Improvement in Fatigue Behavior of Dental Implant Fixtures by Changing Internal Connection Design: An In Vitro Pilot Study

Nak-Hyun Choi, Hyung-In Yoon, Tae-Hyung Kim, Eun-Jin Park, Nak-Hyun Choi, Hyung-In Yoon, Tae-Hyung Kim, Eun-Jin Park

Abstract

(1) Background: The stability of the dental implant-abutment complex is necessary to minimize mechanical complications. The purpose of this study was to compare the behaviors of two internal connection type fixtures, manufactured by the same company, with different connection designs. (2) Methods: 15 implant-abutment complexes were prepared for each group of Osseospeed® TX (TX) and Osseospeed® EV (EV): 3 for single-load fracture tests and 12 for cyclic-loaded fatigue tests (nominal peak values as 80%, 60%, 50%, and 40% of the maximum breaking load) according to international standards (UNI EN ISO 14801:2013). They were assessed with micro-computed tomography (CT), and failure modes were analyzed by scanning electron microscope (SEM) images. (3) Results: The maximum breaking load [TX: 711 ± 36 N (95% CI; 670-752), EV: 791 ± 58 N (95% CI; 725-857)] and fatigue limit (TX: 285 N, EV: 316 N) were higher in EV than those in TX. There was no statistical difference in the fracture areas (P > 0.99). All specimens with 40% nominal peak value survived 5 × 106 cycles, while 50% specimens failed before 105 cycles. (4) Conclusions: EV has improved mechanical properties compared with TX. A loading regimen with a nominal peak value between 40% and 50% is ideal for future tests of implant cyclic loading.

Keywords: dental implants; dental implant–abutment connection; dental implant–abutment design; fatigue; fracture strength; mechanical stress.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Overall flow of the experiment.
Figure 2
Figure 2
Schematic diagram of the loading test device according to ISO 14801:2013.
Figure 3
Figure 3
Frontal and cross-sectional micro-CT view: (a) TX, (b) EV; red arrow = location of the thinnest part of the implant fixture.
Figure 4
Figure 4
Single-load-to-failure test results with two different implant fixtures: (a) TX, (b) EV. Compressive load increasing at a speed of 1mm/min was applied. The peak indicates when deformation starts to occur on the implant–abutment assembly, which is the maximum breaking load. The average maximum breaking load of TX = 711 ± 36 N; EV = 791 ± 58 N.
Figure 5
Figure 5
Plotted S/N curves from cyclic loading tests results: (a) TX, (b) EV. The x-axis represents the logarithmic value of the number of cycles performed. The loading level represents the maximum of the sinusoidal loading level; red arrow = 3 dots overlapped.
Figure 6
Figure 6
Frontal view of TX samples (×30). Fixtures are aligned to represent a load subjected from left to right.
Figure 7
Figure 7
Frontal view of EV samples (×25). Fixtures are aligned to represent a load subjected from left to right.

