Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models

Anthony Estienne, Alice Bongrani, Maxime Reverchon, Christelle Ramé, Pierre-Henri Ducluzeau, Pascal Froment, Joëlle Dupont, Anthony Estienne, Alice Bongrani, Maxime Reverchon, Christelle Ramé, Pierre-Henri Ducluzeau, Pascal Froment, Joëlle Dupont

Abstract

It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.

Keywords: adipose tissue; gestational diabetes; ovary; polycystic ovary syndrome; preeclempsia; testicular pathologies; testis.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Structure and specific forms of human chemerin. The initial preprochemerin and its different products are processed by different proteases related to inflammation. The signal peptide (purple) is cleaved prior to secretion. Then, the C-terminus is cleaved by different proteases giving several active isoforms such as chemerin F156, chemerin S157 and chemerin K158.
Figure 2
Figure 2
Structure and specific forms of human visfatin. Human visfatin can be found under the intra-cellular form of nicotinamide phosphoribosyltransferase (iNAMPT) having an enzymatic role to produce NAD+ (nicotinamide adenine dinucleotide), and under the extracellular form (eNAMPT) with the same role. Visfatin acts also as a cytokine that could act on target cells. NAMPT catalyzes the reaction between nicotinamide and 5-phosphoribosyl-1-pyrophosphate (PRPP) to yield nicotinamide mononucleotide (NMN), an intermediate in the biosynthesis of NAD+.
Figure 3
Figure 3
Structure and specific forms of human resistin. Human resistin is composed by a signal peptide (purple), a variable region (green) and a C-terminal domain. Resistin can be found under the monomeric form and can form dimeric and trimeric proteins thanks to disulfide bridges. Then, disulfide and non-disulfide bridges can be involved in the formation of the hexameric protein.
Figure 4
Figure 4
Structure and specific forms of human apelin. Human apelin is first of all found under the preproapelin form (77 amino acids) that will be cleaved by endopeptidases acting on basic amino-acid-rich regions giving the proapelin (55 amino-acids) and then the other tissue-dependent active isoforms (36, 17, 13 and Pyr-13 amino-acids). PCSK3 (proprotein convertase subtilisin/kexin 3) is involved in the cleavage of proapelin to apelin-13.
Figure 5
Figure 5
Receptors used by chemerin, visfatin, resistin and apelin for their signaling pathways. chemerin can bind three different receptors that are CMKLR1, GPR1 and CCRL2. CMKLR1 and GPR1 are coupled with intracellular Gαi proteins. The last receptor doesn’t have any active signaling pathway identified until now suggesting a putative role of co-receptor for CCRL2. Apelin has its own receptor called APJ coupled with intracellular Gq and Gαi proteins. Resistin could bind receptors such as CAP-1, ROR-1 and TLR-4 but it has to be confirmed. No receptor for visfatin has been identified until now.
Figure 6
Figure 6
Expression and effects on GnRH (Gonadotropin-Releasing Hormone) release of chemerin, visfatin, resistin and apelin in hypothalamus. ⇧ Increase/stimulation. ⇩ Decrease/inhibition. ND: not determined. CSF: cerebrospinal fluid.
Figure 7
Figure 7
Expression and effects on gonadotropic cells of chemerin, visfatin, resistin and apelin in pituitary. ⇧ Increase/stimulation. ⇩ Decrease/inhibition. ND: not determined.
Figure 8
Figure 8
Expression and effects of chemerin, visfatin, resistin and apelin on the ovarian follicle. ⇧ Increase/stimulation. ⇩ Decrease/inhibition.
Figure 9
Figure 9
Effects of chemerin, visfatin, resistin and apelin on steroidogenesis in vitro in primary human granulosa cells. Chemerin and resistin are known to inhibit IGF-1 (Insulin Like Growth Factor 1)-induced steroidogenesis whereas visfatin and apelin exert stimulatory effects.
Figure 10
Figure 10
Expression and effects of chemerin, visfatin, resistin and apelin on testicular function. ⇧ Increase/stimulation. ⇩ Decrease/inhibition.
Figure 11
Figure 11
Effects of chemerin, visfatin, resistin and apelin on ovarian physiology, plasma and adipose tissue in polycystic ovarian syndrome (PCOS) as compared to control patients. ⇧ Increase/stimulation. ⇩ Decrease/inhibition.
Figure 12
Figure 12
Description of PCOS syndrome and possible involvement of chemerin, visfatin, resistin and apelin in this syndrome.
Figure 13
Figure 13
Putative involvement of plasma levels of chemerin, visfatin, resistin and apelin in gestational diabetes mellitus. ⇧ Increase/stimulation. ⇩ Decrease/inhibition.
Figure 14
Figure 14
Putative involvement of plasma levels of chemerin, visfatin, resistin and apelin in preeclampsia and intrauterine growth restriction. ⇧ Increase/stimulation. ⇩ Decrease/inhibition.

References

    1. Wade G.N., Schneider J.E. Metabolic fuels and reproduction in female mammals. Neurosci. Biobehav. Rev. 1992;16:235–272. doi: 10.1016/S0149-7634(05)80183-6.
    1. Schneider J.E. Energy balance and reproduction. Physiol. Behav. 2004;81:289–317. doi: 10.1016/j.physbeh.2004.02.007.
    1. Scheja L., Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019;15:507–524. doi: 10.1038/s41574-019-0230-6.
    1. Ntaios G., Gatselis N.K., Makaritsis K., Dalekos G.N. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis. 2013;227:216–221. doi: 10.1016/j.atherosclerosis.2012.12.029.
    1. Trujillo M.E., Scherer P.E. Adipose tissue-derived factors: Impact on health and disease. Endocr. Rev. 2006;27:762–778. doi: 10.1210/er.2006-0033.
    1. Pandit R., Beerens S., Adan R.A.H. Role of leptin in energy expenditure: The hypothalamic perspective. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;312:R938–R947. doi: 10.1152/ajpregu.00045.2016.
    1. Luo L., Liu M. Adipose tissue in control of metabolism. J. Endocrinol. 2016;231:R77–R99. doi: 10.1530/JOE-16-0211.
    1. Lee B., Shao J. Adiponectin and energy homeostasis. Rev. Endocr. Metab. Disord. 2014;15:149–156. doi: 10.1007/s11154-013-9283-3.
    1. Messinis I.E., Milingos S.D. Leptin in human reproduction. Hum. Reprod. Update. 1999;5:52–63. doi: 10.1093/humupd/5.1.52.
    1. Chehab F.F. Leptin as a regulator of adipose mass and reproduction. Trends Pharmacol. Sci. 2000;21:309–314. doi: 10.1016/S0165-6147(00)01514-5.
    1. Tena-Sempere M., Barreiro M.L. Leptin in male reproduction: The testis paradigm. Mol. Cell. Endocrinol. 2002;188:9–13. doi: 10.1016/S0303-7207(02)00008-4.
    1. Barbe A., Bongrani A., Mellouk N., Estienne A., Kurowska P., Grandhaye J., Elfassy Y., Levy R., Rak A., Froment P., et al. Mechanisms of Adiponectin Action in Fertility: An Overview from Gametogenesis to Gestation in Humans and Animal Models in Normal and Pathological Conditions. Int. J. Mol. Sci. 2019;20:1526. doi: 10.3390/ijms20071526.
    1. Kawwass J.F., Summer R., Kallen C.B. Direct effects of leptin and adiponectin on peripheral reproductive tissues: A critical review. Mol. Hum. Reprod. 2015;21:617–632. doi: 10.1093/molehr/gav025.
    1. Fang H., Judd R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018;8:1031–1063. doi: 10.1002/cphy.c170046.
    1. Bertrand C., Valet P., Castan-Laurell I. Apelin and energy metabolism. Front. Physiol. 2015;6:115. doi: 10.3389/fphys.2015.00115.
    1. Rourke J.L., Muruganandan S., Dranse H.J., McMullen N.M., Sinal C.J. Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice. J. Endocrinol. 2014;222:201–215. doi: 10.1530/JOE-14-0069.
    1. Zhang L.Q., Van Haandel L., Xiong M., Huang P., Heruth D.P., Bi C., Gaedigk R., Jiang X., Li D.-Y., Wyckoff G., et al. Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase. Cell Death Dis. 2017;8:e2705. doi: 10.1038/cddis.2017.132.
    1. Meier U., Gressner A.M. Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem. 2004;50:1511–1525. doi: 10.1373/clinchem.2004.032482.
    1. Tsatsanis C., Dermitzaki E., Avgoustinaki P., Malliaraki N., Mytaras V., Margioris A.N. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones (Athens) 2015;14:549–562. doi: 10.14310/horm.2002.1649.
    1. Elfassy Y., Bastard J.P., McAvoy C., Fellahi S., Dupont J., Levy R. Adipokines in Semen: Physiopathology and Effects on Spermatozoas. Int. J. Endocrinol. 2018;2018:3906490. doi: 10.1155/2018/3906490.
    1. Reverchon M., Rame C., Bertoldo M., Dupont J. Adipokines and the female reproductive tract. Int. J. Endocrinol. 2014;2014:232454. doi: 10.1155/2014/232454.
    1. Campos D.B., Palin M.F., Bordignon V., Murphy B.D. The ‘beneficial’ adipokines in reproduction and fertility. Int. J. Obes. (Lond.) 2008;32:223–231. doi: 10.1038/sj.ijo.0803719.
    1. Meder W., Wendland M., Busmann A., Kutzleb C., Spodsberg N., John H., Richter R., Schleuder D., Meyer M., Forssmann W.G. Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 2003;555:495–499. doi: 10.1016/S0014-5793(03)01312-7.
    1. Wittamer V., Franssen J.D., Vulcano M., Mirjolet J.F., Le Poul E., Migeotte I., Brezillon S., Tyldesley R., Blanpain C., Detheux M., et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 2003;198:977–985. doi: 10.1084/jem.20030382.
    1. Zabel B.A., Allen S.J., Kulig P., Allen J.A., Cichy J., Handel T.M., Butcher E.C. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 2005;280:34661–34666. doi: 10.1074/jbc.M504868200.
