed. Similar observations were made in two additional experiments.

References

    1. Schafer H. L., Schafer H., Schneider W., Elstner E. F. Sedative action of extract combinations of Eschscholtzia californica and Corydalis cava . Arzneimittel-Forschung. 1995;45(2):124–126.
    1. Rolland A., Fleurentin J., Lanhers M.-C., et al. Behavioural effects of the American traditional plant Eschscholzia californica: sedative and anxiolytic properties. Planta Medica. 1991;57(3):212–216. doi: 10.1055/s-2006-960076.
    1. Rolland A., Fleurentin J., Lanhers M. C., Misslin R., Mortier F. Neurophysiological effects of an extract of Eschscholzia californica Cham. (Papaveraceae) Phytotherapy Research. 2001;15(5):377–381. doi: 10.1002/ptr.884.
    1. Hanus M., Lafon J., Mathieu M. Double-blind, randomised, placebo-controlled study to evaluate the efficacy and safety of a fixed combination containing two plant extracts (Crataegus oxyacantha and Eschscholtzia californica) and magnesium in mild-to-moderate anxiety disorders. Current Medical Research and Opinion. 2004;20(1):63–71. doi: 10.1185/030079903125002603.
    1. Kardos J., Blaskó G., Simonyi M. Enhancement of gamma-aminobutyric acid receptor binding by protopine-type alkaloids. Arzneimittel-Forschung. 1986;36(6):939–940.
    1. Häberlein H., Tschiersch K.-P., Boonen G., Hiller K.-O. Chelidonium majus L.: components with in vitro Affinity for the GABAA Receptor. Positive Cooperation of Alkaloids. Planta Medica. 1996;62(3):227–231. doi: 10.1055/s-2006-957865.
    1. Vacek J., Walterová D., Vrublová E., Šimánek V. The chemical and biological properties of protopine and allocryptopine. Heterocycles. 2010;81(8):1773–1789. doi: 10.3987/REV-10-673.
    1. Şener B., Orhan I. Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure and Applied Chemistry. 2005;77(1):53–64. doi: 10.1351/pac200577010053.
    1. Gafner S., Dietz B. M., McPhail K. L., et al. Alkaloids from Eschscholzia californica and their capacity to inhibit binding of [3H]8-hydroxy-2-(di-N-propylamino) tetralin to 5-HT1A receptors in vitro. Journal of Natural Products. 2006;69(3):432–435. doi: 10.1021/np058114h.
    1. Xu L.-F., Chu W.-J., Qing X.-Y., et al. Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology. 2006;50(8):934–940. doi: 10.1016/j.neuropharm.2006.01.003.
    1. Bugatti C., Colombo M. L., Tomé F. A new method for alkaloid extraction from Chelidonium majus L. Phytochemical Analysis. 1991;2(2):65–67. doi: 10.1002/pca.2800020204.
    1. Suchomelová J., Bochořáková H., Paulová H., Musil P., Táborská E. HPLC quantification of seven quaternary benzo[c]phenanthridine alkaloids in six species of the family Papaveraceae . Journal of Pharmaceutical and Biomedical Analysis. 2007;44(1):283–287. doi: 10.1016/j.jpba.2007.02.005.
    1. Sigel E. Properties of single sodium channels translated by Xenopus oocytes after injection with messenger ribonucleic acid. Journal of Physiology. 1987;386:73–90. doi: 10.1113/jphysiol.1987.sp016523.
    1. Fabre N., Claparols C., Richelme S., Angelin M.-L., Fourasté I., Moulis C. Direct characterization of isoquinoline alkaloids in a crude plant extract by ion-pair liquid chromatography-electrospray ionization tandem mass spectrometry: example of Eschscholtzia californica . Journal of Chromatography A. 2000;904(1):35–46. doi: 10.1016/s0021-9673(00)00919-5.
    1. Rey J.-P., Levesque J., Pousset J.-L., Roblot F. Analytical and quantitative studies of californin and protopin in aerial part extracts of Eschscholtzia californica Cham. with high-performance liquid chromatography. Journal of Chromatography A. 1991;587(2):314–317. doi: 10.1016/0021-9673(91)85174-e.