References

    1. Buser D., Janner S.F.M., Wittneben J.G., Brägger U., Ramseier C.A., Salvi G.E. 10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients. Clin. Implant Dent. Relat. Res. 2012;14:839–851. doi: 10.1111/j.1708-8208.2012.00456.x.
    1. Pjetursson B.E., Thoma D., Jung R., Zwahlen M., Zembic A. A Systematic Review of the Survival and Complication Rates of Implant-Supported Fixed Dental Prostheses(FDPs) after a Mean Observation Period of at Least 5 Years. Clin. Oral Implants Res. 2012;23:22–38. doi: 10.1111/j.1600-0501.2012.02546.x.
    1. Jung R.E., Zembic A., Pjetursson B.E., Zwahlen M., Thoma D.S. Systematic Review of the Survival Rate and the Incidence of Biological, Technical, and Aesthetic Complications of Single Crowns on Implants Reported in Longitudinal Studies with a Mean Follow-up of 5 Years. Clin. Oral Implants Res. 2012;23:2–21. doi: 10.1111/j.1600-0501.2012.02547.x.
    1. Jung R.E., Pjetursson B.E., Glauser R., Zembic A., Zwahlen M., Lang N.P. A Systematic Review of the 5-Year Survival and Complication Rates of Implant-Supported Single Crowns. Clin. Oral Implants Res. 2008;19:119–130. doi: 10.1111/j.1600-0501.2007.01453.x.
    1. Åstrand P., Ahlqvist J., Gunne J., Nilson H. Implant Treatment of Patients with Edentulous Jaws: A 20-Year Follow-Up. Clin. Implant Dent. Relat. Res. 2008;10:207–217. doi: 10.1111/j.1708-8208.2007.00081.x.
    1. Blanes R.J., Bernard J.P., Blanes Z.M., Belser U.C. A 10-Year Prospective Study of ITI Dental Implants Placed in the Posterior Region. I: Clinical and Radiographic Results. Clin. Oral Implants Res. 2007;18:699–706. doi: 10.1111/j.1600-0501.2006.01306.x.
    1. Lekholm U., Gröndahl K., Jemt T. Outcome of Oral Implant Treatment in Partially Edentulous Jaws Followed 20 Years in Clinical Function. Clin. Implant Dent. Relat. Res. 2006;8:178–186. doi: 10.1111/j.1708-8208.2006.00019.x.
    1. Tabrizi R., Behnia H., Taherian S., Hesami N. What Are the Incidence and Factors Associated With Implant Fracture? J. Oral Maxillofac. Surg. 2017;75:1866–1872. doi: 10.1016/j.joms.2017.05.014.
    1. Balik A., Karatas M.O., Keskin H. Effects of Different Abutment Connection Designs on the Stress Distribution Around Five Different Implants: A 3-Dimensional Finite Element Analysis. J. Oral Implantol. 2012;38:491–496. doi: 10.1563/AAID-JOI-D-10-00127.
    1. Shemtov-Yona K., Rittel D., Levin L., Machtei E.E. Effect of Dental Implant Diameter on Fatigue Performance. Part I: Mechanical Behavior. Clin. Implant Dent. Relat. Res. 2014;16:172–177. doi: 10.1111/j.1708-8208.2012.00477.x.
    1. ASTM . ASTM E1823-10-Standard Terminology Relating to Fatigue and Fracture Testing. ASTM International; West Conshohocken, PA, USA: 2010.
    1. Imakita C., Shiota M., Yamaguchi Y., Kasugai S., Wakabayashi N. Failure Analysis of an Abutment Fracture on Single Implant Restoration. Implant Dent. 2013;22:326–331. doi: 10.1097/ID.0b013e31829a16fd.
    1. ISO14801 . Fatigue Test for Endosseous Dental Implants. International Organization for Standardization; Geneva, Switzerland: 2013.
    1. Kelly J.R., Benetti P., Rungruanganunt P., Bona A.D. The Slippery Slope-Critical Perspectives on in Vitro Research Methodologies. Dent. Mater. 2012;28:41–51. doi: 10.1016/j.dental.2011.09.001.
    1. Chieruzzi M., Pagano S., Cianetti S., Lombardo G., Kenny J.M., Torre L. Effect of Fibre Posts, Bone Losses and Fibre Content on the Biomechanical Behaviour of Endodontically Treated Teeth: 3D-Finite Element Analysis. Mater. Sci. Eng. C. 2017;74:334–346. doi: 10.1016/j.msec.2016.12.022.
    1. Geng J.P.A., Tan K.B.C., Liu G.R. Application of Finite Element Analysis in Implant Dentistry: A Review of the Literature. J. Prosthet. Dent. 2001;85:585–598. doi: 10.1067/mpr.2001.115251.
    1. van der Bilt A. Assessment of Mastication with Implications for Oral Rehabilitation: A Review. J. Oral Rehabil. 2011;38:754–780. doi: 10.1111/j.1365-2842.2010.02197.x.
    1. Richter E.-J. In Vivo Vertical Forces on Implants. Int. J. Oral Maxillofac. Implants. 1995;10:99–108.
    1. Gibbs C.H., Mahan P.E., Mauderli A., Lundeen H.C., Walsh E.K. Limits of Human Bite Strength. J. Prosthet. Dent. 1986;56:226–229. doi: 10.1016/0022-3913(86)90480-4.
    1. Helkimo E., Carlsson G.E., Helkimo M. Bite Forces Used during Chewing of Food. J. Dent. Res. 1959;29:133–136.
    1. Waltimo A., Könönen M. A Novel Bite Force Recorder and Maximal Isometric Bite Force Values for Healthy Young Adults. Eur. J. Oral Sci. 1993;101:171–175. doi: 10.1111/j.1600-0722.1993.tb01658.x.
    1. Park S.-J., Lee S.-W., Leesungbok R., Ahn S.-J. Influence of the Connection Design and Titanium Grades of the Implant Complex on Resistance under Static Loading. J. Adv. Prosthodont. 2016;8:388–395. doi: 10.4047/jap.2016.8.5.388.
    1. Marchetti E., Ratta S., Mummolo S., Tecco S., Pecci R., Bedini R., Marzo G. Mechanical Reliability Evaluation of an Oral Implant-Abutment System According to UNI En ISO 14801 Fatigue Test Protocol. Implant Dent. 2016;25:613–618. doi: 10.1097/ID.0000000000000453.
    1. Johansson H., Hellqvist J. Functionality of a Further Developed Implant System: Mechanical Integrity. Clin. Oral Implants Res. 2013;24:166.
    1. Sakaguchi R.L., Douglas W.H., DeLong R., Pintado M.R. The Wear of a Posterior Composite in an Artificial Mouth: A Clinical Correlation. Dent. Mater. 1986;2:235–240. doi: 10.1016/S0109-5641(86)80034-3.
    1. DeLong R., Douglas W.H. Development of an Artificial Oral Environment for the Testing of Dental Restoratives: Bi-Axial Force and Movement Control. J. Dent. Res. 1983;62:32–36. doi: 10.1177/00220345830620010801.
    1. Stimmelmayr M., Edelhoff D., Güth J.-F., Erdelt K., Happe A., Beuer F. Wear at the Titanium–Titanium and the Titanium–Zirconia Implant–Abutment Interface: A Comparative in Vitro Study. Dent. Mater. 2012;28:1215–1220. doi: 10.1016/j.dental.2012.08.008.

Source: PubMed

3
Subskrybuj