    1. Mattern A., Zellmann T., Beck-Sickinger A.G. Processing, signaling, and physiological function of chemerin. IUBMB Life. 2014;66:19–26. doi: 10.1002/iub.1242.
    1. Kennedy A.J., Davenport A.P. International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacol. Rev. 2018;70:174–196. doi: 10.1124/pr.116.013177.
    1. Rourke J.L., Dranse H.J., Sinal C.J. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes. Rev. 2013;14:245–262. doi: 10.1111/obr.12009.
    1. Samal B., Sun Y., Stearns G., Xie C., Suggs S., McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 1994;14:1431–1437. doi: 10.1128/MCB.14.2.1431.
    1. Martin P.R., Shea R.J., Mulks M.H. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J. Bacteriol. 2001;183:1168–1174. doi: 10.1128/JB.183.4.1168-1174.2001.
    1. Rongvaux A., Shea R.J., Mulks M.H., Gigot D., Urbain J., Leo O., Andris F. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 2002;32:3225–3234. doi: 10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>;2-L.
    1. Wang T., Zhang X., Bheda P., Revollo J.R., Imai S., Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. 2006;13:661–662. doi: 10.1038/nsmb1114.
    1. Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 2004;279:50754–50763. doi: 10.1074/jbc.M408388200.
    1. Berndt J., Klöting N., Kralisch S., Kovacs P., Fasshauer M., Schön M.R., Stumvoll M., Blüher M. Plasma visfatin concentrations and fat depot-specific mRNA expresson in humans. Diabetes. 2005;54:2911–2916. doi: 10.2337/diabetes.54.10.2911.
    1. Revollo J.R., Grimm A.A., Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol. 2007;23:164–170. doi: 10.1097/MOG.0b013e32801b3c8f.
    1. Yoon M.J., Yoshida M., Johnson S., Takikawa A., Usui I., Tobe K., Nakagawa T., Yoshino J., Imai S. SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice. Cell Metab. 2015;21:706–717. doi: 10.1016/j.cmet.2015.04.002.
    1. Audrito V., Manago A., Zamporlini F., Rulli E., Gaudino F., Madonna G., D’Atri S., Antonini Cappellini G.C., Ascierto P.A., Massi D., et al. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma. Oncotarget. 2018;9:18997–19005. doi: 10.18632/oncotarget.24871.
    1. Sun Y., Zhu S., Wu Z., Huang Y., Liu C., Tang S., Wei L. Elevated serum visfatin levels are associated with poor prognosis of hepatocellular carcinoma. Oncotarget. 2017;8:23427–23435. doi: 10.18632/oncotarget.15080.
    1. Grolla A.A., Torretta S., Gnemmi I., Amoruso A., Orsomando G., Gatti M., Caldarelli A., Lim D., Penengo L., Brunelleschi S., et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is a tumoural cytokine released from melanoma. Pigment Cell Melanoma Res. 2015;28:718–729. doi: 10.1111/pcmr.12420.
    1. Kim K.H., Lee K., Moon Y.S., Sul H.S. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 2001;276:11252–11256. doi: 10.1074/jbc.C100028200.
    1. Holcomb I.N., Kabakoff R.C., Chan B., Baker T.W., Gurney A., Henzel W., Nelson C., Lowman H.B., Wright B.D., Skelton N.J., et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 2000;19:4046–4055. doi: 10.1093/emboj/19.15.4046.
    1. Steppan C.M., Brown E.J., Wright C.M., Bhat S., Banerjee R.R., Dai C.Y., Enders G.H., Silberg D.G., Wen X., Wu G.D., et al. A family of tissue-specific resistin-like molecules. Proc. Natl. Acad. Sci. USA. 2001;98:502–506. doi: 10.1073/pnas.98.2.502.
    1. Wang H., Chu W.S., Hemphill C., Elbein S.C. Human resistin gene: Molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J. Clin. Endocrinol. Metab. 2002;87:2520–2524. doi: 10.1210/jcem.87.6.8528.
    1. Banerjee R.R., Lazar M.A. Dimerization of resistin and resistin-like molecules is determined by a single cysteine. J. Biol. Chem. 2001;276:25970–25973. doi: 10.1074/jbc.M103109200.
    1. Patel S.D., Rajala M.W., Rossetti L., Scherer P.E., Shapiro L. Disulfide-dependent multimeric assembly of resistin family hormones. Science. 2004;304:1154–1158. doi: 10.1126/science.1093466.
    1. Codoner-Franch P., Alonso-Iglesias E. Resistin: Insulin resistance to malignancy. Clin. Chim. Acta. 2015;438:46–54. doi: 10.1016/j.cca.2014.07.043.
    1. Panidis D., Koliakos G., Kourtis A., Farmakiotis D., Mouslech T., Rousso D. Serum resistin levels in women with polycystic ovary syndrome. Fertil. Steril. 2004;81:361–366. doi: 10.1016/j.fertnstert.2003.06.021.
    1. Tatemoto K., Hosoya M., Habata Y., Fujii R., Kakegawa T., Zou M.X., Kawamata Y., Fukusumi S., Hinuma S., Kitada C., et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998;251:471–476. doi: 10.1006/bbrc.1998.9489.
    1. Medhurst A.D., Jennings C.A., Robbins M.J., Davis R.P., Ellis C., Winborn K.Y., Lawrie K.W., Hervieu G., Riley G., Bolaky J.E., et al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem. 2003;84:1162–1172. doi: 10.1046/j.1471-4159.2003.01587.x.
    1. Boucher J., Masri B., Daviaud D., Gesta S., Guigne C., Mazzucotelli A., Castan-Laurell I., Tack I., Knibiehler B., Carpene C., et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–1771. doi: 10.1210/en.2004-1427.
    1. Huang Z., Luo X., Liu M., Chen L. Function and regulation of apelin/APJ system in digestive physiology and pathology. J. Cell. Physiol. 2019;234:7796–7810. doi: 10.1002/jcp.27720.
    1. Roche J., Rame C., Reverchon M., Mellouk N., Cornuau M., Guerif F., Froment P., Dupont J. Apelin (APLN) and Apelin Receptor (APLNR) in Human Ovary: Expression, Signaling, and Regulation of Steroidogenesis in Primary Human Luteinized Granulosa Cells. Biol. Reprod. 2016;95:104. doi: 10.1095/biolreprod.116.141754.
    1. Pitkin S.L., Maguire J.J., Bonner T.I., Davenport A.P. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol. Rev. 2010;62:331–342. doi: 10.1124/pr.110.002949.
    1. Maguire J.J., Kleinz M.J., Pitkin S.L., Davenport A.P. [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: Vasoactive mechanisms and inotropic action in disease. Hypertension. 2009;54:598–604. doi: 10.1161/HYPERTENSIONAHA.109.134619.
    1. El Messari S., Iturrioz X., Fassot C., De Mota N., Roesch D., Llorens-Cortes C. Functional dissociation of apelin receptor signaling and endocytosis: Implications for the effects of apelin on arterial blood pressure. J. Neurochem. 2004;90:1290–1301. doi: 10.1111/j.1471-4159.2004.02591.x.
    1. Gantz I., Konda Y., Yang Y.K., Miller D.E., Dierick H.A., Yamada T. Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet. Cell Genet. 1996;74:286–290. doi: 10.1159/000134436.
    1. Samson M., Edinger A.L., Stordeur P., Rucker J., Verhasselt V., Sharron M., Govaerts C., Mollereau C., Vassart G., Doms R.W., et al. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 1998;28:1689–1700. doi: 10.1002/(SICI)1521-4141(199805)28:05<1689::AID-IMMU1689>;2-I.
    1. Shimada T., Matsumoto M., Tatsumi Y., Kanamaru A., Akira S. A novel lipopolysaccharide inducible C-C chemokine receptor related gene in murine macrophages. FEBS Lett. 1998;425:490–494. doi: 10.1016/S0014-5793(98)00299-3.
    1. Fan P., Kyaw H., Su K., Zeng Z., Augustus M., Carter K.C., Li Y. Cloning and characterization of a novel human chemokine receptor. Biochem. Biophys. Res. Commun. 1998;243:264–268. doi: 10.1006/bbrc.1997.7981.
    1. Marchese A., Cheng R., Lee M.C., Porter C.A., Heiber M., Goodman M., George S.R., O’Dowd B.F. Mapping studies of two G protein-coupled receptor genes: An amino acid difference may confer a functional variation between a human and rodent receptor. Biochem. Biophys. Res. Commun. 1994;205:1952–1958. doi: 10.1006/bbrc.1994.2899.
    1. Barnea G., Strapps W., Herrada G., Berman Y., Ong J., Kloss B., Axel R., Lee K.J. The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA. 2008;105:64–69. doi: 10.1073/pnas.0710487105.
    1. Zabel B.A., Nakae S., Zuniga L., Kim J.Y., Ohyama T., Alt C., Pan J., Suto H., Soler D., Allen S.J., et al. Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 2008;205:2207–2220. doi: 10.1084/jem.20080300.
    1. Arita M., Bianchini F., Aliberti J., Sher A., Chiang N., Hong S., Yang R., Petasis N.A., Serhan C.N. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 2005;201:713–722. doi: 10.1084/jem.20042031.
    1. Bozaoglu K., Bolton K., McMillan J., Zimmet P., Jowett J., Collier G., Walder K., Segal D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175.
    1. Kaur J., Adya R., Tan B.K., Chen J., Randeva H.S. Identification of chemerin receptor (ChemR23) in human endothelial cells: Chemerin-induced endothelial angiogenesis. Biochem. Biophys. Res. Commun. 2010;391:1762–1768. doi: 10.1016/j.bbrc.2009.12.150.
    1. Herrera B.S., Ohira T., Gao L., Omori K., Yang R., Zhu M., Muscara M.N., Serhan C.N., Van Dyke T.E., Gyurko R. An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption. Br. J. Pharmacol. 2008;155:1214–1223. doi: 10.1038/bjp.2008.367.
    1. Reverchon M., Cornuau M., Rame C., Guerif F., Royere D., Dupont J. Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Hum. Reprod. 2012;27:1790–1800. doi: 10.1093/humrep/des089.