    1. Tomè F., Colombo M. L., Caldiroli L. A comparative investigation on alkaloid composition in different populations of Eschscholtzia californica Cham. Phytochemical Analysis. 1999;10(5):264–267. doi: 10.1002/(sici)1099-1565(199909/10)10:5lt;264::aid-pca469>;2-4.
    1. Verma S. K., Jain V., Verma D., Khamesra R. Cratageus oxycantha—a cardioprotective herb. Journal of Herbal Medicine and Toxicology. 2007;1:65–71.
    1. Goutman J. D., Waxemberg M. D., Doñate-Oliver F., Pomata P. E., Calvo D. J. Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. European Journal of Pharmacology. 2003;461(2-3):79–87.
    1. Aguirre-Hernández E., Martínez A. L., González-Trujano M. E., Moreno J., Vibrans H., Soto-Hernández M. Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. Journal of Ethnopharmacology. 2007;109(1):140–145. doi: 10.1016/j.jep.2006.07.017.
    1. Aguirre-Hernández E., González-Trujano M. E., Martínez A. L., et al. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana . Journal of Ethnopharmacology. 2010;127(1):91–97. doi: 10.1016/j.jep.2009.09.044.
    1. Martínez A. L., González-Trujano M. E., Aguirre-Hernández E., Moreno J., Soto-Hernández M., López-Muñoz F. J. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology. 2009;56:564–571. doi: 10.1016/j.neuropharm.2008.10.010.
    1. Beck M.-A., Häberlein H. Flavonol glycosides from Eschscholtzia californica . Phytochemistry. 1999;50(2):329–332. doi: 10.1016/s0031-9422(98)00503-2.
    1. Boettcher C., Fellermeier M., Boettcher C., Dräger B., Zenk M. H. How human neuroblastoma cells make morphine. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(24):8495–8500. doi: 10.1073/pnas.0503244102.
    1. Morais L. C. S. L., Barbosa-Filho J. M., Almeida R. N. Central depressant effects of reticuline extracted from Ocotea duckei in rats and mice. Journal of Ethnopharmacology. 1998;62(1):57–61. doi: 10.1016/s0378-8741(98)00044-0.
    1. Ziegler J., Facchini P. J., Geißler R., et al. Evolution of morphine biosynthesis in opium poppy. Phytochemistry. 2009;70(15-16):1696–1707. doi: 10.1016/j.phytochem.2009.07.006.
    1. Nikolaev V. O., Boettcher C., Dees C., Bünemann M., Lohse M. J., Zenk M. H. Live cell monitoring of μ-opioid receptor-mediated G-protein activation reveals strong biological activity of close morphine biosynthetic precursors. Journal of Biological Chemistry. 2007;282(37):27126–27132. doi: 10.1074/jbc.m703272200.
    1. Laux A., Muller A. H., Miehe M., et al. Mapping of endogenous morphine-like compounds in the adult mouse brain: evidence of their localization in astrocytes and GABAergic cells. Journal of Comparative Neurology. 2011;519(12):2390–2416. doi: 10.1002/cne.22633.
    1. Freund T. F., Katona I. Perisomatic inhibition. Neuron. 2007;56(1):33–42. doi: 10.1016/j.neuron.2007.09.012.
    1. Beneyto M., Lewis D. A. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. International Journal of Developmental Neuroscience. 2011;29(3):295–304. doi: 10.1016/j.ijdevneu.2010.08.003.
    1. Zhu W., Ma Y., Cadet P., et al. Presence of reticuline in rat brain: a pathway for morphine biosynthesis. Molecular Brain Research. 2003;117(1):83–90. doi: 10.1016/s0169-328x(03)00323-1.
    1. Laux-Biehlmann A., Mouheiche J., Vérièpe J., Goumon Y. Endogenous morphine and its metabolites in mammals: history, synthesis, localization and perspectives. Neuroscience. 2013;233:95–117. doi: 10.1016/j.neuroscience.2012.12.013.
    1. Cahlíková L., Hulová L., Hrabinová M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004.

Source: PubMed

3
Subskrybuj