    1. Migeotte I., Franssen J.D., Goriely S., Willems F., Parmentier M. Distribution and regulation of expression of the putative human chemokine receptor HCR in leukocyte populations. Eur. J. Immunol. 2002;32:494–501. doi: 10.1002/1521-4141(200202)32:2<494::AID-IMMU494>;2-Y.
    1. Oostendorp J., Hylkema M.N., Luinge M., Geerlings M., Meurs H., Timens W., Zaagsma J., Postma D.S., Boddeke H.W., Biber K. Localization and enhanced mRNA expression of the orphan chemokine receptor L-CCR in the lung in a murine model of ovalbumin-induced airway inflammation. J. Histochem. Cytochem. 2004;52:401–410. doi: 10.1177/002215540405200311.
    1. Shimizu N., Soda Y., Kanbe K., Liu H.Y., Jinno A., Kitamura T., Hoshino H. An orphan G protein-coupled receptor, GPR1, acts as a coreceptor to allow replication of human immunodeficiency virus types 1 and 2 in brain-derived cells. J. Virol. 1999;73:5231–5239.
    1. Peng L., Yu Y., Liu J., Li S., He H., Cheng N., Ye R.D. The chemerin receptor CMKLR1 is a functional receptor for amyloid-beta peptide. J. Alzheimer’s Dis. 2015;43:227–242. doi: 10.3233/JAD-141227.
    1. Yang Y.L., Ren L.R., Sun L.F., Huang C., Xiao T.X., Wang B.B., Chen J., Zabel B.A., Ren P., Zhang J.V. The role of GPR1 signaling in mice corpus luteum. J. Endocrinol. 2016;230:55–65. doi: 10.1530/JOE-15-0521.
    1. Rourke J.L., Dranse H.J., Sinal C.J. CMKLR1 and GPR1 mediate chemerin signaling through the RhoA/ROCK pathway. Mol. Cell. Endocrinol. 2015;417:36–51. doi: 10.1016/j.mce.2015.09.002.
    1. Goralski K.B., McCarthy T.C., Hanniman E.A., Zabel B.A., Butcher E.C., Parlee S.D., Muruganandan S., Sinal C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007;282:28175–28188. doi: 10.1074/jbc.M700793200.
    1. Li J.J., Yin H.K., Guan D.X., Zhao J.S., Feng Y.X., Deng Y.Z., Wang X., Li N., Wang X.F., Cheng S.Q., et al. Chemerin suppresses hepatocellular carcinoma metastasis through CMKLR1-PTEN-Akt axis. Br. J. Cancer. 2018;118:1337–1348. doi: 10.1038/s41416-018-0077-y.
    1. Sell H., Laurencikiene J., Taube A., Eckardt K., Cramer A., Horrighs A., Arner P., Eckel J. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes. 2009;58:2731–2740. doi: 10.2337/db09-0277.
    1. Xie H., Tang S.Y., Luo X.H., Huang J., Cui R.R., Yuan L.Q., Zhou H.D., Wu X.P., Liao E.Y. Insulin-like effects of visfatin on human osteoblasts. Calcif. Tissue Int. 2007;80:201–210. doi: 10.1007/s00223-006-0155-7.
    1. Adya R., Tan B.K., Chen J., Randeva H.S. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: Its role in MMP-2/9 production and activation. Diabetes Care. 2008;31:758–760. doi: 10.2337/dc07-1544.
    1. Brown J.E., Onyango D.J., Ramanjaneya M., Conner A.C., Patel S.T., Dunmore S.J., Randeva H.S. Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. J. Mol. Endocrinol. 2010;44:171–178. doi: 10.1677/JME-09-0071.
    1. Jacques C., Holzenberger M., Mladenovic Z., Salvat C., Pecchi E., Berenbaum F., Gosset M. Proinflammatory actions of visfatin/nicotinamide phosphoribosyltransferase (Nampt) involve regulation of insulin signaling pathway and Nampt enzymatic activity. J. Biol. Chem. 2012;287:15100–15108. doi: 10.1074/jbc.M112.350215.
    1. Lee S., Lee H.C., Kwon Y.W., Lee S.E., Cho Y., Kim J., Lee S., Kim J.Y., Lee J., Yang H.M., et al. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes. Cell Metab. 2014;19:484–497. doi: 10.1016/j.cmet.2014.01.013.
    1. Benomar Y., Gertler A., De Lacy P., Crepin D., Ould Hamouda H., Riffault L., Taouis M. Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes. 2013;62:102–114. doi: 10.2337/db12-0237.
    1. Daquinag A.C., Zhang Y., Amaya-Manzanares F., Simmons P.J., Kolonin M.G. An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell. 2011;9:74–86. doi: 10.1016/j.stem.2011.05.017.
    1. Sanchez-Solana B., Laborda J., Baladron V. Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor. Mol. Endocrinol. 2012;26:110–127. doi: 10.1210/me.2011-1027.
    1. O’Dowd B.F., Heiber M., Chan A., Heng H.H., Tsui L.C., Kennedy J.L., Shi X., Petronis A., George S.R., Nguyen T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136:355–360. doi: 10.1016/0378-1119(93)90495-O.
    1. O’Carroll A.M., Lolait S.J., Howell G.M. Transcriptional regulation of the rat apelin receptor gene: Promoter cloning and identification of an Sp1 site necessary for promoter activity. J. Mol. Endocrinol. 2006;36:221–235. doi: 10.1677/jme.1.01927.
    1. Masri B., Morin N., Pedebernade L., Knibiehler B., Audigier Y. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J. Biol. Chem. 2006;281:18317–18326. doi: 10.1074/jbc.M600606200.
    1. Helfer G., Ross A.W., Thomson L.M., Mayer C.D., Stoney P.N., McCaffery P.J., Morgan P.J. A neuroendocrine role for chemerin in hypothalamic remodelling and photoperiodic control of energy balance. Sci. Rep. 2016;6:26830. doi: 10.1038/srep26830.
    1. Gonzalez-Alvarez R., Garza-Rodriguez Mde L., Delgado-Enciso I., Trevino-Alvarado V.M., Canales-Del-Castillo R., Martinez-De-Villarreal L.E., Lugo-Trampe A., Tejero M.E., Schlabritz-Loutsevitch N.E., Rocha-Pizana Mdel R., et al. Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee. Biol. Res. 2015;48:31. doi: 10.1186/s40659-015-0020-0.
    1. Brunetti L., Orlando G., Ferrante C., Recinella L., Leone S., Chiavaroli A., Di Nisio C., Shohreh R., Manippa F., Ricciuti A., et al. Peripheral chemerin administration modulates hypothalamic control of feeding. Peptides. 2014;51:115–121. doi: 10.1016/j.peptides.2013.11.007.
    1. Wilkinson M., Wilkinson D., Wiesner G., Morash B., Ur E. Hypothalamic resistin immunoreactivity is reduced by obesity in the mouse: Co-localization with alpha-melanostimulating hormone. Neuroendocrinology. 2005;81:19–30. doi: 10.1159/000084871.
    1. Maillard V., Elis S., Desmarchais A., Hivelin C., Lardic L., Lomet D., Uzbekova S., Monget P., Dupont J. Visfatin and resistin in gonadotroph cells: Expression, regulation of LH secretion and signalling pathways. Reprod. Fertil. Dev. 2017;29:2479–2495. doi: 10.1071/RD16301.
    1. Nogueiras R., Barreiro M.L., Caminos J.E., Gaytan F., Suominen J.S., Navarro V.M., Casanueva F.F., Aguilar E., Toppari J., Dieguez C., et al. Novel expression of resistin in rat testis: Functional role and regulation by nutritional status and hormonal factors. J. Cell Sci. 2004;117:3247–3257. doi: 10.1242/jcs.01196.
    1. Hallschmid M., Randeva H., Tan B.K., Kern W., Lehnert H. Relationship between cerebrospinal fluid visfatin (PBEF/Nampt) levels and adiposity in humans. Diabetes. 2009;58:637–640. doi: 10.2337/db08-1176.
    1. Pope G.R., Roberts E.M., Lolait S.J., O’Carroll A.M. Central and peripheral apelin receptor distribution in the mouse: Species differences with rat. Peptides. 2012;33:139–148. doi: 10.1016/j.peptides.2011.12.005.
    1. Rozycka M., Kurowska P., Grzesiak M., Kotula-Balak M., Tworzydlo W., Rame C., Gregoraszczuk E., Dupont J., Rak A. Apelin and apelin receptor at different stages of corpus luteum development and effect of apelin on progesterone secretion and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) in pigs. Anim. Reprod. Sci. 2018;192:251–260. doi: 10.1016/j.anireprosci.2018.03.021.
    1. Roche J., Rame C., Reverchon M., Mellouk N., Rak A., Froment P., Dupont J. Apelin (APLN) regulates progesterone secretion and oocyte maturation in bovine ovarian cells. Reproduction. 2017;153:589–603. doi: 10.1530/REP-16-0677.
    1. Martini A.C., Tissera A., Estofan D., Molina R.I., Mangeaud A., de Cuneo M.F., Ruiz R.D. Overweight and seminal quality: A study of 794 patients. Fertil. Steril. 2010;94:1739–1743. doi: 10.1016/j.fertnstert.2009.11.017.
    1. Wang Q., Kim J.Y., Xue K., Liu J.Y., Leader A., Tsang B.K. Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome. Endocrinology. 2012;153:5600–5611. doi: 10.1210/en.2012-1424.
    1. Wang Q., Leader A., Tsang B.K. Inhibitory roles of prohibitin and chemerin in FSH-induced rat granulosa cell steroidogenesis. Endocrinology. 2013;154:956–967. doi: 10.1210/en.2012-1836.
    1. Reverchon M., Bertoldo M.J., Rame C., Froment P., Dupont J. CHEMERIN (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species. Biol. Reprod. 2014;90:102. doi: 10.1095/biolreprod.113.117044.
    1. Mellouk N., Rame C., Delaveau J., Rat C., Marchand M., Mercerand F., Travel A., Brionne A., Chartrin P., Ma L., et al. Food restriction but not fish oil increases fertility in hens: Role of RARRES2? Reproduction. 2018;155:321–331. doi: 10.1530/REP-17-0678.
    1. Diot M., Reverchon M., Rame C., Froment P., Brillard J.P., Briere S., Leveque G., Guillaume D., Dupont J. Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod. Biol. Endocrinol. 2015;13:81. doi: 10.1186/s12958-015-0081-5.
    1. Maillard V., Froment P., Rame C., Uzbekova S., Elis S., Dupont J. Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction. 2011;141:467–479. doi: 10.1530/REP-10-0419.
    1. Spicer L.J., Schreiber N.B., Lagaly D.V., Aad P.Y., Douthit L.B., Grado-Ahuir J.A. Effect of resistin on granulosa and theca cell function in cattle. Anim. Reprod. Sci. 2011;124:19–27. doi: 10.1016/j.anireprosci.2011.01.005.
    1. Rak-Mardyla A., Durak M., Lucja Gregoraszczuk E. Effects of resistin on porcine ovarian follicle steroidogenesis in prepubertal animals: An in vitro study. Reprod. Biol. Endocrinol. 2013;11:45. doi: 10.1186/1477-7827-11-45.
    1. Singh A., Suragani M., Ehtesham N.Z., Krishna A. Localization of resistin and its possible roles in the ovary of a vespertilionid bat, Scotophilus heathi. Steroids. 2015;95:17–23. doi: 10.1016/j.steroids.2014.12.018.
    1. Singh A., Suragani M., Krishna A. Effects of resistin on ovarian folliculogenesis and steroidogenesis in the vespertilionid bat, Scotophilus heathi. Gen. Comp. Endocrinol. 2014;208:73–84. doi: 10.1016/j.ygcen.2014.09.005.
    1. Niles L.P., Lobb D.K., Kang N.H., Armstrong K.J. Resistin expression in human granulosa cells. Endocrine. 2012;42:742–745. doi: 10.1007/s12020-012-9734-8.
    1. Reverchon M., Cornuau M., Rame C., Guerif F., Royere D., Dupont J. Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells. Fertil. Steril. 2013;100:247–255.e3. doi: 10.1016/j.fertnstert.2013.03.008.
    1. Chalvatzas N., Dafopoulos K., Kosmas G., Kallitsaris A., Pournaras S., Messinis I.E. Effect of ovarian hormones on serum adiponectin and resistin concentrations. Fertil. Steril. 2009;91:1189–1194. doi: 10.1016/j.fertnstert.2008.01.027.
    1. Munir I., Yen H.W., Baruth T., Tarkowski R., Azziz R., Magoffin D.A., Jakimiuk A.J. Resistin stimulation of 17alpha-hydroxylase activity in ovarian theca cells in vitro: Relevance to polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005;90:4852–4857. doi: 10.1210/jc.2004-2152.
    1. Annie L., Gurusubramanian G., Roy V.K. Estrogen and progesterone dependent expression of visfatin/NAMPT regulates proliferation and apoptosis in mice uterus during estrous cycle. J. Steroid Biochem. Mol. Biol. 2019;185:225–236. doi: 10.1016/j.jsbmb.2018.09.010.
    1. Messini C.I., Vasilaki A., Korona E., Anifandis G., Georgoulias P., Dafopoulos K., Garas A., Daponte A., Messinis I.E. Effect of resistin on estradiol and progesterone secretion from human luteinized granulosa cells in culture. Syst. Biol. Reprod. Med. 2019 doi: 10.1080/19396368.2019.1615151.
    1. Seow K.M., Juan C.C., Hsu Y.P., Ho L.T., Wang Y.Y., Hwang J.L. Serum and follicular resistin levels in women with polycystic ovarian syndrome during IVF-stimulated cycles. Hum. Reprod. 2005;20:117–121. doi: 10.1093/humrep/deh589.
    1. Varnagy A., Bodis J., Kovacs G.L., Sulyok E., Rauh M., Rascher W. Metabolic hormones in follicular fluid in women undergoing in vitro fertilization. J. Reprod. Med. 2013;58:305–311.
    1. Chen D., Fang Q., Chai Y., Wang H., Huang H., Dong M. Serum resistin in gestational diabetes mellitus and early postpartum. Clin. Endocrinol. (Oxf.) 2007;67:208–211. doi: 10.1111/j.1365-2265.2007.02862.x.
    1. Ons E., Gertler A., Buyse J., Lebihan-Duval E., Bordas A., Goddeeris B., Dridi S. Visfatin gene expression in chickens is sex and tissue dependent. Domest. Anim. Endocrinol. 2010;38:63–74. doi: 10.1016/j.domaniend.2009.08.007.
    1. Diot M., Reverchon M., Rame C., Baumard Y., Dupont J. Expression and effect of NAMPT (visfatin) on progesterone secretion in hen granulosa cells. Reproduction. 2015;150:53–63. doi: 10.1530/REP-15-0021.
    1. Reverchon M., Rame C., Bunel A., Chen W., Froment P., Dupont J. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells. Biol. Reprod. 2016;94:54. doi: 10.1095/biolreprod.115.134650.
    1. Choi K.H., Joo B.S., Sun S.T., Park M.J., Son J.B., Joo J.K., Lee K.S. Administration of visfatin during superovulation improves developmental competency of oocytes and fertility potential in aged female mice. Fertil. Steril. 2012;97:1234–1241.e3. doi: 10.1016/j.fertnstert.2012.02.032.
    1. Shen C.J., Tsai E.M., Lee J.N., Chen Y.L., Lee C.H., Chan T.F. The concentrations of visfatin in the follicular fluids of women undergoing controlled ovarian stimulation are correlated to the number of oocytes retrieved. Fertil. Steril. 2010;93:1844–1850. doi: 10.1016/j.fertnstert.2008.12.090.
    1. Plati E., Kouskouni E., Malamitsi-Puchner A., Boutsikou M., Kaparos G., Baka S. Visfatin and leptin levels in women with polycystic ovaries undergoing ovarian stimulation. Fertil. Steril. 2010;94:1451–1456. doi: 10.1016/j.fertnstert.2009.04.055.
    1. Reverchon M., Cornuau M., Cloix L., Rame C., Guerif F., Royere D., Dupont J. Visfatin is expressed in human granulosa cells: Regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Mol. Hum. Reprod. 2013;19:313–326. doi: 10.1093/molehr/gat002.
    1. O’Carroll A.M., Selby T.L., Palkovits M., Lolait S.J. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim. Biophys. Acta. 2000;1492:72–80. doi: 10.1016/S0167-4781(00)00072-5.
    1. Shirasuna K., Shimizu T., Sayama K., Asahi T., Sasaki M., Berisha B., Schams D., Miyamoto A. Expression and localization of apelin and its receptor APJ in the bovine corpus luteum during the estrous cycle and prostaglandin F2alpha-induced luteolysis. Reproduction. 2008;135:519–525. doi: 10.1530/REP-07-0409.
    1. Rak A., Drwal E., Rame C., Knapczyk-Stwora K., Slomczynska M., Dupont J., Gregoraszczuk E.L. Expression of apelin and apelin receptor (APJ) in porcine ovarian follicles and in vitro effect of apelin on steroidogenesis and proliferation through APJ activation and different signaling pathways. Theriogenology. 2017;96:126–135. doi: 10.1016/j.theriogenology.2017.04.014.
    1. Altinkaya S.O., Nergiz S., Kucuk M., Yuksel H. Apelin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014;176:168–172. doi: 10.1016/j.ejogrb.2014.02.022.
    1. Chang C.Y., Tsai Y.C., Lee C.H., Chan T.F., Wang S.H., Su J.H. Lower serum apelin levels in women with polycystic ovary syndrome. Fertil. Steril. 2011;95:2520–2523.e2. doi: 10.1016/j.fertnstert.2011.04.044.
    1. Li L., Huang C., Zhang X., Wang J., Ma P., Liu Y., Xiao T., Zabel B.A., Zhang J.V. Chemerin-derived peptide C-20 suppressed gonadal steroidogenesis. Am. J. Reprod. Immunol. 2014;71:265–277. doi: 10.1111/aji.12164.
    1. Li L., Ma P., Huang C., Liu Y., Zhang Y., Gao C., Xiao T., Ren P.G., Zabel B.A., Zhang J.V. Expression of chemerin and its receptors in rat testes and its action on testosterone secretion. J. Endocrinol. 2014;220:155–163. doi: 10.1530/JOE-13-0275.
    1. Chen H., Jin S., Guo J., Kombairaju P., Biswal S., Zirkin B.R. Knockout of the transcription factor Nrf2: Effects on testosterone production by aging mouse Leydig cells. Mol. Cell. Endocrinol. 2015;409:113–120. doi: 10.1016/j.mce.2015.03.013.
    1. Ivars J., Butruille L., Knauf C., Bouckenooghe T., Mayeur S., Vieau D., Valet P., Deruelle P., Lesage J. Maternal hypertension induces tissue-specific modulations of the apelinergic system in the fetoplacental unit in rat. Peptides. 2012;35:136–138. doi: 10.1016/j.peptides.2012.03.005.
    1. Zhao H., Yan D., Xiang L., Huang C., Li J., Yu X., Huang B., Wang B., Chen J., Xiao T., et al. Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice. Cell. Mol. Life Sci. 2019;76:355–367. doi: 10.1007/s00018-018-2944-3.
    1. Bongrani A., Elfassy Y., Brun J.S., Rame C., Mellouk N., Fellahi S., Bastard J.P., Levy R., Vasseur C., Froment P., et al. Expression of adipokines in seminal fluid of men of normal weight. Asian J. Androl. 2019 doi: 10.4103/aja.aja_25_19.
    1. Jeremy M., Gurusubramanian G., Roy V.K. Localization pattern of visfatin (NAMPT) in d-galactose induced aged rat testis. Ann. Anat. 2017;211:46–54. doi: 10.1016/j.aanat.2017.01.009.
    1. Riammer S., Garten A., Schaab M., Grunewald S., Kiess W., Kratzsch J., Paasch U. Nicotinamide phosphoribosyltransferase production in human spermatozoa is influenced by maturation stage. Andrology. 2016;4:1045–1053. doi: 10.1111/andr.12252.
    1. Ocon-Grove O.M., Krzysik-Walker S.M., Maddineni S.R., Hendricks G.L., 3rd, Ramachandran R. NAMPT (visfatin) in the chicken testis: Influence of sexual maturation on cellular localization, plasma levels and gene and protein expression. Reproduction. 2010;139:217–226. doi: 10.1530/REP-08-0377.
    1. Thomas S., Kratzsch D., Schaab M., Scholz M., Grunewald S., Thiery J., Paasch U., Kratzsch J. Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil. Steril. 2013;99:1256–1263.e3. doi: 10.1016/j.fertnstert.2012.12.022.
    1. Hameed W., Yousaf I., Latif R., Aslam M. Effect of visfatin on testicular steroidogenesis in purified Leydig cells. J. Ayub Med. Coll. Abbottabad. 2012;24:62–64.
    1. Roumaud P., Martin L.J. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity. Horm. Mol. Biol. Clin. Investig. 2015;24:25–45. doi: 10.1515/hmbci-2015-0046.
    1. Bauer S., Bala M., Kopp A., Eisinger K., Schmid A., Schneider S., Neumeier M., Buechler C. Adipocyte chemerin release is induced by insulin without being translated to higher levels in vivo. Eur. J. Clin. Investig. 2012;42:1213–1220. doi: 10.1111/j.1365-2362.2012.02713.x.
    1. Sandal S., Tekin S., Seker F.B., Beytur A., Vardi N., Colak C., Tapan T., Yildiz S., Yilmaz B. The effects of intracerebroventricular infusion of apelin-13 on reproductive function in male rats. Neurosci. Lett. 2015;602:133–138. doi: 10.1016/j.neulet.2015.06.059.
    1. Zaitseva M., Vollenhoven B.J., Rogers P.A. Retinoids regulate genes involved in retinoic acid synthesis and transport in human myometrial and fibroid smooth muscle cells. Hum. Reprod. 2008;23:1076–1086. doi: 10.1093/humrep/den083.
    1. Carlino C., Trotta E., Stabile H., Morrone S., Bulla R., Soriani A., Iannitto M.L., Agostinis C., Mocci C., Minozzi M., et al. Chemerin regulates NK cell accumulation and endothelial cell morphogenesis in the decidua during early pregnancy. J. Clin. Endocrinol. Metab. 2012;97:3603–3612. doi: 10.1210/jc.2012-1102.
    1. Mumtaz S., AlSaif S., Wray S., Noble K. Inhibitory effect of visfatin and leptin on human and rat myometrial contractility. Life Sci. 2015;125:57–62. doi: 10.1016/j.lfs.2015.01.020.
    1. Dall’Aglio C., Scocco P., Maranesi M., Petrucci L., Acuti G., De Felice E., Mercati F. Immunohistochemical identification of resistin in the uterus of ewes subjected to different diets: Preliminary results. Eur. J. Histochem. 2019;63:3020. doi: 10.4081/ejh.2019.3020.
    1. Kawamata Y., Habata Y., Fukusumi S., Hosoya M., Fujii R., Hinuma S., Nishizawa N., Kitada C., Onda H., Nishimura O., et al. Molecular properties of apelin: Tissue distribution and receptor binding. Biochim. Biophys. Acta. 2001;1538:162–171. doi: 10.1016/S0167-4889(00)00143-9.
    1. Hehir M.P., Morrison J.J. The adipokine apelin and human uterine contractility. Am. J. Obstet. Gynecol. 2012;206:359.e1–359.e5. doi: 10.1016/j.ajog.2012.01.032.
    1. Kacar E., Ercan Z., Serhatlioglu I., Sumer A., Kelestimur H., Kutlu S. The effects of apelin on myometrium contractions in pregnant rats. Cell. Mol. Biol. (Noisy-Le-Grand) 2018;64:74–79. doi: 10.14715/cmb/2018.64.11.13.
    1. Kasher-Meron M., Mazaki-Tovi S., Barhod E., Hemi R., Haas J., Gat I., Zilberberg E., Yinon Y., Karasik A., Kanety H. Chemerin concentrations in maternal and fetal compartments: Implications for metabolic adaptations to normal human pregnancy. J. Perinat. Med. 2014;42:371–378. doi: 10.1515/jpm-2013-0166.
    1. Wang L., Yang T., Ding Y., Zhong Y., Yu L., Peng M. Chemerin plays a protective role by regulating human umbilical vein endothelial cell-induced nitric oxide signaling in preeclampsia. Endocrine. 2015;48:299–308. doi: 10.1007/s12020-014-0286-y.
    1. Huang B., Huang C., Zhao H., Zhu W., Wang B., Wang H., Chen J., Xiao T., Niu J., Zhang J. Impact of GPR1 signaling on maternal high-fat feeding and placenta metabolism in mice. Am. J. Physiol. Endocrinol. Metab. 2019;316:E987–E997. doi: 10.1152/ajpendo.00437.2018.
    1. Ognjanovic S., Bryant-Greenwood G.D. Pre-B-cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am. J. Obstet. Gynecol. 2002;187:1051–1058. doi: 10.1067/mob.2002.126295.
    1. Ognjanovic S., Tashima L.S., Bryant-Greenwood G.D. The effects of pre–B-cell colony–enhancing factor on the human fetal membranes by microarray analysis. Am. J. Obstet. Gynecol. 2003;189:1187–1195. doi: 10.1067/S0002-9378(03)00591-X.
    1. Lappas M. Visfatin regulates the terminal processes of human labour and delivery via activation of the nuclear factor-kappaB pathway. Mol. Cell. Endocrinol. 2012;348:128–134. doi: 10.1016/j.mce.2011.07.048.
    1. Astern J.M., Collier A.C., Kendal-Wright C.E. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion. Placenta. 2013;34:42–49. doi: 10.1016/j.placenta.2012.10.008.
    1. Zhang Y., Huo Y., He W., Liu S., Li H., Li L. Visfatin is regulated by interleukin6 and affected by the PPARgamma pathway in BeWo cells. Mol. Med. Rep. 2019;19:400–406. doi: 10.3892/mmr.2018.9671.
    1. Caja S., Martinez I., Abelenda M., Puerta M. Resistin expression and plasma concentration peak at different times during pregnancy in rats. J. Endocrinol. 2005;185:551–559. doi: 10.1677/joe.1.05932.
    1. Yura S., Sagawa N., Itoh H., Kakui K., Nuamah M.A., Korita D., Takemura M., Fujii S. Resistin is expressed in the human placenta. J. Clin. Endocrinol. Metab. 2003;88:1394–1397. doi: 10.1210/jc.2002-011926.
    1. Chen D., Dong M., Fang Q., He J., Wang Z., Yang X. Alterations of serum resistin in normal pregnancy and pre-eclampsia. Clin. Sci. (Lond.) 2005;108:81–84. doi: 10.1042/CS20040225.
    1. Cortelazzi D., Corbetta S., Ronzoni S., Pelle F., Marconi A., Cozzi V., Cetin I., Cortelazzi R., Beck-Peccoz P., Spada A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin. Endocrinol. (Oxf.) 2007;66:447–453. doi: 10.1111/j.1365-2265.2007.02761.x.
    1. Di Simone N., Di Nicuolo F., Marzioni D., Castellucci M., Sanguinetti M., D’Lppolito S., Caruso A. Resistin modulates glucose uptake and glucose transporter-1 (GLUT-1) expression in trophoblast cells. J. Cell. Mol. Med. 2009;13:388–397. doi: 10.1111/j.1582-4934.2008.00337.x.
    1. Cobellis L., De Falco M., Mastrogiacomo A., Giraldi D., Dattilo D., Scaffa C., Colacurci N., De Luca A. Modulation of apelin and APJ receptor in normal and preeclampsia-complicated placentas. Histol. Histopathol. 2007;22:1–8. doi: 10.14670/HH-22.1.
    1. Van Mieghem T., van Bree R., Van Herck E., Pijnenborg R., Deprest J., Verhaeghe J. Maternal apelin physiology during rat pregnancy: The role of the placenta. Placenta. 2010;31:725–730. doi: 10.1016/j.placenta.2010.06.001.
    1. Lim R., Barker G., Riley C., Lappas M. Apelin is decreased with human preterm and term labor and regulates prolabor mediators in human primary amnion cells. Reprod. Sci. 2013;20:957–967. doi: 10.1177/1933719112472741.
    1. Mayeur S., Wattez J.S., Lukaszewski M.A., Lecoutre S., Butruille L., Drougard A., Eberle D., Bastide B., Laborie C., Storme L., et al. Apelin Controls Fetal and Neonatal Glucose Homeostasis and Is Altered by Maternal Undernutrition. Diabetes. 2016;65:554–560. doi: 10.2337/db15-0228.
    1. Vaughan O.R., Powell T.L., Jansson T. Apelin is a novel regulator of human trophoblast amino acid transport. Am. J. Physiol. Endocrinol. Metab. 2019;316:E810–E816. doi: 10.1152/ajpendo.00012.2019.
    1. Teede H., Deeks A., Moran L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41. doi: 10.1186/1741-7015-8-41.
    1. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J., International P.N. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018;110:364–379. doi: 10.1016/j.fertnstert.2018.05.004.
    1. Toulis K.A., Goulis D.G., Farmakiotis D., Georgopoulos N.A., Katsikis I., Tarlatzis B.C., Papadimas I., Panidis D. Adiponectin levels in women with polycystic ovary syndrome: A systematic review and a meta-analysis. Hum. Reprod. Update. 2009;15:297–307. doi: 10.1093/humupd/dmp006.
    1. Pasquali R., Gambineri A., Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006;113:1148–1159. doi: 10.1111/j.1471-0528.2006.00990.x.
    1. Barber T.M., McCarthy M.I., Wass J.A., Franks S. Obesity and polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 2006;65:137–145. doi: 10.1111/j.1365-2265.2006.02587.x.
    1. Benrick A., Chanclon B., Micallef P., Wu Y., Hadi L., Shelton J.M., Stener-Victorin E., Wernstedt Asterholm I. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc. Natl. Acad. Sci. USA. 2017;114:E7187–E7196. doi: 10.1073/pnas.1708854114.
    1. Dumesic D.A., Padmanabhan V., Abbott D.H. Polycystic ovary syndrome and oocyte developmental competence. Obstet. Gynecol. Surv. 2008;63:39–48. doi: 10.1097/OGX.0b013e31815e85fc.
    1. Azziz R., Carmina E., Dewailly D., Diamanti-Kandarakis E., Escobar-Morreale H.F., Futterweit W., Janssen O.E., Legro R.S., Norman R.J., Taylor A.E., et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 2006;91:4237–4245. doi: 10.1210/jc.2006-0178.
    1. Tan B.K., Chen J., Farhatullah S., Adya R., Kaur J., Heutling D., Lewandowski K.C., O’Hare J.P., Lehnert H., Randeva H.S. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes. 2009;58:1971–1977. doi: 10.2337/db08-1528.
    1. Ernst M.C., Sinal C.J. Chemerin: At the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 2010;21:660–667. doi: 10.1016/j.tem.2010.08.001.
    1. Kort D.H., Kostolias A., Sullivan C., Lobo R.A. Chemerin as a marker of body fat and insulin resistance in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2015;31:152–155. doi: 10.3109/09513590.2014.968547.
    1. Guvenc Y., Var A., Goker A., Kuscu N.K. Assessment of serum chemerin, vaspin and omentin-1 levels in patients with polycystic ovary syndrome. J. Int. Med. Res. 2016;44:796–805. doi: 10.1177/0300060516645421.
    1. Huang R., Yue J., Sun Y., Zheng J., Tao T., Li S., Liu W. Increased serum chemerin concentrations in patients with polycystic ovary syndrome: Relationship between insulin resistance and ovarian volume. Clin. Chim. Acta. 2015;450:366–369. doi: 10.1016/j.cca.2015.09.015.
    1. Guzel E.C., Celik C., Abali R., Kucukyalcin V., Celik E., Guzel M., Yilmaz M. Omentin and chemerin and their association with obesity in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2014;30:419–422. doi: 10.3109/09513590.2014.888412.
    1. Martinez-Garcia M.A., Montes-Nieto R., Fernandez-Duran E., Insenser M., Luque-Ramirez M., Escobar-Morreale H.F. Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS) J. Clin. Endocrinol. Metab. 2013;98:E388–E396. doi: 10.1210/jc.2012-3414.
    1. Wang Y., Huang R., Li X., Zhu Q., Liao Y., Tao T., Kang X., Liu W., Li S., Sun Y. High concentration of chemerin caused by ovarian hyperandrogenism may lead to poor IVF outcome in polycystic ovary syndrome: A pilot study. Gynecol. Endocrinol. 2019 doi: 10.1080/09513590.2019.1622087.
    1. Tang M., Huang C., Wang Y.F., Ren P.G., Chen L., Xiao T.X., Wang B.B., Pan Y.F., Tsang B.K., Zabel B.A., et al. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone. Sci. Rep. 2016;6:21328. doi: 10.1038/srep21328.
    1. Lima P.D.A., Nivet A.L., Wang Q., Chen Y.A., Leader A., Cheung A., Tzeng C.R., Tsang B.K. Polycystic ovary syndrome: Possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages. Biol. Reprod. 2018;99:838–852. doi: 10.1093/biolre/ioy096.
    1. Kim J.Y., Xue K., Cao M., Wang Q., Liu J.Y., Leader A., Han J.Y., Tsang B.K. Chemerin suppresses ovarian follicular development and its potential involvement in follicular arrest in rats treated chronically with dihydrotestosterone. Endocrinology. 2013;154:2912–2923. doi: 10.1210/en.2013-1001.
    1. Chen M.P., Chung F.M., Chang D.M., Tsai J.C., Huang H.F., Shin S.J., Lee Y.J. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2006;91:295–299. doi: 10.1210/jc.2005-1475.
    1. Pagano C., Soardo G., Pilon C., Milocco C., Basan L., Milan G., Donnini D., Faggian D., Mussap M., Plebani M., et al. Increased serum resistin in nonalcoholic fatty liver disease is related to liver disease severity and not to insulin resistance. J. Clin. Endocrinol. Metab. 2006;91:1081–1086. doi: 10.1210/jc.2005-1056.
    1. Farshchian F., Ramezani Tehrani F., Amirrasouli H., Rahimi Pour H., Hedayati M., Kazerouni F., Soltani A. Visfatin and resistin serum levels in normal-weight and obese women with polycystic ovary syndrome. Int. J. Endocrinol. Metab. 2014;12:e15503. doi: 10.5812/ijem.15503.
    1. Chang Y.H., Chang D.M., Lin K.C., Shin S.J., Lee Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab. Res. Rev. 2011;27:515–527. doi: 10.1002/dmrr.1201.
    1. Ozkaya M., Cakal E., Ustun Y., Engin-Ustun Y. Effect of metformin on serum visfatin levels in patients with polycystic ovary syndrome. Fertil. Steril. 2010;93:880–884. doi: 10.1016/j.fertnstert.2008.10.058.
    1. Kim J.J., Choi Y.M., Hong M.A., Kim M.J., Chae S.J., Kim S.M., Hwang K.R., Yoon S.H., Ku S.Y., Suh C.S., et al. Serum visfatin levels in non-obese women with polycystic ovary syndrome and matched controls. Obstet. Gynecol. Sci. 2018;61:253–260. doi: 10.5468/ogs.2018.61.2.253.
    1. Gumus U., Guzel A.I., Topcu H.O., Timur H., Yilmaz N., Danisman N. Plasma Visfatin Levels in Adolescents with Polycystic Ovary Syndrome: A Prospective Case-Control Study. J. Pediatr. Adolesc. Gynecol. 2015;28:249–253. doi: 10.1016/j.jpag.2014.08.007.
    1. Sun Y., Wu Z., Wei L., Liu C., Zhu S., Tang S. High-visfatin levels in women with polycystic ovary syndrome: Evidence from a meta-analysis. Gynecol. Endocrinol. 2015;31:808–814. doi: 10.3109/09513590.2015.1056140.
    1. Cekmez F., Cekmez Y., Pirgon O., Canpolat F.E., Aydinoz S., Metin Ipcioglu O., Karademir F. Evaluation of new adipocytokines and insulin resistance in adolescents with polycystic ovary syndrome. Eur. Cytokine Netw. 2011;22:32–37. doi: 10.1684/ecn.2011.0279.
    1. Chan T.F., Chen Y.L., Chen H.H., Lee C.H., Jong S.B., Tsai E.M. Increased plasma visfatin concentrations in women with polycystic ovary syndrome. Fertil. Steril. 2007;88:401–405. doi: 10.1016/j.fertnstert.2006.11.120.
    1. Gen R., Akbay E., Muslu N., Sezer K., Cayan F. Plasma visfatin level in lean women with PCOS: Relation to proinflammatory markers and insulin resistance. Gynecol. Endocrinol. 2009;25:241–245. doi: 10.1080/09513590802585613.
    1. Kowalska I., Straczkowski M., Nikolajuk A., Adamska A., Karczewska-Kupczewska M., Otziomek E., Wolczynski S., Gorska M. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome. Hum. Reprod. 2007;22:1824–1829. doi: 10.1093/humrep/dem118.
    1. Panidis D., Farmakiotis D., Rousso D., Katsikis I., Delkos D., Piouka A., Gerou S., Diamanti-Kandarakis E. Plasma visfatin levels in normal weight women with polycystic ovary syndrome. Eur. J. Intern. Med. 2008;19:406–412. doi: 10.1016/j.ejim.2007.05.014.
    1. Tan B.K., Chen J., Digby J.E., Keay S.D., Kennedy C.R., Randeva H.S. Increased visfatin messenger ribonucleic acid and protein levels in adipose tissue and adipocytes in women with polycystic ovary syndrome: Parallel increase in plasma visfatin. J. Clin. Endocrinol. Metab. 2006;91:5022–5028. doi: 10.1210/jc.2006-0936.
    1. Tsouma I., Kouskouni E., Demeridou S., Boutsikou M., Hassiakos D., Chasiakou A., Hassiakou S., Baka S. Correlation of visfatin levels and lipoprotein lipid profiles in women with polycystic ovary syndrome undergoing ovarian stimulation. Gynecol. Endocrinol. 2014;30:516–519. doi: 10.3109/09513590.2014.896896.
    1. Ek I., Arner P., Ryden M., Holm C., Thorne A., Hoffstedt J., Wahrenberg H. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Diabetes. 2002;51:484–492. doi: 10.2337/diabetes.51.2.484.
    1. Hug C., Lodish H.F. Medicine. Visfatin: A new adipokine. Science. 2005;307:366–367. doi: 10.1126/science.1106933.
    1. Moschen A.R., Kaser A., Enrich B., Mosheimer B., Theurl M., Niederegger H., Tilg H. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 2007;178:1748–1758. doi: 10.4049/jimmunol.178.3.1748.
    1. Majuri A., Santaniemi M., Rautio K., Kunnari A., Vartiainen J., Ruokonen A., Kesaniemi Y.A., Tapanainen J.S., Ukkola O., Morin-Papunen L. Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: A randomized placebo-controlled study. Eur. J. Endocrinol. 2007;156:263–269. doi: 10.1530/eje.1.02331.
    1. Schwartz D.R., Lazar M.A. Human resistin: Found in translation from mouse to man. Trends Endocrinol. Metab. 2011;22:259–265. doi: 10.1016/j.tem.2011.03.005.
    1. Gul O.O., Cander S., Gul B., Acikgoz E., Sarandol E., Ersoy C. Evaluation of insulin resistance and plasma levels for visfatin and resistin in obese and non-obese patients with polycystic ovary syndrome. Eur. Cytokine Netw. 2015;26:73–78. doi: 10.1684/ecn.2015.0370.
    1. Yilmaz M., Bukan N., Demirci H., Ozturk C., Kan E., Ayvaz G., Arslan M. Serum resistin and adiponectin levels in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2009;25:246–252. doi: 10.1080/09513590802653833.
    1. Zhang J., Zhou L., Tang L., Xu L. The plasma level and gene expression of resistin in polycystic ovary syndrome. Gynecol. Endocrinol. 2011;27:982–987. doi: 10.3109/09513590.2011.569794.
    1. Urbanek M., Du Y., Silander K., Collins F.S., Steppan C.M., Strauss J.F., 3rd, Dunaif A., Spielman R.S., Legro R.S. Variation in resistin gene promoter not associated with polycystic ovary syndrome. Diabetes. 2003;52:214–217. doi: 10.2337/diabetes.52.1.214.
    1. Baldani D.P., Skrgatic L., Kasum M., Zlopasa G., Kralik Oguic S., Herman M. Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecol. Endocrinol. 2019;35:401–405. doi: 10.1080/09513590.2018.1534096.
    1. Mahde A., Shaker M., Al-Mashhadani Z. Study of Omentin1 and Other Adipokines and Hormones in PCOS Patients. Oman Med. J. 2009;24:108–118. doi: 10.5001/omj.2009.25.
    1. Seow K.M., Juan C.C., Wu L.Y., Hsu Y.P., Yang W.M., Tsai Y.L., Hwang J.L., Ho L.T. Serum and adipocyte resistin in polycystic ovary syndrome with insulin resistance. Hum. Reprod. 2004;19:48–53. doi: 10.1093/humrep/deh010.
    1. Seow K.M., Juan C.C., Ho L.T., Hsu Y.P., Lin Y.H., Huang L.W., Hwang J.L. Adipocyte resistin mRNA levels are down-regulated by laparoscopic ovarian electrocautery in both obese and lean women with polycystic ovary syndrome. Hum. Reprod. 2007;22:1100–1106. doi: 10.1093/humrep/del489.
    1. Olszanecka-Glinianowicz M., Madej P., Nylec M., Owczarek A., Szanecki W., Skalba P., Chudek J. Circulating apelin level in relation to nutritional status in polycystic ovary syndrome and its association with metabolic and hormonal disturbances. Clin. Endocrinol. (Oxf.) 2013;79:238–242. doi: 10.1111/cen.12120.
    1. Choi Y.S., Yang H.I., Cho S., Jung J.A., Jeon Y.E., Kim H.Y., Seo S.K., Lee B.S. Serum asymmetric dimethylarginine, apelin, and tumor necrosis factor-alpha levels in non-obese women with polycystic ovary syndrome. Steroids. 2012;77:1352–1358. doi: 10.1016/j.steroids.2012.08.005.
    1. Goren K., Sagsoz N., Noyan V., Yucel A., Caglayan O., Bostanci M.S. Plasma apelin levels in patients with polycystic ovary syndrome. J. Turk. Ger. Gynecol. Assoc. 2012;13:27–31. doi: 10.5152/jtgga.2011.74.
    1. Benk Silfeler D., Gokce C., Keskin Kurt R., Yilmaz Atilgan N., Ozturk O.H., Turhan E., Baloglu A. Does polycystic ovary syndrome itself have additional effect on apelin levels? Obstet. Gynecol. Int. 2014;2014:536896. doi: 10.1155/2014/536896.
    1. Franks S., Stark J., Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update. 2008;14:367–378. doi: 10.1093/humupd/dmn015.
    1. Taheri S., Murphy K., Cohen M., Sujkovic E., Kennedy A., Dhillo W., Dakin C., Sajedi A., Ghatei M., Bloom S. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem. Biophys. Res. Commun. 2002;291:1208–1212. doi: 10.1006/bbrc.2002.6575.
    1. Howell K.R., Powell T.L. Effects of maternal obesity on placental function and fetal development. Reproduction. 2017;153:R97–R108. doi: 10.1530/REP-16-0495.
    1. Briana D.D., Malamitsi-Puchner A. Reviews: Adipocytokines in normal and complicated pregnancies. Reprod. Sci. 2009;16:921–937. doi: 10.1177/1933719109336614.
    1. Mazaki-Tovi S., Romero R., Kim S.K., Vaisbuch E., Kusanovic J.P., Erez O., Chaiworapongsa T., Gotsch F., Mittal P., Nhan-Chang C.L., et al. Could alterations in maternal plasma visfatin concentration participate in the phenotype definition of preeclampsia and SGA? J. Matern. Fetal Neonatal. Med. 2010;23:857–868. doi: 10.3109/14767050903301017.
    1. Plows J.F., Stanley J.L., Baker P.N., Reynolds C.M., Vickers M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018;19:3342. doi: 10.3390/ijms19113342.
    1. Parsons J.A., Brelje T.C., Sorenson R.L. Adaptation of islets of Langerhans to pregnancy: Increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology. 1992;130:1459–1466. doi: 10.1210/endo.130.3.1537300.
    1. Retnakaran R., Ye C., Connelly P.W., Hanley A.J., Sermer M., Zinman B. Impact of Changes Over Time in Adipokines and Inflammatory Proteins on Changes in Insulin Sensitivity, Beta-Cell Function, and Glycemia in Women with Previous Gestational Dysglycemia. Diabetes Care. 2017;40:e101–e102. doi: 10.2337/dc17-0781.
    1. Hare K.J., Bonde L., Svare J.A., Randeva H.S., Asmar M., Larsen S., Vilsboll T., Knop F.K. Decreased plasma chemerin levels in women with gestational diabetes mellitus. Diabet. Med. 2014;31:936–940. doi: 10.1111/dme.12436.
    1. Zhou Z., Chen H., Ju H., Sun M. Circulating chemerin levels and gestational diabetes mellitus: A systematic review and meta-analysis. Lipids Health Dis. 2018;17:169. doi: 10.1186/s12944-018-0826-1.
    1. Fasshauer M., Bluher M., Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014;2:488–499. doi: 10.1016/S2213-8587(13)70176-1.
    1. Van Poppel M.N., Zeck W., Ulrich D., Schest E.C., Hirschmugl B., Lang U., Wadsack C., Desoye G. Cord blood chemerin: Differential effects of gestational diabetes mellitus and maternal obesity. Clin. Endocrinol. (Oxf.) 2014;80:65–72. doi: 10.1111/cen.12140.
    1. Krzyzanowska K., Krugluger W., Mittermayer F., Rahman R., Haider D., Shnawa N., Schernthaner G. Increased visfatin concentrations in women with gestational diabetes mellitus. Clin. Sci. (Lond.) 2006;110:605–609. doi: 10.1042/CS20050363.
    1. Lewandowski K.C., Stojanovic N., Press M., Tuck S.M., Szosland K., Bienkiewicz M., Vatish M., Lewinski A., Prelevic G.M., Randeva H.S. Elevated serum levels of visfatin in gestational diabetes: A comparative study across various degrees of glucose tolerance. Diabetologia. 2007;50:1033–1037. doi: 10.1007/s00125-007-0610-7.
    1. Mazaki-Tovi S., Romero R., Kusanovic J.P., Vaisbuch E., Erez O., Than N.G., Chaiworapongsa T., Nhan-Chang C.L., Pacora P., Gotsch F., et al. Maternal visfatin concentration in normal pregnancy. J. Perinat. Med. 2009;37:206–217. doi: 10.1515/JPM.2009.054.
    1. Ferreira A.F., Rezende J.C., Vaikousi E., Akolekar R., Nicolaides K.H. Maternal serum visfatin at 11–13 weeks of gestation in gestational diabetes mellitus. Clin. Chem. 2011;57:609–613. doi: 10.1373/clinchem.2010.159806.
    1. Haider D.G., Handisurya A., Storka A., Vojtassakova E., Luger A., Pacini G., Tura A., Wolzt M., Kautzky-Willer A. Visfatin response to glucose is reduced in women with gestational diabetes mellitus. Diabetes Care. 2007;30:1889–1891. doi: 10.2337/dc07-0013.
    1. Akturk M., Altinova A.E., Mert I., Buyukkagnici U., Sargin A., Arslan M., Danisman N. Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. J. Endocrinol. Investig. 2008;31:610–613. doi: 10.1007/BF03345611.
    1. Kuzmicki M., Telejko B., Szamatowicz J., Zonenberg A., Nikolajuk A., Kretowski A., Gorska M. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol. Endocrinol. 2009;25:258–263. doi: 10.1080/09513590802653825.
    1. Megia A., Vendrell J., Gutierrez C., Sabate M., Broch M., Fernandez-Real J.M., Simon I. Insulin sensitivity and resistin levels in gestational diabetes mellitus and after parturition. Eur. J. Endocrinol. 2008;158:173–178. doi: 10.1530/EJE-07-0671.
    1. Abell S.K., De Courten B., Boyle J.A., Teede H.J. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2015;16:13442–13473. doi: 10.3390/ijms160613442.
    1. Lowe L.P., Metzger B.E., Lowe W.L., Jr., Dyer A.R., McDade T.W., McIntyre H.D., HAPO Study Cooperative Research Group Inflammatory mediators and glucose in pregnancy: Results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J. Clin. Endocrinol. Metab. 2010;95:5427–5434. doi: 10.1210/jc.2010-1662.
    1. Lobo T.F., Torloni M.R., Gueuvoghlanian-Silva B.Y., Mattar R., Daher S. Resistin concentration and gestational diabetes: A systematic review of the literature. J. Reprod. Immunol. 2013;97:120–127. doi: 10.1016/j.jri.2012.10.004.
    1. Lappas M., Yee K., Permezel M., Rice G.E. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J. Endocrinol. 2005;186:457–465. doi: 10.1677/joe.1.06227.
    1. Telejko B., Kuzmicki M., Wawrusiewicz-Kurylonek N., Szamatowicz J., Nikolajuk A., Zonenberg A., Zwierz-Gugala D., Jelski W., Laudanski P., Wilczynski J., et al. Plasma apelin levels and apelin/APJ mRNA expression in patients with gestational diabetes mellitus. Diabetes Res. Clin. Pr. 2010;87:176–183. doi: 10.1016/j.diabres.2009.10.018.
    1. Abalos E., Cuesta C., Grosso A.L., Chou D., Say L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013;170:1–7. doi: 10.1016/j.ejogrb.2013.05.005.
    1. Miehle K., Stepan H., Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin. Endocrinol. (Oxf.) 2012;76:2–11. doi: 10.1111/j.1365-2265.2011.04234.x.
    1. Mayrink J., Costa M.L., Cecatti J.G. Preeclampsia in 2018: Revisiting Concepts, Physiopathology, and Prediction. Sci. World J. 2018;2018:6268276. doi: 10.1155/2018/6268276.
    1. Sibai B., Dekker G., Kupferminc M. Pre-eclampsia. Lancet. 2005;365:785–799. doi: 10.1016/S0140-6736(05)17987-2.
    1. Mannisto T., Mendola P., Vaarasmaki M., Jarvelin M.R., Hartikainen A.L., Pouta A., Suvanto E. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127:681–690. doi: 10.1161/CIRCULATIONAHA.112.128751.
    1. Duan D.M., Niu J.M., Lei Q., Lin X.H., Chen X. Serum levels of the adipokine chemerin in preeclampsia. J. Perinat. Med. 2011;40:121–127. doi: 10.1515/jpm.2011.127.
    1. Fasshauer M., Bluher M., Stumvoll M., Tonessen P., Faber R., Stepan H. Differential regulation of visfatin and adiponectin in pregnancies with normal and abnormal placental function. Clin. Endocrinol. (Oxf.) 2007;66:434–439. doi: 10.1111/j.1365-2265.2007.02751.x.
    1. Fasshauer M., Waldeyer T., Seeger J., Schrey S., Ebert T., Kratzsch J., Lossner U., Bluher M., Stumvoll M., Faber R., et al. Serum levels of the adipokine visfatin are increased in pre-eclampsia. Clin. Endocrinol. (Oxf.) 2008;69:69–73. doi: 10.1111/j.1365-2265.2007.03147.x.
    1. Adali E., Yildizhan R., Kolusari A., Kurdoglu M., Bugdayci G., Sahin H.G., Kamaci M. Increased visfatin and leptin in pregnancies complicated by pre-eclampsia. J. Matern. Fetal Neonatal Med. 2009;22:873–879. doi: 10.1080/14767050902994622.
    1. Hu W., Wang Z., Wang H., Huang H., Dong M. Serum visfatin levels in late pregnancy and pre-eclampsia. Acta Obstet. Gynecol. Scand. 2008;87:413–418. doi: 10.1080/00016340801976012.
    1. Sartori C., Lazzeroni P., Merli S., Patianna V.D., Viaroli F., Cirillo F., Amarri S., Street M.E. From Placenta to Polycystic Ovarian Syndrome: The Role of Adipokines. Mediat. Inflamm. 2016;2016:4981916. doi: 10.1155/2016/4981916.
    1. Haugen F., Ranheim T., Harsem N.K., Lips E., Staff A.C., Drevon C.A. Increased plasma levels of adipokines in preeclampsia: Relationship to placenta and adipose tissue gene expression. Am. J. Physiol. Endocrinol. Metab. 2006;290:E326–E333. doi: 10.1152/ajpendo.00020.2005.
    1. Hendler I., Blackwell S.C., Mehta S.H., Whitty J.E., Russell E., Sorokin Y., Cotton D.B. The levels of leptin, adiponectin, and resistin in normal weight, overweight, and obese pregnant women with and without preeclampsia. Am. J. Obstet. Gynecol. 2005;193:979–983. doi: 10.1016/j.ajog.2005.06.041.
    1. Bokarewa M., Nagaev I., Dahlberg L., Smith U., Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005;174:5789–5795. doi: 10.4049/jimmunol.174.9.5789.
    1. Yamaleyeva L.M., Chappell M.C., Brosnihan K.B., Anton L., Caudell D.L., Shi S., McGee C., Pirro N., Gallagher P.E., Taylor R.N., et al. Downregulation of apelin in the human placental chorionic villi from preeclamptic pregnancies. Am. J. Physiol. Endocrinol. Metab. 2015;309:E852–E860. doi: 10.1152/ajpendo.00272.2015.
    1. Malamitsi-Puchner A., Briana D.D., Boutsikou M., Kouskouni E., Hassiakos D., Gourgiotis D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics. 2007;119:e1314–e1318. doi: 10.1542/peds.2006-2589.
    1. Kucur M., Tuten A., Oncul M., Acikgoz A.S., Yuksel M.A., Imamoglu M., Balci Ekmekci O., Yilmaz N., Madazli R. Maternal serum apelin and YKL-40 levels in early and late-onset pre-eclampsia. Hypertens. Pregnancy. 2014;33:467–475. doi: 10.3109/10641955.2014.944709.
    1. Bortoff K.D., Qiu C., Runyon S., Williams M.A., Maitra R. Decreased maternal plasma apelin concentrations in preeclampsia. Hypertens. Pregnancy. 2012;31:398–404. doi: 10.3109/10641955.2012.690054.
    1. Wang C., Liu X., Kong D., Qin X., Li Y., Teng X., Huang X. Apelin as a novel drug for treating preeclampsia. Exp. Ther. Med. 2017;14:5917–5923. doi: 10.3892/etm.2017.5304.
    1. Ho L., van Dijk M., Chye S.T.J., Messerschmidt D.M., Chng S.C., Ong S., Yi L.K., Boussata S., Goh G.H., Afink G.B., et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707–713. doi: 10.1126/science.aam6607.
    1. Zhou Q., Zhang K., Guo Y., Chen L., Li L. Elabela-APJ axis contributes to embryonic development and prevents pre-eclampsia in pregnancy. Acta Biochim. Biophys. Sin. (Shanghai) 2018;50:319–321. doi: 10.1093/abbs/gmx143.
    1. Pritchard N., Kaitu’u-Lino T.J., Gong S., Dopierala J., Smith G.C.S., Charnock-Jones D.S., Tong S. ELABELA/APELA Levels Are Not Decreased in the Maternal Circulation or Placenta among Women with Preeclampsia. Am. J. Pathol. 2018;188:1749–1753. doi: 10.1016/j.ajpath.2018.04.008.
    1. Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016;594:807–823. doi: 10.1113/JP271402.
    1. Malhotra A., Allison B.J., Castillo-Melendez M., Jenkin G., Polglase G.R., Miller S.L. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front. Endocrinol. (Lausanne) 2019;10:55. doi: 10.3389/fendo.2019.00055.
    1. Brodsky D., Christou H. Current concepts in intrauterine growth restriction. J. Intensiv. Care Med. 2004;19:307–319. doi: 10.1177/0885066604269663.
    1. Goto E. Blood adiponectin concentration at birth in small for gestational age neonates: A meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2019;13:183–188. doi: 10.1016/j.dsx.2018.08.034.
    1. Ibanez L., Sebastiani G., Lopez-Bermejo A., Diaz M., Gomez-Roig M.D., de Zegher F. Gender specificity of body adiposity and circulating adiponectin, visfatin, insulin, and insulin growth factor-I at term birth: Relation to prenatal growth. J. Clin. Endocrinol. Metab. 2008;93:2774–2778. doi: 10.1210/jc.2008-0526.
    1. Rotteveel J., van Weissenbruch M.M., Twisk J.W., Delemarre-Van de Waal H.A. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008;122:313–321. doi: 10.1542/peds.2007-2012.
    1. Wang J., Shang L.X., Dong X., Wang X., Wu N., Wang S.H., Zhang F., Xu L.M., Xiao Y. Relationship of adiponectin and resistin levels in umbilical serum, maternal serum and placenta with neonatal birth weight. Aust. N. Z. J. Obstet. Gynaecol. 2010;50:432–438. doi: 10.1111/j.1479-828X.2010.01184.x.
    1. Martos-Moreno G.A., Barrios V., Saenz de Pipaon M., Pozo J., Dorronsoro I., Martinez-Biarge M., Quero J., Argente J. Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: Relationship with glucose metabolism. Eur. J. Endocrinol. 2009;161:381–389. doi: 10.1530/EJE-09-0193.
    1. Struwe E., Berzl G.M., Schild R.L., Dotsch J. Gene expression of placental hormones regulating energy balance in small for gestational age neonates. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009;142:38–42. doi: 10.1016/j.ejogrb.2008.08.007.
    1. Yeung E.H., McLain A.C., Anderson N., Lawrence D., Boghossian N.S., Druschel C., Bell E. Newborn Adipokines and Birth Outcomes. Paediatr. Perinat. Epidemiol. 2015;29:317–325. doi: 10.1111/ppe.12203.
    1. Syriou V., Papanikolaou D., Kozyraki A., Goulis D.G. Cytokines and male infertility. Eur. Cytokine Netw. 2018;29:73–82. doi: 10.1684/ecn.2018.0412.
    1. Wagner I.V., Yango P., Svechnikov K., Tran N.D., Soder O. Adipocytokines may delay pubertal maturation of human Sertoli cells. Reprod. Fertil. Dev. 2019 doi: 10.1071/RD18487.
    1. Bobjer J., Katrinaki M., Dermitzaki E., Margioris A.N., Giwercman A., Tsatsanis C. Serum chemerin levels are negatively associated with male fertility and reproductive hormones. Hum. Reprod. 2018;33:2168–2174. doi: 10.1093/humrep/dey310.
    1. Moretti E., Collodel G., Mazzi L., Campagna M., Iacoponi F., Figura N. Resistin, interleukin-6, tumor necrosis factor-alpha, and human semen parameters in the presence of leukocytospermia, smoking habit, and varicocele. Fertil. Steril. 2014;102:354–360. doi: 10.1016/j.fertnstert.2014.04.017.
    1. Abdel-Fadeil M.R., Abd Allah E.S.H., Iraqy H.M., Elgamal D.A., Abdel-Ghani M.A. Experimental obesity and diabetes reduce male fertility: Potential involvement of hypothalamic Kiss-1, pituitary nitric oxide, serum vaspin and visfatin. Pathophysiology. 2019 doi: 10.1016/j.pathophys.2019.02.001.

Source: PubMed

3
Subskrybuj